Skip to main content

Advertisement

Log in

Cadmium minimization in rice. A review

  • Review Article
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

Cadmium (Cd) contamination of rice is found in areas irrigated by wastewater from mines. Cd contamination of rice fields can also result from the application of Cd-rich phosphate fertilizers. As a consequence, millions of tons of rice are discarded. In Asia, irrigated paddy-based cropping systems provide rice grains as food for about 2 billion people. A daily intake of 20–40 μg Cd from rice is reported in regions where rice is used as a food. Daily rice Cd intake leads to diseases such as bone mineralization. Hence, Cd minimization in rice is needed. This article reviews sustainable agriculture and molecular techniques that prevents Cd uptake in rice. Cadmium minimization can be done either by field remediation or change in plant functions. Organic farming decreases Cd uptake and remediates crop fields. Cd hyperaccumulator plants and Cd immobilizing microbes can be used for field remediation. Cd amount in rice can be controlled by gene families that code for putative transition metal transporters or metal chaperones and quantitative trait loci (QTL). Generation of Cd excluder rice is possible by transgenics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adamu CI, Nganje TN (2010) Heavy metal contamination of surface soil in relationship to land use patterns: a case study of Benue State, Nigeria. Mater Sci Appl 1:127–134. doi:10.4236/msa.2010.13021

    CAS  Google Scholar 

  • Adriano DC, Wenzel WW, Vangronsveld J, Bolan NS (2004) Role of assisted natural remediation in environmental cleanup. Geoderma 122:121–142. doi:10.1016/j.geoderma.2004.01.003

    CAS  Google Scholar 

  • Agrawal GK, Rakwal R, Yonekura M, Kubo A, Saji H (2002) Rapid induction of defense/stress-related proteins in leaves of rice (Oryza sativa) seedlings exposed to ozone is preceded by newly phosphorylated proteins and changes in a 66-kDA ERK-type MAPK. J Plant Physiol 159:361–369. doi:10.1078/0176-1617-00741

    CAS  Google Scholar 

  • Antosiewicz DM, Henning J (2004) Overexpression of LTC1 in tobacco enhances the protective action of calcium against cadmium toxicity. Environ Pollut 129:237–245. doi:10.1016/j.envpol.2003.10.025

    CAS  PubMed  Google Scholar 

  • Appel C, Ma LQ, Rhue RD, Reve W (2008) Sequential sorption of lead and cadmium in three tropical soils. Environ Pollut 155:132–140. doi:10.1016/j.envpol.2007.10.026

    CAS  PubMed  Google Scholar 

  • Arao T, Ae N (2003) Genotypic variations in cadmium levels of rice grain. Soil Sci Plant Nutr 287:223–233. doi:10.1080/00380768.2003.10410035

    Google Scholar 

  • Arao T, Kawasaki A, Baba K, Mori S, Matsumoto S (2009) Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice. Environ Sci Technol 43:9361–9367. doi:10.1021/es9022738

    CAS  PubMed  Google Scholar 

  • Arvind P, Prasad MNV (2005) Cadmium–zinc interactions in a hydroponic system using Ceratophyllum demersum L.: adaptive ecophysiology, biochemistry and molecular toxicology. Braz J Plant Physiol 17(1):3–20. doi:10.1590/S1677-04202005000100002

    Google Scholar 

  • Aslan A, Çiçek A, Yazici K, Karagöz Y, Turan M, Akku F, Yildirim OS (2011) The assessment of lichens as bioindicator of heavy metal pollution from motor vehicles activities. Afr J Agric Res 6(7):1698–1706. doi:10.5897/AJAR10.331

    Google Scholar 

  • Baize D (2008) Cadmium in soils and cereal grains after sewage-sludge application on French soils. A review. Agron Sustain Dev 29:175–184. doi:10.1051/agro:2008031

    Google Scholar 

  • Baize D, Bellanger L, Tomassone R (2009) Relationships between concentrations of trace metals in wheat grains and soil. Agron Sustain Dev 29:297–312. doi:10.1051/agro:2008057

    CAS  Google Scholar 

  • Basta NT, McGowen SL (2004) Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil. Environ Pollut 127:73–82. doi:10.1016/S0269-7491(03)00250-1

    CAS  PubMed  Google Scholar 

  • Battaglia A, Calace N, Nardi E, Petronio BM, Pietroletti M (2003) Paper mill sludge–soil mixture: kinetic and thermodynamic tests of cadmium and lead sorption capability. Microchem J 75:97–102. doi:10.1016/S0026-265X(03)00074-2

    CAS  Google Scholar 

  • Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37:241–250

    CAS  Google Scholar 

  • Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17(1):21–34. doi:10.1590/S1677-04202005000100003

    CAS  Google Scholar 

  • Berg B (2000) Litter decomposition and organic matter turnover in northern forest soils. Forest Ecol Manag 133:13–22. doi:10.1016/S0378-1127(99)00294-7

    Google Scholar 

  • Boisson J, Mench M, Sappin-Didier V, Solda P, Vangronsveld J (1998) Short-term in situ immobilization of Cd and Ni by beringite and steel shots application to long-term sludged plots. Agron Sustain Dev 18(5–6):347–359. doi:10.1051/agro:19980502

    Google Scholar 

  • Boisson J, Mench M, Vangronsveld J, Ruttens A, Kop-ponen P, De Koe T (1999) Immobilization of trace metals and arsenic by different soil additives: evaluation by means of chemical extractions. Commun Soil Sci Plant 30:365–387. doi:10.1080/00103629909370210

    CAS  Google Scholar 

  • Bolan NS, Makino T, Kunhikrishnan A, Kim PJ, Ishikawa S, Murakami M, Naidu R, Kirkham MB (2013) Cadmium contamination and its risk management in rice ecosystems. Adv Agron 119:183–273. doi:10.1016/B978-0-12-407247-3.00004-4

    CAS  Google Scholar 

  • Bolan NS, Adriano DC, Mani P, Duraisamy A, Arulmozhiselvan S (2003) Immobilization and phytoavailability of cadmium in variable charge soils: II. Effect of lime addition. Plant Soil 250:187–198. doi:10.1023/A:1026288021059

    Google Scholar 

  • Brams E, Anthony W (1983) Cadmium and lead through an agricultural food chain. Sci Total Environ 28:295–306. doi:10.1016/S0048-9697(83)80027-8

    CAS  PubMed  Google Scholar 

  • Callahan DL, Baker AJM, Kolev SD, Wedd AG (2006) Metal ion ligands in hyper accumulating plants. J Biol Inorg Chem 11:2–12. doi:10.1007/s00775-005-0056-7

    CAS  PubMed  Google Scholar 

  • Casova K, Cerny J, Szakova J, Balik J, Tlustos P (2009) Cadmium balance in soils under different fertilization managements including sewage sludge application. Plant Soil Environ 55(8):353–361

    CAS  Google Scholar 

  • Cataldo DA, Garland TR, Wildung RE (1983) Cadmium uptake kinetics in intact soybean plants. Plant Physiol 73:844–848. doi:10.1104/pp. 73.3.844

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cattani I, Romani M, Boccelli R (2008) Effect of cultivation practices on cadmium concentration in rice grain. Agron Sustain Dev 28:265–271. doi:10.1051/agro:2007033

    CAS  Google Scholar 

  • Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJM (1997) Phytoremediation of soil metals. Curr Opin Biotech 8:279–284. doi:10.1016/S0958-1669(97)80004-3

    CAS  PubMed  Google Scholar 

  • Chaney RL, Reeves PG, Ryan JA, Simmons RW, Welch RM, Angle JS (2004) An improved understanding of soil Cd risk to humans and low cost methods to remediate soil Cd risks. Biometals 17(5):549–553. doi:10.1023/B:BIOM.0000045737.85738.cf

    CAS  PubMed  Google Scholar 

  • Chen HM, Zheng CR, Tu C, Shen ZG (2000) Chemical methods and phytoremediation of soil contaminated with heavy metals. Chemosphere 41:229–234. doi:10.1016/S0045-6535(99)00415-4

    CAS  PubMed  Google Scholar 

  • Cheng L, Wang F, Shou H, Huang F, Zheng L, He F, Li J, Fang-Jie Z, Ueno D, Ma JF, Wu P (2007) Mutation in nicotianamine aminotransferase stimulated the Fe(II) acquisition system and led to iron accumulation in rice. Plant Physiol 145:1647–1657. doi:10.1104/pp. 107.107912

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cherian S, Oliveira MM (2005) Transgenic plants in phytoremediation: recent advances and new possibilities. Environ Sci Technol 39:9377–9390. doi:10.1021/es051134l

    CAS  PubMed  Google Scholar 

  • Christensen TH (1984) Cadmium soil sorption at low concentrations: effect of time, cadmium load, pH and calcium. Water Air Soil Pollut 21:105–114. doi:10.1007/BF00163616

    CAS  Google Scholar 

  • Chlopecka A, Adriano DC (1997) Influence of zeolite, apatite and Fe-oxide on Cd and Pb uptake by crops. Sci Total Environ 207:195–206. doi:10.1016/S0048-9697(97)00268-4

    CAS  PubMed  Google Scholar 

  • Chlopecka A (1996) Forms of Cd, Cu, Pb, and Zn in soil and their uptake by cereal crops when applied jointly as carbonates. Water Air Soil Pollut 87:297–309. doi:10.1007/BF00696843

    CAS  Google Scholar 

  • Chou TS, Chao YY, Huang WD, Hong CY, Kao CH (2011) Effect of magnesium deficiency on antioxidant status and cadmium toxicity in rice seedlings. J Plant Physiol 168:1021–1030. doi:10.1016/j.jplph.2010.12.004

    CAS  PubMed  Google Scholar 

  • Christofi N, Ivshina IB (2002) Microbial surfactants and their use in field studies of soil remediation. Appl Microbiol 93:915–929. doi:10.1046/j.1365-2672.2002.01774.x

    CAS  Google Scholar 

  • Clemens S, Palmgren MG, Krämer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:302–315. doi:10.1016/S1360-1385(02)02295-1

    Google Scholar 

  • Colangelo EP, Guerinot ML (2006) Put the metal to the petal: metal uptake and transport throughout plants. Curr Opin Plant Biol 9:322–330. doi:10.1016/j.pbi.2006.03.015

    CAS  PubMed  Google Scholar 

  • Çotuk Y, Belivermiş M, Kihc O (2010) Environmental biology and pathophysiology of cadmium. IUFS J Biol 69(1):1–5

    Google Scholar 

  • Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Phil Trans R Soc B 363:557–572. doi:10.1098/rstb.2007.2170

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coudert Y, Périn C, Courtois B, Khong NG, Ganet P (2010) Genetic control of root development in rice, the model cereal. Trends Plant Sci 15(4):219–226. doi:10.1016/j.tplants.2010.01.008

    CAS  PubMed  Google Scholar 

  • Curie C, Briat JF (2003) Iron transport and signaling in plants. Annu Rev Plant Biol 54:183–206. doi:10.1146/annurev.arplant.54.031902.135018

    CAS  PubMed  Google Scholar 

  • Deja J (2002) Immobilization of Cr6+, Cd2+, Zn2+ and Pb2+ in alkali-activated slag binders. Cem Concr Res 32:1971–1979. doi:10.1016/S0008-8846(02)00904-3

    CAS  Google Scholar 

  • del Castilho P, Chandron WJ, Salomons W (1993) Influence of cattle manure slurry application on the solubility of cadmium, copper, zinc in a manured acidic loamy sand soil. J Environ Qual 22:279–689

    Google Scholar 

  • Dell’Amico E, Cavalca L, Andreoni V (2008) Improvement of Brassica napus growth under cadmium stress by cadmium resistant rhizobacteria. Soil Biol Biochem 40:74–84. doi:10.1016/j.soilbio.2007.06.024

    Google Scholar 

  • Dermont G, Bergeron M, Mercier G, Richer-Lafleche M (2008) Soil washing for metal removal: a review of physical/chemical technologies and field applications. J Hazard Mater 152:1–31. doi:10.1016/j.jhazmat.2007.10.043

    CAS  PubMed  Google Scholar 

  • Dong J, Mao WH, Zhang GP, Wu FB, Cai Y (2007) Root excretion and plant tolerance to cadmium toxicity—a review. Plant Soil Environ 53(5):193–200

    CAS  Google Scholar 

  • Eriksson JE (1990) Effects of nitrogen-containing fertilizers on solubility and plant uptake of cadmium. Water Air Soil Pollut 49:355–368. doi:10.1007/BF00507075

    CAS  Google Scholar 

  • Fässler E, Plaza S, Pairraud PA, Gupta SK, Robinson B, Schulin R (2011) Expression of selected genes involved in cadmium detoxification in tobacco plants grown on a sulphur-amended metal-contaminated field. Environ Exp Bot 70:158–165. doi:10.1016/j.envexpbot.2010.08.012

    Google Scholar 

  • Fernández-Nava Y, Ulmanu M, Anger I, Marañón E, Castrillón L (2011) Use of granular bentonite in the removal of mercury (II), cadmium (II) and lead (II) from aqueous solutions. Water Air Soil Pollut 215:239–249. doi:10.1007/s11270-010-0474-1

    Google Scholar 

  • Figueroa E (2008) Are more restrictive food cadmium standards justifiable health safety measures or opportunistic barriers to trade? An answer from economics and public health. Sci Total Environ 389:1–9. doi:10.1016/j.scitotenv.2007.08.015

  • Flick DF, Kraybill HF, Dlmitroff JM (1971) Toxic effects of cadmium: a review. Environ Res 4(2):71–85. doi:10.1016/0013-9351(71)90036-3

    CAS  PubMed  Google Scholar 

  • Fuloria A, Saraswat S, Rai JPN (2009) Effect of Pseudomonas fluorescens on metal phytoextraction from contaminated soil by Brassica juncea. Chem Ecol 25:385–396. doi:10.1080/02757540903325096

    CAS  Google Scholar 

  • Gallardo A (2003) Spatial variability of soil properties in a floodplain forest in Northwest Spain. Ecosystems 6:564–576. doi:10.1007/s10021-003-0198-9

    CAS  Google Scholar 

  • Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales EP, Zawoznik MS, Groppa MD, Benavides MP (2012) Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot 83:33–46. doi:10.1016/j.envexpbot.2013.02.008

    CAS  Google Scholar 

  • Garg RN, Das DK, Sharma AM, Mukherjee J, Singh G (2000) Soil physical properties and paddy yield as influenced by puddling methods. Ann Agr Res 21(2):192–198

    Google Scholar 

  • Gill SS, Tuteja N (2011) Cadmium stress tolerance in crop plants—probing the role of sulfur. Plant Signal Behav 6(2):215–222. doi:10.4161/psb.6.2.14880

    CAS  PubMed  Google Scholar 

  • Godt J, Scheidig F, Grosse-Siestrup C, Esche V, Brandenburg P, Reich A, Groneberg DA (2006) The toxicity of cadmium and resulting hazards for human health. J Occup Med Toxicol 1:22. doi:10.1186/1745-6673-1-22

    PubMed Central  PubMed  Google Scholar 

  • Gong ZT (1983) Pedogenesis of paddy soil and its significance in soil classification. Soil Sci 135:5–10

    CAS  Google Scholar 

  • Grant CA, Clarke JM, Duguidc S, Chaneyd RL (2008) Selection and breeding of plant cultivars to minimize cadmium accumulation. Sci Total Environ 390:301–331. doi:10.1016/j.scitotenv.2007.10.038

    CAS  PubMed  Google Scholar 

  • Gou X, Li J (2012) Activation tagging. Methods Mol Biol 876:117–133. doi:10.1007/978-1-61779-809-2_9

    CAS  PubMed  Google Scholar 

  • Hagemeyer J, Kahle H, Breckle SW, Waisel Y (1986) Cadmium in Fagus sylvatica L. trees and seedlings: leaching, uptake and interconnection with transpiration. Water Air Soil Pollut 29(4):347–359. doi:10.1007/BF00283442

    CAS  Google Scholar 

  • Hall J (2002) Cellular mechanism of heavy metal detoxification and tolerance. J Exp Bot 53(366):1–11. doi:10.1093/jexbot/53.366.1

    CAS  PubMed  Google Scholar 

  • Hall JL, Williams LE (2003) Transition metal transporters in plants. J Exp Bot 54(393):2601–2613. doi:10.1093/jxb/erg303

    CAS  PubMed  Google Scholar 

  • Hamon RE, Mj ML, Naidu R, Correll R (1998) Long-term changes in cadmium bioavailability in soil. Environ Sci Technol 32(23):3699–3703. doi:10.1021/es980198b

    CAS  Google Scholar 

  • Han CA, Tlusto SP, Száková J, Habart J, Gondek K (2008) Direct and subsequent effect of compost and poultry manure on the bioavailability of cadmium and copper and their uptake by oat biomass. Plant Soil Environ 54(7):271–278

    Google Scholar 

  • Han FX, Kingery WL, Selim HM (2001) Accumulation, redistribution and bioavailability of heavy metals in waste-amended soils. In: Iskandar IK, Kirkham MB (eds) Trace elements in soils: bioavailability, flux and transfer. Lewis, Washington, DC, pp 145–174

    Google Scholar 

  • Haouari CC, Nasraoui AH, Bouthour D, Houda MD, Daieb CB, Mnai J, Gouia H (2012) Response of tomato (Solanum lycopersicon) to cadmium toxicity: growth, element uptake, chlorophyll content and photosynthesis rate. Afr J Plant Sci 6(1):1–7. doi:10.5897/AJPS11.107

    CAS  Google Scholar 

  • Harada E, Choi Y-E, Tsuchisaka A, Obata H, Sano H (2001) Transgenic tobacco plants expressing a rice cysteine synthase gene are tolerant to toxic levels of cadmium. J Plant Physiol 158:655–661. doi:10.1078/0176-1617-00314

    CAS  Google Scholar 

  • Hasan SA, Fariduddin Q, Ali B, Hayat S, Ahmad A (2009) Cadmium: toxicity and tolerance in plants. Environ Biol 30(2):165–174

    CAS  Google Scholar 

  • Hart JJ, Welch RM, Norvell WA, Sullivan LA, Kochian LV (1998) Characterization of cadmium binding, uptake, translocation in intact seedlings of bread and durum wheat cultivars. Plant Physiol 116:1413–1420. doi:10.1104/pp. 118.1.219

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hsieh HM, Liu WK, Huang PC (1995) A novel stress-inducible metallothionein-like gene from rice. Plant Mol Biol 28:381–389. doi:10.1007/BF00020388

    CAS  PubMed  Google Scholar 

  • Haydon MJ, Cobbett CS (2007) Transporters of ligands for essential metal ions in plants. New Phytol 174:499–506. doi:10.1111/j.1469-8137.2007.02051.x

    CAS  PubMed  Google Scholar 

  • Huang JW, Chen J, Berti WR, Cunningham SD (1997) Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction. Environ Sci Technol 31(3):800–805. doi:10.1021/es9604828

    CAS  Google Scholar 

  • Hutton M, Chaney RL, Krishnamurti CR, Olade MA, Page AL (1987) Group report: cadmium. In: Hutchinson TC, Meema KM (eds) Lead, mercury, cadmium and arsenic in the environment. Wiley, New York, pp 35–41

    Google Scholar 

  • Ishikawa S, Ishimaru Y, Igura M, Kuramata M, Abe T, Senoura T, Hase Y, Arao T, Nishizawa NK, Nakanishi H (2012) Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice. PNAS. doi:10.1073/pnas.1211132109

    Google Scholar 

  • Ishikawa S, Abe T, Kuramata M, Yamaguchi MOT, Yamamoto T, Yano M (2010) Major quantitative trait locus for increasing cadmium specific concentration in rice grain is located on the short arm of chromosome 7. J Exp Bot 61(3):923–934. doi:10.1093/jxb/erp360

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ishikawa S, Suzui N, Ito-Tanabata S, Ishii S, Igura M, Abe T, Kuramata M, Kawachi N, Fujimaki S (2011) Real-time imaging and analysis of differences in cadmium dynamics in rice cultivars (Oryza sativa) using positron-emitting 107 Cd tracer. BMC Plant Biol 11:172. doi:10.1186/1471-2229-11-172

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ishimaru Y, Takahashi R, Bashir K, Shimo H, Senoura T, Sugimoto K, Ono K, Yano M, Ishikawa S, Arao T, Nakanishi H, Nishizawa NK (2012) Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport. Sci Rep 2:286. doi:10.1038/srep00286

    PubMed Central  PubMed  Google Scholar 

  • Ishimaru Y, Kakei Y, Shimo H, Bashir K, Sato Y, Sato Y, Uozumi N, Nakanishi H, Nishizawa NK (2011) A rice phenolic efflux transporter is essential for solubilizing precipitated apoplasmic iron in the plant stele. J Biol Chem 286(28):24649–24655. doi:10.1074/jbc.M111.221168

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jabeen R, Ahmad A, Iqbal M (2009) Phytoremediation of heavy metals: physiological and molecular mechanisms. Bot Rev 75:339–364. doi:10.1007/s12229-009-9036-x

    Google Scholar 

  • Jadia CD, Fulekar MH (2008) Phytoremediation: the application of vermicompost to remove zinc, cadmium, copper, nickel and lead by sunflower plant. Environ Eng Manag J 7(5):547–558

    Google Scholar 

  • Jayaram K, Prasad MNV (2009) Removal of Pb (II) from aqueous solution by seed powder of Prosopis juliflora DC. J Hazard Mater 169:991–997. doi:10.1016/j.jhazmat.2009.04.048

    CAS  PubMed  Google Scholar 

  • Jezeque K, Lebeau T (2008) Soil bioaugmentation by free and immobilized bacteria to reduce potentially phytoavailable cadmium. Bioresour Technol 99:690–698. doi:10.1016/j.biortech.2007.02.002

    Google Scholar 

  • Jiao Y, Grant CA, Bailey LD (2004) Effects of phosphorus and zinc fertilizer on cadmium uptake and distribution in flax and durum wheat. J Sci Food Agric 84(8):777–785. doi:10.1002/jsfa.1648

    CAS  Google Scholar 

  • Johns T, Eyzaguirre PB (2007) Biofortification, biodiversity and diet: a search for complementary applications against poverty and malnutrition. Food Policy 32:1–24. doi:10.1016/j.foodpol.2006.03.014

    Google Scholar 

  • Joschim HJ, Makoi R, Ndakidemi PA (2009) The agronomic potential of vesicular–arbuscular mycorrhiza (AM) in cereals–legume mixtures in Africa. Afr J Microbiol Res 3(11):664–675

    Google Scholar 

  • Jung MC (2008) Heavy metal concentrations in soils and factors affecting metal uptake by plants in the vicinity of a Korean Cu–W mine. Sensors 8:2413–2423

    PubMed Central  Google Scholar 

  • Kato M, Ishikawa S, Inagaki K, Chiba K, Hayashi H, Yanagisawa S, Yoneyama T (2010) Possible chemical forms of cadmium and varietal differences in cadmium concentrations in the phloem sap of rice plants (Oryza sativa L.). Soil Sci Plant Nutr 56:839–847. doi:10.1111/j.1747-0765.2010.00514.x

    CAS  Google Scholar 

  • Karapinar N, Donat R (2009) Adsorption behaviour of Cu2+ and Cd2+ onto natural bentonite. Desalination 249:123–129. doi:10.1016/j.desal.2008.12.046

    CAS  Google Scholar 

  • Karkhanis M, Jadia CD, Fulekar MH (2005) Rhizofilteration of metals from coal ash leachate. Asian J Water Environ Pollut 3(1):91–94

    Google Scholar 

  • Keller C, Marchetti M, Rossi L, Lugon-Moulin N (2005) Reduction of cadmium availability to tobacco (Nicotiana tabacum) plants using soil amendments in low cadmium-contaminated agricultural soils: a pot experiment. Plant Soil 276:69–84. doi:10.1007/s11104-005-3101-y

    CAS  Google Scholar 

  • Khan AG, Kuek C, Chaudhry TM, Khoo CS, Hayes WJ (2000) Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41:197–207. doi:10.1016/S0045-6535(99)00412-9

    CAS  PubMed  Google Scholar 

  • Kim DY, Bovet L, Maeshima M, Martinoia E, Lee Y (2007) The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J 50:207–218. doi:10.1111/j.1365-313X.2007.03044.x

    CAS  PubMed  Google Scholar 

  • Kirkham MB (2006) Cadmium in plants on polluted soils: effects of soil factors, hyperaccumulation, amendments. Geoderma 137:19–32. doi:10.1016/j.geoderma.2006.08.024

    CAS  Google Scholar 

  • Knox AS, Seaman JC, Mench MJ, Vangronsveld J (2001) Remediation of metal- and radionuclides-contaminated soils by in situ stabilization techniques. In: Iskandar IK (ed) Environmental restoration of metals contaminated soils. CRC, Boca Raton, pp 21–60

    Google Scholar 

  • Kobayashi J (1978) Pollution by cadmium and the itai-itai disease in Japan. In: Oeheme FW (ed) Toxicity of heavy metals in the environment. Marcel Dekker, New York, pp 199–260

    Google Scholar 

  • Kögel-Knabner I, Amelung W, Cao Z, Fiedler S, Frenzel P, Jahn R, Kalbitz K, Kölbl A, Schloter M (2010) Biogeochemistry of paddy soils. Geoderma 157(1–2):1–14. doi:10.1016/j.geoderma.2010.03.009

    Google Scholar 

  • Kramer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534. doi:10.3923/jest.2011.118.138

    PubMed  Google Scholar 

  • Kuramata M, Masuya S, Takahashi Y, Kitagawa E, Inoue C, Ishikawa S, Youssefian S, Kusano T (2009) Novel cysteine-rich peptides from Digitaria ciliaris and Oryza sativa enhance tolerance to cadmium by limiting its cellular accumulation. Plant Cell Physiol 50(1):106–117. doi:10.1093/pcp/pcn175

    CAS  PubMed  Google Scholar 

  • Lagerwerff JV, Specht AW (1970) Contamination of roadside soil and vegetation with cadmium nickel, lead and zinc. Environ Sci Technol 4:583–586. doi:10.1021/es60042a001

    CAS  Google Scholar 

  • Lalhruaitluanga H, Jayaram K, Prasad MNV, Kumar KK (2010) Lead(II) adsorption from aqueous solutions by raw and activated charcoals of Melocanna baccifera Roxburgh (bamboo)—a comparative study. J Hazard Mater 175(1–3):311–318. doi:10.1016/j.jhazmat.2009.10.005

    CAS  PubMed  Google Scholar 

  • Lee MH, Choi SY, Moon H (1993) Complexation of cadmium (II) with soil fulvic acid. Bull Korean Chem Soc 14(4):453–457. doi:10.1139/v79-206

    CAS  Google Scholar 

  • Lee S, An G (2009) Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice. Plant Cell Environ 32:408–416. doi:10.1111/j.1365-3040.2009.01935.x

    CAS  PubMed  Google Scholar 

  • Lee S, Kim YY, Lee Y, An G (2007) Rice P1B-type heavy-metal ATPase, OsHMA9, is a metal efflux protein. Plant Physiol 145(3):831–842. doi:10.1104/pp. 107.102236

    CAS  PubMed Central  PubMed  Google Scholar 

  • Levi-Minzi R, Petruzzelli G (1984) The influence of phosphate fertilizers on Cd solubility in soil. Water Air Soil Pollut 23:423–429. doi:10.1007/BF00284737

    CAS  Google Scholar 

  • Lin SH, Juang RS (2002) Heavy metal removal from water by sorption using surfactant-modified montmorillonite. J Hazard Mater 92 (3):315–326. doi:10.1016/S0304-3894(02)00026-2

    Google Scholar 

  • Lish D (2002) Mutator transposons. Trends Plant Sci 7(11):498–504. doi:10.1016/S1360-1385(02)02347-6

    Google Scholar 

  • Liu W, Zhou Q, An J, Sun Y, Liu R (2010) Variations in cadmium accumulation among Chinese cabbage cultivars and screening for Cd-safe cultivars. J Hazard Mater 173:737–743. doi:10.1016/j.jhazmat.2009.08.147

    CAS  PubMed  Google Scholar 

  • Livera JD, Beak D, Kirby J, Hettiarachchi G, McLaughlin M (2011) Cadmium solubility in paddy soils: effects of soil oxidation, metal sulfides and competitive ions. Sci Total Environ 409(8):1489–1497. doi:org/10.1016/j.scitotenv.2010.12.028

    PubMed  Google Scholar 

  • Llamas A, Ullrich CI, Sanz A (2000) Cd2+ effects on transmembrane electrical potential difference, respiration and membrane permeability of rice (Oryza sativa L) roots. Plant Soil 219:21–28. doi:10.1023/A:1004753521646

    CAS  Google Scholar 

  • López-Chuken UJ, Young SD, Sánchez-González MN (2010) The use of chloro-complexation to enhance cadmium uptake by Zea mays and Brassica juncea: testing a "free ion activity model" and implications for phytoremediation. Int J Phytoremediation 12(7):680–696. doi:10.1080/15226510903353161

    PubMed  Google Scholar 

  • Lovley DR, Coates JD (1997) Bioremediation of metal contamination. Curr Opin Biotechnol 8(3):285–289. doi:10.1016/S0958-1669(97)80005-5

    CAS  PubMed  Google Scholar 

  • Lugon-Moulin N, Ryan L, Donini P, Rossi L (2006) Cadmium content of phosphate fertilizers used for tobacco production. Agron Sustain Dev 26:151–155. doi:10.1051/agro:2006010

    CAS  Google Scholar 

  • Lui H, Zhang J, Christie P, Zhang F (2008) Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.) seedling grown in soil. Sci Total Environ 394:361–368. doi:10.1016/j.scitotenv.2008.02.004

    Google Scholar 

  • Lux A, Martink M, Vaculık M, White PJ (2011) Root responses to cadmium in the rhizosphere: a review. J Exp Bot 62(1):21–37. doi:10.1093/jxb/erq281

    CAS  PubMed  Google Scholar 

  • Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:688–691. doi:10.1038/nature04590

    CAS  PubMed  Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic. Nature 409:579–579. doi:10.1038/35054664

    CAS  PubMed  Google Scholar 

  • Ma W, Tobin JM (2003) Development of multimetal binding model and application to binary metal biosorption onto peat biomass. Water Res 37:3967–3977. doi:10.1016/S0043-1354(03)00290-2

    CAS  PubMed  Google Scholar 

  • Macaskie LE, Dean ACR, Cheetham AK, Jakeman RJB, Skarnulis AJ (1987) Cadmium accumulation by a Citvobacter sp.: the chemical nature of the accumulated metal precipitate and its location on the bacterial cells. J Gen Microbiol 133:539–544. doi:10.1099/00221287-133-3-539

    CAS  Google Scholar 

  • Madejón E, de Mora AP, Felipe E, Burgos P, Cabrera F (2006) Soil amendments reduce trace element solubility in a contaminated soil and allow regrowth of natural vegetation. Environ Pollut 139(1):40–52. doi:10.1016/j.envpol.2005.04.034

    PubMed  Google Scholar 

  • Magneschi L, Perata P (2009) Rice germination and seedling growth in the absence of oxygen. Ann Bot 103:181–196. doi:10.1093/aob/mcn121

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mahler RJ, Bingham FT, Page AL (1978) Cadmium-enriched sewage sludge application to acid and calcareous soils—effect on yield and cadmium uptake by lettuce and chard. J Environ Qual 7:274–281

    CAS  Google Scholar 

  • Masuda H, Ishimaru Y, Aung MS, Kobayashi T, Kakei Y, Takahashi M, Higuchi K, Nakanishi H, Nishizawa NK (2012) Iron biofortification in rice by the introduction of multiple genes involved in iron nutrition. Sci Rep 2:543. doi:10.1038/srep00543

    PubMed Central  PubMed  Google Scholar 

  • Mathialagan T, Viraraghavan T (2002) Adsorption of cadmium from aqueous solutions by perlite. J Hazard Mat 94:291–303. doi:10.1016/S0304-3894(02)00084-5

    CAS  Google Scholar 

  • Matsi TH, Hatzigiannakis EG, Arampatzis GK, Panoras AG (2007) Available Cd content of salt-affected and normal soils of Halastra–Kalohori area. Global Nest J 9(3):195–200

    Google Scholar 

  • Matsuda T, Kuramata M, Takahashi Y, Kitagawa E, Youssefian S, Kusano T (2009) A novel plant cysteine-rich peptide family conferring cadmium tolerance to yeast and plants. Plant Signal Behav 5:419–421. doi:10.1093/pcp/pcn175

    Google Scholar 

  • McLaughlin MJ, Maier NA, Freeman K, Tiller KG, Williams CMJ, Smart MK (1995) Effect of potassic and phosphatic fertilizer type, fertilizer Cd concentration and zinc rate on cadmium uptake by potatoes. Fert Res 40:63–70. doi:10.1007/BF00749863

    CAS  Google Scholar 

  • McDonald AJ, Riha SJ, Duxbury JM, Steenhuis TS, Lauren JG (2006) Soil physical responses to novel rice cultural practices in the rice–wheat system: comparative evidence from a swelling soil in Nepal. Soil Till Res 86:163–175. doi:10.1016/j.still.2005.02.005

    Google Scholar 

  • Mediouni C, Benzarti O, Tray B, Ghorbel MH, Jemal F (2006) Cadmium and copper toxicity for tomato seedlings. Agron Sustain Dev 26:227–232. doi:10.1051/agro:2006008

    CAS  Google Scholar 

  • Mendoza-Cózatl D, Loza-Tavera H, Hernández-Navarro A, Moreno-Sánchez R (2003) Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. FEMS Microbiol Rev 29(4):653–671. doi:10.1016/j.femsre.2004.09.004

    Google Scholar 

  • Milner MJ, Kochian LV (2008) Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system. Ann Bot 102:3–13. doi:10.1093/aob/mcn063

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miyadate H, Adachi S, Hiraizumi A, Tezuka K, Nakazawa N, Kawamoto T, Katou K, Kodama I, Sakurai K, Takahashi H, Satoh-Nagasawa N, Watanabe A, Fujimura T, Akagi H (2011) OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles. New Phytol 189(1):190–199. doi:10.1111/j.1469-8137.2010.03459.x

    CAS  PubMed  Google Scholar 

  • Moons A (2003) Ospdr9, which encodes a PDR-type ABC transporter, is induced by heavy metals, hypoxic stress and redox perturbations in rice roots. FEBS Lett 553:370–376. doi:10.1016/S0014-5793(03)01060-3

    CAS  PubMed  Google Scholar 

  • Moreno JL, Hernández T, Garcia C (1999) Effects of a cadmium-contaminated sewage sludge compost on dynamics of organic matter and microbial activity in an arid soil. Biol Fert Soils 28(3):230–237. doi:10.1007/s003740050487

    CAS  Google Scholar 

  • Mukhopadhyay A, Vij S, Tyagi AK (2004) Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. PNAS 101(16):6309–6314. doi:10.1073pnas.0401572101

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakanishi H, Ogawa H, Ishimaru Y, Mori S, Nishizawa NK (2006) Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice. Soil Sci Plant Nutr 52:464–469. doi:10.1111/j.1747-0765.2006.00055.x

    CAS  Google Scholar 

  • Nazar R, Iqbal N, Masood A, Khan MIR, Syeed S, Khan NA (2012) Cadmium toxicity in plants and role of mineral nutrients in its alleviation. AJPS 3:1476–1489. doi:10.4236/ajps.2012.310178

    CAS  Google Scholar 

  • Nocito FF, Lancilli C, Dendena B, Lucchini G, Sacchi GA (2011) Cadmium retention in rice roots is influenced by cadmium availability, chelation and translocation. Plant Cell Environ 34:994–1008. doi:10.1111/j.1365-3040.2011.02299.x

    CAS  PubMed  Google Scholar 

  • Nriagu JO, Pacyna JM (1998) Quantitative assessment of world-wide contamination of air, water and soils by trace metals. Nature 333:134–139. doi:10.1038/333134a0

    Google Scholar 

  • Oda K, Otani M, Uraguchi S, Akihiro T, Fujiwara T (2011) Rice ABCG43 is Cd inducible and confers Cd tolerance on yeast. Biosci Biotechnol Biochem 75(6):1211–1213. doi:10.1271/bbb.110193

    CAS  PubMed  Google Scholar 

  • Ok YS, Kim SC, Kim DK, Skousen JG, Lee JS, Cheong YW, Kim SJ, Yang JE (2011) Ameliorants to immobilize Cd in rice paddy soils contaminated by abandoned metal mines in Korea. Environ Geochem Health 33:23–30. doi:10.1007/s10653-010-9364-0

    CAS  PubMed  Google Scholar 

  • Oyewole OA (2012) Microbial communities and their activities in paddy fields: a review. J Vet Adv 2(2):74–80

    Google Scholar 

  • Palmgren MG, Clemens S, Williams LE, Kramer U, Borg S, Schjørring JK, Sanders D (2008) Zinc biofortification of cereals: problems and solutions. Trends Plant Sci 13(9):1360–1385. doi:10.1016/j.tplants.2008.06.005

    Google Scholar 

  • Papoyan A, Kochian LV (2004) Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase. Plant Physiol 136(3):3814–3823. doi:10.1104/pp. 104

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pereira MG, Arruda MAZ (2003) Vermicompost as a natural adsorbent material: characterization and potentialities for cadmium adsorption. J Braz Chem Soc 14(1):39–47. doi:10.1590/S0103-50532003000100007

    CAS  Google Scholar 

  • Pierzynski GM, Schwab AP (1993) Bioavailability of zinc, cadmium and lead in a metal-contaminated alluvial soil. J Environ Qual 22:247–254

    CAS  Google Scholar 

  • Pilon-Smits EAH (2005) Phytoremediation. Annu Rev Plant Biol 56: 15–39. doi:10.1146/annurev.arplant.56.032604.144214

  • Pitzschke A, Hirt H (2006) Mitogen-activated protein kinases and reactive oxygen species signaling in plants. Plant Physiol 141(2):351–356. doi:10.1104/pp. 106.079160

    CAS  PubMed Central  PubMed  Google Scholar 

  • Poulsen L, Dudas MJ (1998) Attenuation of cadmium, fluoride and uranium in phosphogypsum process water by calcareous soil. Can J Soil Sci 78:351–357. doi:10.4141/S97-004

    CAS  Google Scholar 

  • Prasad MNV (1995) Cadmium toxicity and tolerance in vascular plants. Environ Exp Bot 35(4):525–545. doi:10.1016/0098-8472(95)00024-0

    CAS  Google Scholar 

  • Prasad MNV (2004) Phytoremediation of metals in the environment for sustainable development. Proc Indian Natl Sci Acad 70(1):71–98

    CAS  Google Scholar 

  • Prasad MNV, Freitas H (1999) Feasible biotechnological and bioremediation: strategies for serpentine soils and mine spoils. EJB 2(1):36–50. doi:10.2225/vol2-issue1-fulltext-5

    Google Scholar 

  • Prasad MNV, Freitas H (2002) Metal hyperaccumulation in plants—biodiversity prospecting for phytoremediation technology. EJB 6(3):285–321. doi:10.2225/vol6-issue3-fulltext-6

    Google Scholar 

  • Prasad MNV (2008) Biofortification: nutritional security and relevance to human health. In: Prasad MNV (ed) Trace elements as contaminants and nutrients: consequences in ecosystems and human health. Wiley, New York, pp 161–182

    Google Scholar 

  • Prasad MNV, Freitas H, Fraenzle S, Wuenschmann S, Markert B (2010) Knowledge explosion in phytotechnologies for environmental solutions. Environ Pollut 158(1):18–23. doi:10.1016/j.envpol.2009.07.038

    CAS  PubMed  Google Scholar 

  • Prasad MNV, Nirupa N (2007) Phytoferritins—implications for human health and nutrition. Asian Australas J Plant Sci Biotechnol 1(1):1–9

    Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28(3):142–149. doi:10.1016/j.tibtech.2009.12.002

    CAS  PubMed  Google Scholar 

  • Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30(6):1562–1574. doi:10.1016/j.biotechadv.2012.04.011

    CAS  PubMed  Google Scholar 

  • Ramesh SA, Shin R, Eide DJ, Schachtman DP (2003) Differential metal selectivity and gene expression of two zinc transporters from rice. Plant Physiol 133:126–134. doi:10.1104/pp. 103

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rani A, Souche YS, Goel R (2009) Comparative assessment of in situ bioremediation potential of cadmium resistant acidophilic Pseudomonas putida 62BN and alkalophilic Pseudomonas monteilli 97AN strains on soybean. Int Biodeter Biodegr 63:62–66. doi:10.1016/j.ibiod.2008.07.002

    CAS  Google Scholar 

  • Rao TP, Yano K, Iijima M, Yamauchi A (2002) Regulation of rhizosphere acidification by photosynthetic activity in cowpea (Vigna unguiculata L. Walp.) seedlings. Ann Bot 89(2):213–220. doi:10.1093/aob/mcf030

    CAS  PubMed  Google Scholar 

  • Rate AW, Lee KM, French PA (2004) Application of biosolids in mineral sands mine rehabilitation: use of stockpiled topsoil decreases trace element uptake by plants. Bioresour Technol 91:223–231. doi:10.1016/S0960-8524(03)00206-2

    CAS  PubMed  Google Scholar 

  • Rauser WE (1999) Structure and function of metal chelators produced by plants: the case for organic acids, amino acids, phytin, and metallothioneins. Cell Biochem Biophys 31:19–48. doi:10.1007/BF02738153

    CAS  PubMed  Google Scholar 

  • Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161(11):1189–1202. doi:10.1016/j.jplph.2004.01.013

    CAS  Google Scholar 

  • Reniger P (1977) Concentration of cadmium in aquatic plants and algal mass in flooded rice culture. Environ Pollut 14:297–302. doi:10.1016/0013-9327(77)90141-0

    Google Scholar 

  • Robinson B, Russell C, Hedley M, Clothier B (2001) Cadmium adsorption by rhizobacteria: implications for New Zealand pastureland. Agric Ecosyst Environ 87:315–321. doi:10.1016/S0167-8809(01)00146-3

    CAS  Google Scholar 

  • Romheld V (1991) The role of phytosiderophores in acquisition of iron and other micronutrients in graminaceous species: an ecological approach. Plant Soil 130:127–134. doi:10.1007/BF00011867

    Google Scholar 

  • Root RA, Miller RJ, Koeppe DE (1973) Uptake of cadmium—its toxicity, effect on the iron ratio in hydroponically grown corn. JEQ 4(4):473–476. doi:10.2134/jeq1975.00472425000400040011x

    Google Scholar 

  • Sandalio LM, Dalruzo HC, Gomez M, Romero-Puetras MC, Del Rio LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52(364):2115–2126. doi:10.1093/jexbot/52.364.2115

    CAS  PubMed  Google Scholar 

  • Saraswat S, Rai JPN (2011) Complexation and detoxification of Zn and Cd in metal accumulating plants. Rev Environ Sci Biotechnol 10(4):327–339. doi:10.1007/s11157-011-9250-y

    CAS  Google Scholar 

  • Sarin C, Sarin S (2010) Removal of cadmium and zinc from soil using immobilized cell of biosurfactant producing bacteria. Environment Asia 3(2):49–53

    Google Scholar 

  • Sarwar N, Saifullah MSS, Zia MH, Naeem A, Bibi S, Farid G (2010) Role of mineral nutrition in minimizing cadmium accumulation by plants. J Sci Food Agric 90:925–937. doi:10.1002/jsfa.3916

    CAS  PubMed  Google Scholar 

  • Sasaki A, Yamaji N, Yokosho K, Ma JF (2012) Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell 24(5):2155–2167. doi:10.1105/tpc.112.096925

    CAS  PubMed Central  PubMed  Google Scholar 

  • Satarug S, Baker JR, Urbenjapol S, Haswell-Elkins Reilly PEB, Williams DJ, Moore MR (2003) A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicol Lett 137:65–83. doi:org/10.1016/S0378-4274(02)00381-8

    CAS  PubMed  Google Scholar 

  • Satoh-Nagasawa N, Mori M, Nakazawa N, Kawamoto T, Nagato Y, Sakurai K, Takahashi H, Watanabe A, Akagi H (2012) Mutations in rice (Oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium. Plant Cell Physiol 53(1):213–224. doi:10.1093/pcp/pcr166

    CAS  PubMed  Google Scholar 

  • Sauve S, Hendershot W, Allen HE (2000) Solid-solution partitioning of metals in contaminated soils: dependence on pH, total metal burden, organic matter. Environ Sci Technol 34:1125–1131. doi:10.1021/es9907764

    CAS  Google Scholar 

  • Sauvé S, Manna S, Turmel MC, Roy AG, Courchesne F (2003) Solid-solution partitioning of Cd, Cu, Ni, Pb, Zn in the organic horizons of a forest soil. Environ Sci Technol 37:5191–5196. doi:10.1021/es030059g

    PubMed  Google Scholar 

  • Schmidt U (2003) Enhancing phytoremediation: the effect of chemical soil manipulation on mobility, plant accumulation, and leaching of heavy metals. J Environ Qual 32:1939–1954. doi:10.2134/jeq2003.1939

    Google Scholar 

  • Schoeters G, Hond ED, Zuurbier M, Naginiene R, Hazel PVD, Stilianakis N, Ronchetti R, Koppe JG (2006) Cadmium and children: exposure and health effects. Acta Paediatr Suppl 453:50–54. doi:10.1080/08035320600886232

    Google Scholar 

  • Sebastian A, Prasad MNV (2013) Cadmium accumulation retard activity of functional components of photo assimilation and growth of rice cultivars amended with vermicompost. Int J Phytoremediation 15:965–978. doi:10.1080/15226514.2012.751352

    CAS  PubMed  Google Scholar 

  • Shah K, Kumar RG, Verma S, Dubey RS (2001) Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci 161:1135–1144. doi:10.1016/S0168-9452(01)00517-9

    CAS  Google Scholar 

  • Shah K, Nongkynrih JM (2007) Metal hyperaccumulation and bioremediation. Biol Plant 51:618–634. doi:10.1007/s10535-007-0134-5

    CAS  Google Scholar 

  • Shah K (2011) Cadmium metal detoxification and hyperaccumulators. In: Sherameti I, Varma A (eds) Detoxification of heavy metals, Soil Biology 30. Springer, Berlin, pp 181–230

    Google Scholar 

  • Shim D, Jae-Ung H, Lee J, Lee S, Choi Y, An G, Martinoia E, Lee Y (2009) Orthologs of the class A4 heat shock transcription factor HsfA4a confer cadmium tolerance in wheat and rice. Plant Cell 21(12):4031–4043. doi:10.1105/tpc.109.066902

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shimo H, Ishimaru Y, An G, Yamakawa T, Nakanishi H, Nishizawa NK (2011) Low cadmium (LCD), a novel gene related to cadmium tolerance and accumulation in rice. J Exp Bot 62(15):5727–5234. doi:10.1093/jxb/err300

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shirvani M, Shariatmadari H, Kalbasi M (2007) Kinetics of cadmium desorption from fibrous silicate clay minerals: influence of organic ligands and aging. Appl Clay Sci 37:175–184. doi:10.1016/j.clay.2006.12.010

    CAS  Google Scholar 

  • Silver S (1996) Bacterial resistances to toxic metal ions—a review. Gene 179:9–19. doi:10.1016/S0378-1119(96)00323-X

    CAS  PubMed  Google Scholar 

  • Singh BR, Myhr K (1998) Cadmium uptake by barley as affected by Cd sources and pH levels. Geoderma 84:185–194. doi:10.1016/S0016-7061(97)00128-6

    CAS  Google Scholar 

  • Sloan JJ, Basta NT (1995) Remediation of acid soils by using alkaline biosolids. JEQ 24:1097–1103

    CAS  Google Scholar 

  • Smolders E, McLaughlin MJ (1996) Chloride increases cadmium uptake in Swiss chard in a resin-buffered nutrient solution. Soil Sci Soc Am J 60:1443–1447

    CAS  Google Scholar 

  • So HB, Ringrose-Voase AJ (2000) Management of clay soils for rainfed lowland rice-based cropping systems: an overview. Soil Till Res 56:3–14. doi:10.1016/S0167-1987(00)00119-7

    Google Scholar 

  • Street JJ, Sabey BR, Lindsay WL (1978) Influence of pH, phosphorus, cadmium, sewage sludge, incubation time on the solubility and plant uptake of cadmium. JEQ 7(2):286–290

    CAS  Google Scholar 

  • Su-Hsia L, Reuy-Shin J (2002) Heavy metal removal from water by sorption using surfactant-modified montmorillonite. J Hazard Mater 92:315–326. doi:10.1016/S0304-3894(02)00026-2

    Google Scholar 

  • Sundaramoorthy P, Chidambaram A, Ganesh KS, Unnikannan P, Baskaran L (2010) Chromium stress in paddy: (i) nutrient status of paddy under chromium stress; (ii) phytoremediation of chromium by aquatic and terrestrial weeds. C R Biol 333:597–607. doi:10.1016/j.crvi.2010.03.002

    CAS  PubMed  Google Scholar 

  • Takahashi R, Bashir K, Ishimaru Y, Nishizawa NK, Nakanishi H (2012a) The role of heavy-metal ATPases, HMAs, in zinc and cadmium transport in rice. Plant Signal Behav 7(12):1605–1607. doi:10.4161/psb.22454

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takahashi R, Ishimaru Y, Shimo H, Ogo Y, Senoura T, Nishizawa NK, Nakanishi H (2012b) The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice. Plant Cell Environ 35(11):1948–1957. doi:10.1111/j.1365-3040.2012.02527.x

    CAS  PubMed  Google Scholar 

  • Takahashi R, Ishimaru Y, Senoura T, Shimo H, Ishikawa S, Arao T, Nakanishi H, Nishizawa NK (2011) The OsNRAMP1 iron transporter is involved in Cd accumulation in rice. J Exp Bot 62(14):4843–4850. doi:10.1093/jxb/err136

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tanaka A, Shikazono N, Hase Y (2010) Studies on biological effects of ion beams on lethality, molecular nature of mutation, mutation rate, and spectrum of mutation phenotype for mutation breeding in higher plants. Radiat Res 51:223–233. doi:10.1269/jrr.09143

    CAS  Google Scholar 

  • Tang S, Xi L, Zheng J, Li H (2003) Response to elevated CO2 of Indian mustard and sunflower growing on copper contaminated soil. Bull Environ Contam Toxicol 71:988–997

    Google Scholar 

  • Tezuka K, Miyadate H, Katou K, Kodama I, Matsumoto S, Kawamoto T, Masaki S, Satoh H, Yamaguchi M, Sakurai K, Takahashi H, Satoh-Nagasawa N, Watanabe A, Fujimura T, Akagi H (2010) A single recessive gene controls cadmium translocation in the cadmium hyperaccumulating rice cultivar Cho-Ko-Koku. Theor Appl Genet 120:1175–1182. doi:10.1007/s00122-009-1244-6

    CAS  PubMed  Google Scholar 

  • Tóth T, Zsiros O, Kis M, Garab G, Kovács L (2012) Cadmium exerts its toxic effects on photosynthesis via a cascade mechanism in the cyanobacterium, Synechocystis PCC 6803. Plant Cell Environ 35(12):2075–2086. doi:10.1111/j.1365-3040.2012.02537.x

    PubMed  Google Scholar 

  • Ueno D, Koyama E, Kono IOT, Yano M, Ma JF (2009) Identification of a novel major quantitative trait locus controlling distribution of Cd between roots and shoots in rice. Plant Cell Physiol 50(12):2223–2233. doi:10.1093/pcp/pcp160

    CAS  PubMed  Google Scholar 

  • Ueno D, Yamaji N, Kono I, Huang CFT, Yano M, Ma JF (2010) Gene limiting cadmium accumulation in rice. Proc Natl Acad Sci USA 107:16500–16505. doi:10.1073/pnas.1005396107

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ueno D, Koyama E, Yamaji N, Ma JF (2011) Physiological, genetic, molecular characterization of a high-Cd-accumulating rice cultivar, Jarjan. J Exp Bot 22:2265–2272. doi:10.1093/jxb/erq383

    Google Scholar 

  • Upadhyaya H, Panda SK, Bhattacharjee MK, Dutta S (2010) Role of arbuscular mycorrhiza in heavy metal tolerance in plants: prospects for phytoremediation. J Phytol 2(7):16–27. doi:10.1093/jxb/erq383

    Google Scholar 

  • Uraguchi S, Fujiwara T (2012) Cadmium transport and tolerance in rice: perspectives for reducing grain cadmium accumulation. Rice 5(5):1–8. doi:10.1186/1939-8433-5-5

    Google Scholar 

  • Uraguchi S, Kamiya T, Sakamoto T, Kasai K, Sato Y, Nagamura Y, Yoshida A, Kyozuka J, Ishikawa S, Fujiwara T (2011) Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains. Proc Natl Acad Sci USA 108(52):20959–20964. doi:10.1073/pnas.1116531109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vaculík M, Landberg T, Greger M, Luxová M, Stoláriková M, Lux A (2012) Silicon modifies root anatomy, and uptake and subcellular distribution of cadmium in young maize plants. Ann Bot 110:433–443. doi:10.1093/aob/mcs039

    PubMed Central  PubMed  Google Scholar 

  • Vandenhove H, van Hees M, van Winkel S (2001) Feasibility of phytoextraction to clean up low-level uranium-contaminated soil. Int J Phytoremediation 3:301–320. doi:10.1080/15226510108500061

    CAS  Google Scholar 

  • Vassilev A, Lidon F (2011) Cd-induced membrane damages and changes in soluble protein and free amino acid contents in young barley plants. Emir J Food Agric 23(2):130–136

    Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181(4):759–776. doi:10.1111/j.1469-8137.2008.02748.x

    CAS  PubMed  Google Scholar 

  • Vig K, Megharaj M, Sethunathan N, Naidu R (2003) Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: a review. Adv Environ Res 8:121–135. doi:10.1016/S1093-0191(02)00135-1

    CAS  Google Scholar 

  • Wahid A, Ghani A, Javed F (2008) Effect of cadmium on photosynthesis, nutrition and growth of mungbean. Agron Sustain Dev 28(2):273–280. doi:10.1051/agro:2008010

    CAS  Google Scholar 

  • Wang AS, Angle JS, Chaney RL, Delorme TA, Reeves RD (2006) Soil pH effects on uptake of Cd and Zn by Thlaspi caerulescens. Plant Soil 281:325–337. doi:10.1007/s11104-005-4642-9

    CAS  Google Scholar 

  • Wang MY, Chen AK, Wong MH, Qiu RL, Cheng H, Ye ZH (2011) Cadmium accumulation in and tolerance of rice (Oryza sativa L.) varieties with different rates of radial oxygen loss. Environ Pollut 159:1730–1736. doi:10.1016/j.envpol.2011.02.025

    CAS  PubMed  Google Scholar 

  • Wang W, Chen H, Wang A (2007a) Adsorption characteristics of Cd (II) from aqueous solution onto activated polygorskite. Sep Purif Tech 55:157–164. doi:10.1016/j.seppur.2006.11.015

    CAS  Google Scholar 

  • Wang D, Jiang X, Rao W, He J (2009) Kinetics of soil cadmium desorption under simulated acid rain. Ecol Complex 6:432–437. doi:10.1016/j.ecocom.2009.03.010

    Google Scholar 

  • Wang FY, Wang H, Ma JW (2010) Adsorption of cadmium (II) ions from aqueous solution by a new low-cost adsorbent—bamboo charcoal. J Hazard Mater 177:300–306. doi:10.1016/j.jhazmat.2009.12.032

    CAS  PubMed  Google Scholar 

  • Wang YQ, Zhu SY, Wang Y, Zhang MY (2007b) Tissue and inducible expression of a rice glutathione transporter gene promoter in transgenic Arabidopsis. Bot Stud 48:35–41

    CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007) Cadmium, chromium and copper in green gram plants. Agron Sustain Dev 27(2):145–153. doi:10.1051/agro: 2007036

    CAS  Google Scholar 

  • WHO (1992) Cadmium. World Health Organization Environmental Health Criteria, No. 134; Geneva, Switzerland

  • Williams LE, Pittman JK, Hall JL (2000) Emerging mechanisms for heavy metal transport in plants. Biochim Biophys Acta 1465:104–126. doi:10.1016/S0005-2736(00)00133-4

    CAS  PubMed  Google Scholar 

  • Wright DP, Scholes JD, Read DJ (1998) Effects of VA mycorrhizal colonization on photosynthesis and biomass production of Trifolium repens L. Plant Cell Environ 21(2):209–216. doi:10.1046/j.1365-3040.1998.00280.x

    Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy Metals in contaminated soils: a review of sources chemistry, risks and best available strategies for remediation, ISRN Ecology, vol. 2011, Article ID 402647, 20 pages, 2011. doi:10.5402/2011/402647.

  • Xue D, Chen M, Zhang G (2009) Mapping of QTLs associated with cadmium tolerance and accumulation during seedling stage in rice (Oryza sativa L.). Euphytica 165:587–596

    CAS  Google Scholar 

  • Yan Y, Choi D, Kim D, Lee B (2010) Genotypic variation of cadmium accumulation and distribution in rice. JCSB 13(2):69–73. doi:10.1007/s12892-010-0036-5

    Google Scholar 

  • Yang QW, Lan CY, Wang HB, Zhuang P, Shu WS (2006) Cadmium in soil–rice system and health risk associated with the use of untreated mining wastewater for irrigation in Lechang, China. Agric Water Manag 84:147–152. doi:10.1016/j.agwat.2006.01.005

    Google Scholar 

  • Yeh CM, Hsiao LJH, Hsiao HJ (2004) Cadmium activates a mitogen-activated protein kinase gene and MBP kinases in rice. Plant Cell Physiol 45(9):1306–1312. doi:10.1093/pcp/pch135

    CAS  PubMed  Google Scholar 

  • Yu LH, Umeda M, Liu JY, Zhao NM, Uchimiya H (1998) A novel MT gene of rice plants is strongly expressed in the node portion of the stem. Gene 206(1):29–35. doi:10.1016/S0378-1119(97)00577-5

    CAS  PubMed  Google Scholar 

  • Yu H, Wang JL, Wei F, Yuan JG, Yang ZY (2006) Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice. Sci Total Environ 370:302–309. doi:10.1016/j.scitotenv.2006.06.013

    CAS  PubMed  Google Scholar 

  • Yuan L, Yang S, Liu B, Zhang M, Wu K (2012) Molecular characterization of a rice metal tolerance protein, OsMTP1. Plant Cell Rep 31(1):67–79. doi:10.1007/s00299-011-1140-9

    PubMed  Google Scholar 

  • Zhan J, Wei S, Niu R, Li Y, Wang S, Zhu J (2012) Identification of rice cultivar with exclusive characteristic to Cd using a field-polluted soil and its foreground application. Environ Sci Pollut Res. doi:10.1007/s11356-012-1185-5

    Google Scholar 

  • Zhang J, Sun W, Li Z, Liang Y, Song A (2009) Cadmium fate and tolerance in rice cultivars. Agron Sustain Dev 29:483–490. doi:10.1051/agro/2009008

    Google Scholar 

  • Zhao FJ, Lombi E, McGrath SP (2003) Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant Soil 249:37–43. doi:10.1023/A:1022530217289

    CAS  Google Scholar 

  • Zhao FJ, Shewry PR (2011) Recent developments in modifying crops and agronomic practice to improve human health. Food Policy 36:94–S101. doi:10.1016/j.foodpol.2010.11.011

    Google Scholar 

Download references

Acknowledgement

Abin Sebastian gratefully acknowledges the award of Senior Research Fellowship by CSIR-UGC NET, New Delhi. M.N.V. Prasad is recipient of Pitamber Pant National Environment Fellowship, Ministry of Environment and Forests, Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majeti Narasimha Vara Prasad.

About this article

Cite this article

Sebastian, A., Prasad, M.N.V. Cadmium minimization in rice. A review. Agron. Sustain. Dev. 34, 155–173 (2014). https://doi.org/10.1007/s13593-013-0152-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13593-013-0152-y

Keywords

Navigation