Skip to main content
Log in

Improved field margins highly increase slug activity in Switzerland

  • Research Article
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

Most field margins on arable land in Switzerland are narrow and intensively managed. As a consequence, field margins generally harbour few plant and animal species. To enhance biodiversity in arable landscapes, sown species-rich field margins, so-called improved field margins, were introduced in 2008 as a part of the Swiss agri-environment scheme. Here, we tested whether improved field margins increase slug activity density. Slug activity density in and next to improved field margins was compared to slug activity in and next to conventional field margins. Over a period of 3 years, slugs were sampled in three regions in northern Switzerland in late spring using bait stations. Our results show that improved field margins have higher slug activity density, of +191 %, than conventional field margins, independently of the region. The predominant slugs were Arion lusitanicus and Deroceras spp. While A. lusitanicus was generally more abundant in field margins than in fields, with intermediate numbers in the adjacent crop margins, Deroceras spp. showed a more even distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bader S (2004) Die extreme Sommerhitze im aussergewöhnlichen Witterungsjahr 2003. Arbeitsbericht 200, MeteoSchweiz. http://www.bafu.admin.ch/klima/00509/00514/index.html. Accessed 14 Sept 2011

  • Barker GM (2004) Natural enemies of terrestrial molluscs. CABI Publishing, Biddles Ltd, King’s Lynn

    Book  Google Scholar 

  • Briner T, Frank T (1998) The palatability of 78 wildflower strip plants to the slug Arion lusitanicus. Ann Appl Biol 133:123–133. doi:10.1111/j.1744-7348.1998.tb05808.x

    Article  Google Scholar 

  • Calame F (2000) Dynamique de populations de limaces à la périphérie et à l'intérieur d’une parcelle cultivée. Rev Suisse Agric 32:11–13

    Google Scholar 

  • Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer CC, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533. doi:10.1038/nature03972

    Article  PubMed  CAS  Google Scholar 

  • Cook RT, Bailey SER, McCrohan CR (1996) Slug preferences for winter wheat cultivars and common agricultural weeds. J Appl Ecol 33:866–872. doi:10.2307/2404957

    Article  Google Scholar 

  • Frank T (1998a) Slug damage and numbers of slugs in oilseed rape bordering on grass strips. J Molluscan Stud 64:461–466. doi:10.1093/mollus/64.4.461

    Article  Google Scholar 

  • Frank T (1998b) Slug damage and numbers of the slug pests, Arion lusitanicus and Deroceras reticulatum, in oilseed rape grown beside sown wildflower strips. Agric Ecosyst Environ 67:67–78. doi:10.1016/S0167-8809(97)00108-4

    Article  Google Scholar 

  • Friedli J, Frank T (1998) Reduced applications of metaldehyde pellets for reliable control of the slug pests Arion lusitanicus and Deroceras reticulatum in oilseed rape adjacent to sown wildflower strips. J Appl Ecol 35:504–513. doi:10.1046/j.1365-2664.1998.3540504.x

    Article  Google Scholar 

  • Griffiths J, Phillips DS, Compton SG, Wright C, Incoll LD (1998) Responses of slug numbers and slug damage to crops in a silvoarable agroforestry landscape. J Appl Ecol 35:252–260

    Article  Google Scholar 

  • Grimm B (2001) Life cycle and population density of the pest slug Arion lusitanicus Mabille (Mollusca: Pulmonata) on grassland. Malacologia 43:25–32

    Google Scholar 

  • Grimm B, Paill W (2001) Spatial distribution and home-range of the pest slug Arion lusitanicus (Mollusca: Pulmonata). Acta Oecol Int J Ecol 22:219–227. doi:10.1016/S1146-609X(01)01115-8

    Article  Google Scholar 

  • Hof AR, Bright PW (2010) The impact of grassy field margins on macro-invertebrate abundance in adjacent arable fields. Agric Ecosyst Environ 139:2805–283. doi:10.1016/j.agee.2010.08.01

    Article  Google Scholar 

  • Hunter PJ (1968) Studies on slugs of arable ground: I. Sampling methods. Malacologia 6:369–377

    Google Scholar 

  • Iglesias J, Speiser B (2001) Distribution of Arion hortensis s.s. and Arion distinctus in Northern Switzerland. J Molluscan Stud 67:209–214. doi:10.1093/mollus/67.2.209

    Article  Google Scholar 

  • Jacot K, Eggenschwiler L, Junge X, Luka H, Bosshard A (2007) Improved field margins for a higher biodiversity in agricultural landscapes. Asp Appl Biol 81:277–283

    Google Scholar 

  • MacLeod A, Wratten SD, Sotherton NW, Thomas MB (2004) ‘Beetle banks’ as refuges for beneficial arthropods in farmland: long-term changes in predator communities and habitat. Agric For Entomol 6:147–154. doi:10.1111/j.1461-9563.2004.00215.x

    Article  Google Scholar 

  • MeteoSchweiz (2011) Climate data. https://gate.meteoswiss.ch/idaweb. Accessed 4 Jul 2011

  • Pfiffner L, Luka H (2000) Overwintering of arthropods in soils of arable fields and adjacent semi-natural habitats. Agric Ecosyst Environ 78:215–222. doi:10.1016/S0167-8809(99)00130-9

    Article  Google Scholar 

  • R-Development-Core-Team (2010) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • South A (1992) Terrestrial slugs. Biology, ecology, control. Chapman and Hall, London

    Book  Google Scholar 

  • Speiser B, Niederhauser D (1997) Fördern extensive Wieslandstreifen Schneckenschäden? Agrarforschung 4:179–180

    Google Scholar 

  • Speiser B, Glen D, Piggott S, Ester A, Davies K, Castillejo J, Coupland J (2001) Slug damage and control of slugs in horticultural crops. FiBL, Frick, Brochure

    Google Scholar 

  • Théato C (2002) Field margins as ecological compensation areas? Bull Geobot Inst ETH 68:109–110

    Google Scholar 

  • Voss MC, Ulber B, Hoppe HH (1998) Impact of reduced and zero tillage on activity and abundance of slugs in winter oilseed rape. Z Pflanzenkrankh Pflanzenschutz 105:632–640

    Google Scholar 

  • Willis JC, Bohan DA, Choi Y, Semenov M, Brown VK, Gussin E (2003) Comparison of slug population dynamics at five sites in the UK. In: Dussart GBJ (ed) Slugs and snails—agricultural, veterinary and environmental perspectives. Page Bros, Norwich, pp 171–176

    Google Scholar 

  • Zweifel R (1998) Effects of sown wildflower strips on spatial and temporal dynamics of different slug species in reduced tillage winter wheat. Master Thesis, Geobotanical Institute ETH, Zurich

Download references

Acknowledgments

Our thanks go to all those who helped with the field work, especially S. Bosshart, X. Junge, H. Conradin and V. Bosshart. We are grateful to all the farmers who allowed us to perform the samplings in their fields. M. Suter and two members of ETH Zurich’s statistical seminar provided useful help with data analyses. We would also like to thank F. Herzog for his valuable comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katja Jacot.

About this article

Cite this article

Eggenschwiler, L., Speiser, B., Bosshard, A. et al. Improved field margins highly increase slug activity in Switzerland. Agron. Sustain. Dev. 33, 349–354 (2013). https://doi.org/10.1007/s13593-012-0101-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13593-012-0101-1

Keywords

Navigation