Skip to main content

Advertisement

Log in

Occurrence, fate, and ecotoxicity of antibiotics in agro-ecosystems. A review

  • Review Article
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

Globally, besides human medicine, an increasing amount of antibiotics as veterinary drugs and feed additives are used annually in many countries with the rapid development of the breeding industry (livestock breeding and aquaculture). As a result, mostly ingested antibiotic doses (30–90%) and their metabolites to humans and animals, as emerging persistent contaminants, were excreted together with urine and feces, and subsequently disseminated into environmental compartments in forms of urban wastewater, biosolids, and manures. More importantly, significant amount of antibiotics and their bioactive metabolites or degradation products were introduced in agro-ecosystems through fertilization and irrigation with antibiotics-polluted manures, biosolids, sewage sludge, sediments, and water. Subsequently, accumulation and transport of antibiotics in soil–crop systems, particularly soil–vegetable systems, e.g., protected vegetable and organic vegetable production systems, poses great risks on crops, soil ecosystem, and quality of groundwater- and plant-based products. The aim of this review is to explore the sources, fates (degradation, adsorption, runoff, leaching, and crop uptake), and ecological risks of antibiotics in agro-ecosystems and possible food security and public health impacts. Three topics were discussed: (1) the occurrence, fates, and ecological impacts of antibiotics in agro-ecosystems, a global agro-ecological issue; (2) the potential ecological risks and public health threat of antibiotic pollution in soil–vegetable system, especially protected vegetable and organic vegetable production systems; and (3) the strategies of reducing the introduction, accumulation, and ecological risks of antibiotics in agro-ecosystems. To summarize, environmental contamination of antibiotics has become increasingly serious worldwide, which poses great risks in agro-ecosystems. Notably, protected vegetable and organic vegetable production systems, as public health closely related agro-ecosystems, are susceptible to antibiotic contamination. Occurrence, fate, and ecotoxicity of antibiotics in agro-ecosystems, therefore, have become most urgent issues among antibiotic environmental problems. Nowadays, source control, including reducing use and lowering environmental release through pretreatments of urban wastes and manures is a feasible way to alleviate negative impacts of antibiotics in agro-ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Accinelli C, William C, Becker KJ, Michael M, Sadowsky J (2007) Environmental fate of two sulfonamide antimicrobial agents in soil. J Agric Food Chem 55(7):2677–2682

    PubMed  CAS  Google Scholar 

  • Alcock RE, Sweetman A, Jones KC (1999) Assessment of organic contaminant fate in wastewater treatment plants I. Selected compounds and physiochemical properties. Chemosphere 38:2247–2262

    PubMed  CAS  Google Scholar 

  • Arikan O (2008) Degradation and metabolization of chlortetracycline during the anaerobic digestion of manure from medicated calves. J Hazard Mater 158:485–490

    PubMed  CAS  Google Scholar 

  • Arikan O, Sikora LJ, Mulbry W, Khan SU, Rice C, Foster GD (2006) The fate and effect of oxytetracycline during the anaerobic digestion of manure from medicated calves. Process Biochem 41:1637–1643

    CAS  Google Scholar 

  • Arikan O, Sikora LJ, Mulbry W, Khan SU, Foster GD (2007) Composting rapidly reduces levels of extractable oxytetracycline in manure from therapeutically treated beef calves. Bioresour Technol 98:169–176

    PubMed  CAS  Google Scholar 

  • Arikan O, Mulbry W, Ingram D, Millner P (2009a) Minimally managed composting of beef manure at the pilot scale: effect of manure pile construction on pile temperature profiles and on the fate of oxytetracycline and chlortetracycline. Bioresour Technol 100:4447–4453

    PubMed  CAS  Google Scholar 

  • Arikan O, Mulbry W, Rice C (2009b) Management of antibiotic residues from agricultural sources: use of composting to reduce chlortetracycline residues in beef manure from treated animals. J Hazard Mater 164:483–489

    PubMed  CAS  Google Scholar 

  • Aust MO, Godlinski F, Travis GR, Hao X, McAllister TA, Leinweber P (2008) Distribution of sulfamethazine, chlortetracycline and TYL in manure and soil of Canadian feedlots after subtherapeutic use in cattle. Environ Pollut 156:1243–1251

    PubMed  CAS  Google Scholar 

  • Baguer AJ, Jensen J, Krogh PH (2000) Effects of the antibiotics oxytetracycline and TYL on soil fauna. Chemosphere 40:751–757

    PubMed  CAS  Google Scholar 

  • Bao YY, Zhou QX, Xie XJ (2008) Influence of tetracycline kind antibiotics on the control of wheat germination and root elongation. China Environ Sci 28(6):566–570

    CAS  Google Scholar 

  • Bao Y, Zhou QX, Guan L, Wang Y (2009) Depletion of chlortetracycline during composting of aged and spiked manures. Water Manag 29:1416–1423

    CAS  Google Scholar 

  • Bao YP, Li YW, Mo CH, Yao Y, Tai YP, Wu XL, Zhang Y (2010) Determination of six sulfonamide antibiotics in vegetables by solid phase extraction and high performance liquid chromatography. Environ Chem 29(3):513–518

    CAS  Google Scholar 

  • Batchelder AR (1982) Chlortetracycline and oxytetracycline effects on plant growth and development in soil systems. J Environ Qual 11:675–678

    CAS  Google Scholar 

  • Batt A, Kim S, Bruce IB, Aga DS (2006) Determination of antibiotics within various wastewater treatment plants and the impact of their discharges on surrounding surface waters. Abstr. ENVR 151. In ACS Natl. Meeting, 231st, Atlanta, GA. 26–30 Mar. 2006. Am. Chem. Soc., Washington, DC

  • Blackwell PA, Kay P, Boxall ABA (2007) The dissipation and transport of veterinary antibiotics in a sandy loam soil. Chemosphere 67:292–299

    PubMed  CAS  Google Scholar 

  • Bound JP, Voulvoulis N (2004) Pharmaceuticals in the aquatic environmental comparison of risk assessment strategies. Chemosphere 56:1143–1155

    PubMed  CAS  Google Scholar 

  • Bouwman GM, Reus JAWA (1994) Persistence of medicines in manure. Centre for Agriculture and Environment, CLM, 163,26

  • Boxall ABA (2004) The environmental side effects of medication: how are human and veterinary medicines in soils and water bodies affecting human and environmental health? EMBO Rep 5:1110–1116

    PubMed  CAS  Google Scholar 

  • Boxall ABA, Kolpin D, Halling-Sørensen B, Tolls J (2003) Are veterinary medicines causing environmental risks? Environ Sci Technol 37(15):286–294

    Google Scholar 

  • Boxall ABA, Johnson P, Smith EJ, Sinclair CJ, Stutt E, Levy L (2006) Uptake of veterinary medicines from soils into plants. J Agric Food Chem 163(3):2288–2297

    Google Scholar 

  • Bruce JR, Paul KSL, Michael M (2005) Emerging chemicals of concern: pharmaceuticals and personal care products (PPCPs) in Asia, particular reference to Southern China. Mar Pollut Bull 50:913–920

    Google Scholar 

  • Burkhardt M, Stamm C, Waul C, Singer H, Muller S (2005) Surface runoff and transport of sulfonamide antibiotics and tracers on manured grassland. J Environ Qual 34:1363–1371

    PubMed  CAS  Google Scholar 

  • Cabello FC (2006) Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ Microbiol 8:1137–1144

    PubMed  CAS  Google Scholar 

  • Campagnac E, Sahraoui LA, Debiane D, Fontaine J, Laruelle F, Garcon G, Verdin A, Durand R, Shiralo P, Grandmougin F (2010) Arbuscular mycorrhiza partially protected chicory roots against oxidative stress induced by two fungicides, fenpropimorph and fenhexamid. Mycorrhiza 20:167–178

    PubMed  CAS  Google Scholar 

  • Campos JL, Garrido JM, Méndez R, Lema JM (2001) Effect of two broad-spectrum antibiotics on activity and stability of continuous nitrifying system. Appl Biochem Biotechnol 95(1):1–10

    PubMed  CAS  Google Scholar 

  • Castiglioni S, Bagnati R, Fanelli R, Pomati F, Calamari D, Zuccato E (2006) Removal of pharmaceuticals in sewage treatment plants in Italy. Environ Sci Technol 40:357–363

    PubMed  CAS  Google Scholar 

  • CEC (1998a) Council regulation 2788/98. Off J Eur Commun Legis L347:32

    Google Scholar 

  • CEC (1998b) Council Regulation 2821/98. Off J Eur Commun Legis L351:4

    Google Scholar 

  • Chen H, Dong YH, Wang H (2008) Residual characteristics of sulfanilamide in animal feces in Jiangsu Province. J Agro-Environ Sci 27(1):385–389

    Google Scholar 

  • Christian T, Schneider RJ, Farber HA, Skutlarek D, Meyer MT, Goldbach HE (2003) Determination of antibiotic residues in manure, soil, and surface waters. Acta Hydrochim Hydrobiol 31:36–44

    CAS  Google Scholar 

  • Cromwell GL, Davis G, Morrow W, Primo WEM, Rozeboom RA, Sims DW, Stanisiewski MD, Ho EP (1996) Efficacy of the antimicrobial compound U-82,127 as a growth promoter for growing-finishing pigs. J Anim Sci 74(6):1284–1287

    PubMed  CAS  Google Scholar 

  • Cui X, Qiao XL, Han CW, Wang Z (2008) Uptake of oxytetracycline and its phytotoxicity to lettuce. J Agro-Environ Sci 27(3):1038–1042

    CAS  Google Scholar 

  • Diao XP, Sun YJ, Sun ZJ, Shen JZ (2004) Effects of Apramycin on microbial activity in different types of soil. Ecol Environ 13(4):565–568

    Google Scholar 

  • Díaz-Cruz MS, López de Alda MJ, Barcelo D (2003) Environmental behavior and analysis of veterinary and human drugs in soils, sediments and sludge. Trends Anal Chem 22(6):340–351

    Google Scholar 

  • Díaz-Cruz MS, de Alda MJL, Barcelo D (2006) Determination of antimicrobials in sludge from infiltration basins at two artificial recharge plants by pressurized liquid extraction–liquid chromatography–tandem mass spectrometry. J Chromatogr A 1130:72–82

    PubMed  Google Scholar 

  • Ding C, He JZ (2010) Effect of antibiotics in the environment on microbial populations. Appl Microbiol Biotechnol 87:925–941

    PubMed  CAS  Google Scholar 

  • Dolliver H, Kumar K, Gupta S (2007) Sulfamethazine uptake by plants from manure-amended soil. J Environ Qual 36:1224–1230

    PubMed  CAS  Google Scholar 

  • Dolliver H, Gupta S, Noll S (2008) Antibiotic degradation during manure composting. J Environ Qual 37:1245–1253

    PubMed  CAS  Google Scholar 

  • EMEA (1994–2002) TYL summary report (Parts 1–5). Part 1: http://www.emea.europa.eu/pdfs/vet/mrls/TYL1.pdf; Part 2: http://www.emea.europa.eu/pdfs/vet/mrls/TYL2.pdf; Part 3: http://www.emea.europa.eu/pdfs/vet/mrls/020597en.pdf; Part 4: http://www.emea.europa.eu/pdfs/vet/mrls/073200en.pdf; Part 5: http://www.emea.europa.eu/pdfs/vet/mrls/082902en.pdf

  • Farkas MH, Berry JO, Aga DS (2007) Chlortetracycline detoxification in maize via induction of glutathione S-transferases after antibiotic exposure. Environ Sci Technol 41:1450–1456

    PubMed  CAS  Google Scholar 

  • Focazio MJ, Kolpin DW, Barnes KK, Furlong ET, Meyer MT, Zaugg SD, Barber LB, Thurman ME (2008) A national reconnaissance for pharmaceuticals and other organic wastewater contaminants in the United States: II. Untreated drinking water resources. Sci Total Environ 402:201–216

    PubMed  CAS  Google Scholar 

  • Ge LK, Chen JW, Zhang SY, Cai XY, Wang Z, Wang CL (2010) Photodegradation of fluoroquinolone antibiotic gatifloxacin in aqueous solutions. Chin Sci Bull 55(15):1495–1500

    CAS  Google Scholar 

  • Giger W, Alder AC, Golet EM, Kohler HPE, McArdell CS, Molnar E, Siegrist H, Suter MJF (2003) Occurrence and fate of antibiotics as trace contaminants in wastewaters sewage sludge and surface waters. Chimia 57:485–491

    CAS  Google Scholar 

  • Göbel A, McArdell CS, Suter MJF, Giger W (2004) Trace determination of macrolide and sulfonamide antimicrobials a human sulfonamide metabolite and trimetoprim in wastewater using liquid chromatography coupled to electrospray tandem mass spectrometry. Anal Chem 76:4756–4764

    PubMed  Google Scholar 

  • Golet EM, Alder AC, Giger W (2002) Environmental exposure and risk assessment of fluoroquinolone antibacterial agents in wastewater and river water of the Glatt Valley Watershed, Switzerland. Environ Sci Technol 36:3645–3651

    PubMed  CAS  Google Scholar 

  • Gottlieb D (1976) The production and role of antibiotics in soil. J Antibiot 29:987–1000

    PubMed  CAS  Google Scholar 

  • Grote M, Schwake-Anduschus C, Michel R, Stevens H, Heyser W, Langenkämper G, Betsche T, Freitag M (2007) Incorporation of veterinary antibiotics into crops from manured soil. FAL Agric Res 57:25–32

    CAS  Google Scholar 

  • Gulkowska A, He YH, So MK, Yeung LWY, Leung HW, Giesy JP, Lam PKS, Martin M, Richardson BJ (2007) The occurrence of selected antibiotics in Hong Kong coastal waters. Mar Pollut Bull 54(8):1287–1293

    PubMed  CAS  Google Scholar 

  • Halling-Sørensen B, Nors NS, Lanzky PF, Ingerslev F, Holten Lützhøft HC, Jørgensen SE (1998) Occurrence, fate and effects of pharmaceutical substances in the environment—a review. Chemosphere 36:357–393

    PubMed  Google Scholar 

  • Hamscher G, Abu-Quare A, Sczesny S, Hoper H, Nau H (2000) Determination of tetracyclines and TYL in soil and water samples from agricultural areas in Lower Saxony. In: van Ginkel LA, Ruiter A (eds) Proceedings of the Euroside IV Conference, National Institute of Public Health and the Environment (RIVM), Bilthoven, Netherlands, pp 522–526

  • Hamscher G, Sczesny S, Höper H, Nau H (2002) Determination of persistent tetracycline residues in soil fertilized with liquid manure by high performance liquid chromatography with electrospray ionization tandem mass spectrometry. Anal Chem 74:1509–1518

    PubMed  CAS  Google Scholar 

  • Hamscher G, Pawekzick HT, Sczesny S, Nau H, Hartung J (2003) Antibiotics in dust originating from a pig-fattening farm: a new source of health hazard for farmers? Environ Heal Perspect 111(13):1590–1594

    CAS  Google Scholar 

  • Hamscher G, Pawelzick HT, Hoper H, Nau H (2005) Different behavior of tetracyclines and sulfonamides in sandy soils after repeated fertilization with liquid manure. Environ Toxicol Chem 24:861–868

    PubMed  CAS  Google Scholar 

  • Heberer T (2002) Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicol Lett 131:5–17

    PubMed  CAS  Google Scholar 

  • Hirsch R, Ternes T, Haberer K, Kratz KL (1999) Occurrence of antibiotics in the aquatic environment. Sci Total Environ 225:109–118

    PubMed  CAS  Google Scholar 

  • Hu XG, Zhou QX, Xu L (2008) Determination of thirteen antibiotics residues in manure by solid phase extraction and high performance liquid chromatography. Chin J Anal Chem 36(9):l162–l166

    Google Scholar 

  • Hu XG, Zhou QX, Luo Y (2010) Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China. Environ Pollut 158(9):2992–2998

    PubMed  CAS  Google Scholar 

  • JECFA (2006) Summary of evaluations performed by the JECFA (1956–2005) (1st through 65th meetings). Joint Food and Agriculture Organization of the United Nations and World Health Organization Expert Committee on Food Additives, Rome; WHO, Geneva, Switzerland

  • Jin CX, Chen QY, Sun RL, Zhou QX, Liu JJ (2009) Eco-toxic effects of sulfadiazine sodium, sulfamonomethoxine sodium and enrofloxacin on wheat, Chinese cabbage and tomato. Ecotoxicology 18:878–885

    PubMed  CAS  Google Scholar 

  • Jjemba PK (2002a) The effect of chloroquine, quinacrine, and metronidazole on both soybean plants and soil microbiota. Chemosphere 46:1019–1025

    PubMed  CAS  Google Scholar 

  • Jjemba PK (2002b) The potential impact of veterinary and human therapeutic agents in manure and biosolids on plants grown on arable land: a review. Agric Ecosyst Environ 93:267–278

    Google Scholar 

  • Jongbloed AW, Lenis NP (1998) Environmental concerns about animal manure. J Anim Sci 76:2641–2648

    PubMed  CAS  Google Scholar 

  • Jørgensen SE, Halling-Sørensen B (2000) Drugs in the environment. Chemosphere 40:691–699

    PubMed  Google Scholar 

  • Kakimoto T, Osawa T, Funamizu N (2007) Antibiotic effect of amoxicillin on the feces composting process and reactivation of bacteria by intermittent feeding of feces. Bioresour Technol 98(18):3555–3560

    PubMed  CAS  Google Scholar 

  • Katz SE (1980) The effects of human health. Subtherapeutic use of antimicrobials in animal feeds. National Academy of Sciences, Washington

    Google Scholar 

  • Kay P, Blackwell PA, Boxall ABA (2005) Transport of veterinary antibiotics in overland flow following the application of slurry to arable land. Chemosphere 59:951–959

    PubMed  CAS  Google Scholar 

  • Kemper N (2008) Veterinary antibiotics in the aquatic and terrestrial environment. Ecol Indic 8:1–13

    CAS  Google Scholar 

  • Khachatourians GG (1998) Agricultural use of antibiotics and the evolution and transfer of antibiotic-resistant bacteria. Can Med Assoc J 159:1129–1136

    CAS  Google Scholar 

  • Khalvati M, Bartha B, Dupigny A, Schröder P (2010) Arbuscular mycorrhizal association is beneficial for growth and detoxification of xenobiotics of barley. J Soils Sediments 10:54–64

    CAS  Google Scholar 

  • Kim SV, Carlson K (2005) LC-MS2 for quantifying trace amounts of pharmaceuticals compounds in soil and sediment matrices. Trends Anal Chem 24(7):635–644

    CAS  Google Scholar 

  • Kim SC, Carlson K (2007) Temporal and spatial trends in the occurrence of human and veterinary antibiotics in aqueous and river sediment matrices. Environ Sci Technol 41:50–57

    PubMed  CAS  Google Scholar 

  • Kim S, Eichhorn P, Jensen JN, Scott WA, Aga DS (2005) Removal of antibiotics in wastewater: effect of hydraulic and solid retention times on the fate of tetracycline in the activated sludge process. Environ Sci Technol 39:5816–5823

    PubMed  CAS  Google Scholar 

  • Kim KR, Owens G, Kwon SI, So KH, Lee DB, Ok YS (2011) Occurrence and environmental fate of veterinary antibiotics in the terrestrial environment. Water Air Soil Pollut 214:163–174

    CAS  Google Scholar 

  • Knapp CW, Dolfing J, Ehlert PAI, Graham DW (2010) Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940. Environ Sci Technol 44:580–587

    PubMed  CAS  Google Scholar 

  • Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36:1202–1211

    PubMed  CAS  Google Scholar 

  • Kolz AC, Moorman TB, Ong SK, Scoggin KD, Douglass EA (2005) Degradation and metabolite production of TYL in anaerobic and aerobic swine manure lagoons. Water Environ Res 77:49–56

    PubMed  CAS  Google Scholar 

  • Kong WD, Zhu YG (2007) A review on ecotoxicology of veterinary pharmaceuticals to plants and soil microbes. Asian J Ecotoxicol 2(1):1–9

    CAS  Google Scholar 

  • Kong WD, Zhu YG, Fu BJ, Marschner P, He JZ (2006) The veterinary antibiotic oxytetracycline and Cu influence functional diversity of the soil microbial community. Environ Pollut 143:129–137

    PubMed  CAS  Google Scholar 

  • Kong WD, Zhu YG, Liang YC, Zhang J, Smith FA, Yang M (2007) Uptake of oxytetracycline and its phytotoxicity to alfalfa (Medicago sativa L.). Environ Pollut 147:187–193

    PubMed  CAS  Google Scholar 

  • Kotzerke A, Sharma S, Schauss K, Heuer H, Thiele-Bruhn S, Smalla K, Wilke BM, Schloter M (2008) Alterations in soil microbial activity and N-transformation processes due to sulfadiazine loads in pig manure. Environ Pollut 153(2):315–322

    PubMed  CAS  Google Scholar 

  • Kotzerke A, Fulle M, Sharma S, Kleineidam K, Welzl G, Lamshöft M, Schloter M, Wilke B (2011) Alterations in total microbial activity and nitrification rates in soil due to amoxicillin-spiked pig manure. J Plant Nutr Soil Sci 174(1):56–64

    CAS  Google Scholar 

  • Kreuzig R, Höltge S (2005) Investigations on the fate of sulfadiazine in manured soil: laboratory experiments and test plot studies. Environ Toxicol Chem 24(4):771–776

    PubMed  CAS  Google Scholar 

  • Kulshrestha P, Giese RF, Aga DS (2004) Investigating the molecular interactions of oxytetracycline in clay and organic matter: insights on factors affecting its mobility in soil. Environ Sci Technol 38:4097–4105

    PubMed  CAS  Google Scholar 

  • Kumar K, Gupta SC, Chander Y, Singh AK (2005a) Antibiotic use in agriculture and their impact on terrestrial environment. Adv Agron 87:1–54

    CAS  Google Scholar 

  • Kumar K, Gupta SC, Baidoo SK, Chander Y, Rosen CJ (2005b) Antibiotic uptake by plants from soil fertilized with animal manure. J Environ Qual 34:2082–2085

    PubMed  CAS  Google Scholar 

  • Kümmerer K (2001a) Drugs in the environment: emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources: a review. Chemosphere 45:957–969

    PubMed  Google Scholar 

  • Kümmerer K (2001b) Pharmaceuticals in the environment—source, fate, effects and risks. Springer, Berlin, p 265

    Google Scholar 

  • Kurwadkar ST, Adams CD, Meyer MT, Kolpin DW (2007) Effects of sorbate speciation on sorption of selected sulfonamides in three loamy soils. J Agric Food Chem 55:1370–1376

    PubMed  CAS  Google Scholar 

  • Lancini G, Parenti F (1982) Antibiotics: an integrated view. Springer, New York, p 253

    Google Scholar 

  • Li ZJ, Yao ZP, Zhang J, Liang YC (2008) A review on fate and ecological toxicity of veterinary antibiotics in soil environments. Asian J Ecotoxicol 3(1):15–20

    CAS  Google Scholar 

  • Li ST, Liu RL, Shan H (2009a) Nutrient contents in main animal manures in China. J Agro-Environ Sci 28(1):179–184

    Google Scholar 

  • Li YW, Mo CH, Zhao N, Tai YP, Bao YP, Wang JY, Li MY, Liang W (2009b) Investigation of sulfonamides and tetracyclines antibiotics in soils from various vegetable fields. Environ Sci 30(6):1762–1766

    CAS  Google Scholar 

  • Li YW, Wu XL, Mo CH, Tai YP, Huang XP, Xiang L (2011) Investigation of sulfonamide, tetracycline, and quinolone antibiotics in vegetable farmland soil in the Pearl river delta area, southern China. J Agric Food Chem 59(13):7268–7276

    PubMed  Google Scholar 

  • Lindberg RH, Wennberg P, Johansson MI (2005) Screening of human antibiotic substances and determination of weekly mass flows in five sewage treatment plants in Sweden. Environ Sci Technol 39:3421–3429

    PubMed  CAS  Google Scholar 

  • Lindsey ME, Meyer TM, Thurman EM (2001) Analysis of trace levels of sulfonamide and tetracycline antimicrobials in groundwater and surface water using solid-phase extraction and liquid chromatography/mass spectrometry. Anal Chem 73:4640–4646

    PubMed  CAS  Google Scholar 

  • Liu F, Ying GG, Tao R, Zhao LL, Yang JF, Zhao LF (2009a) Effects of six selected antibiotics on plant growth and soil microbial and enzymatic activities. Environ Pollut 157:1636–1642

    PubMed  CAS  Google Scholar 

  • Liu WK, Yang QC, Du LF (2009b) Soilless cultivation for high-quality vegetables with biogas manure in China: feasibility and benefit analysis. Renew Agric Food Syst 24(4):300–307

    CAS  Google Scholar 

  • Luciana M, Salvatore C, Maurizio F (2003) Phytotoxicity to and uptake of enrofloxacin in crop plants. Chemosphere 52:1233–1244

    Google Scholar 

  • Lumsden RD, Locke JR, Adkins ST, Walter JF, Rideout CJ (1992) Isolation and localization of the antibiotic gliotoxin produced by Gliocladium virens from alginate prill in soil and soilless media. Phytopathol 82:230–235

    CAS  Google Scholar 

  • Managaki S, Murata A, Takada H, Tuyen BC, Chiem NH (2007) Distribution of macrolides, sulfonamides, and trimethoprim in tropical waters: ubiquitous occurrence of veterinary antibiotics in the Mekong Delta. Environ Sci Technol 41(23):8004–8010

    PubMed  CAS  Google Scholar 

  • Martinez-Carballo E, Gonzalez-Barreiro C, Scharf S, Gans O (2007) Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria. Environ Pollut 148(2):570–579

    PubMed  CAS  Google Scholar 

  • McManus PS, Stockwell VO, Sundin GW, Jones AL (2002) Antibiotic use in plant agriculture. Annu Rev Phytopathol 40:443–465

    PubMed  CAS  Google Scholar 

  • Migliore L, Brambilla G, Cozzolino S, Gaudio L (1995) Effect on plants of sulphadimethoxine used in intensive farming (Panicum miliaceum, Pisum sativum, and Zea mays). Agric Ecosyst Environ 52:103–110

    CAS  Google Scholar 

  • Migliore L, Brambilla G, Casoria P, Civitareale C, Cozzolino S, Gaudio L (1996) Effect of sulphadimethoxine contamination on barley (Hordeum distichum L., Poaceae, Liliposida). Agric Ecosyst Environ 60:121–128

    CAS  Google Scholar 

  • Migliore L, Civitareale C, Brambilla G, Cozzolino S, Casoria P, Gaudio L (1997) Effects of sulphadimethoxine on cosmopolitan weeds (Amaranthus retroflexus L., Plantago major L. and Rumex acetosella L.). Agric Ecosyst Environ 65:163–168

    CAS  Google Scholar 

  • Migliore L, Civitareale C, Cozzolino S, Casoria P, Brambilla G, Gaudio L (1998) Laboratory models to evaluate phytotoxicity of sulphadimethoxine on terrestrial plants. Chemosphere 37:2957–2961

    CAS  Google Scholar 

  • Migliore L, Cozzolino S, Fiori M (2003) Phytotoxicity to and uptake of enrofloxacin in crop plants. Chemosphere 52:1233–1244

    PubMed  CAS  Google Scholar 

  • Mohring SI, Strzysch I, Fernandes MR (2009) Degradation and elimination of various sulfonamides during anaerobic fermentation: a promising step on the way to sustainable pharmacy? Environ Sci Technol 43:2569–2574

    PubMed  CAS  Google Scholar 

  • Montforts MH (1999) Environmental risk assessment for veterinary medicinal products. Part 1: Other than GMO containing and immunological products. RIVM report 601300001, N120. National Institute of Public Health and the Environment, Bilthoven

  • Morris AK, Masterton RG (2002) Antibiotic resistance surveillance: action for international studies. J Antimicrob Chemother 49(1):7–10

    PubMed  CAS  Google Scholar 

  • Pedrouzo M, Borrull F, Pocurull E, Marcé RM (2011) Presence of pharmaceuticals and hormones in waters from sewage treatment plants. Water Air Soil Pollut 217(1–4):267–281

    CAS  Google Scholar 

  • Pena A, Paulo M, Silva LJG, Seifrtova M, Lino CM, Solich P (2010) Tetracycline antibiotics in hospital and municipal wastewaters: a pilot study in Portugal. Anal Bioanal Chem 396:2929–2936

    PubMed  CAS  Google Scholar 

  • Phillips I, Casewell M, Cox T, Groot BI, Friis C, Jones R, Nightingale G, Preston R, Waddell J (2004) Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data. J Antimicrob Chemother 53:28–52

    PubMed  CAS  Google Scholar 

  • Poels JP, Assche V, Verstraete W (1984) Effects of disinfectants and antibiotics on the anaerobic digestion of piggery waste. Agric Wastes 9(4):239–247

    CAS  Google Scholar 

  • Rabølle M, Spliid NH (2000) Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil. Chemosphere 40(7):715–722

    PubMed  Google Scholar 

  • Renew JE, Huang CH (2004) Simultaneous determination of fluoroquinolone, sulfonamide and trimethoprim antibiotics in wastewater using tandem solid-phase extraction and liquid chromatography electrospray-mass spectrometry. J Chromatogr A 1042:113–121

    PubMed  CAS  Google Scholar 

  • Rooklidge SJ (2004) Environmental antimicrobial contamination from terraccumulation and diffuse pollution pathways. Sci Total Environ 325(1–3):1–13

    PubMed  CAS  Google Scholar 

  • Sacher F, Lange FT, Brauch HJ, Blankenhorn I (2001) Pharmaceuticals in groundwaters: analytical methods and results of a monitoring program in Baden-Würtemberg, Germany. J Chromatogr A 938:99–210

    Google Scholar 

  • Sarmah AK, Meyer MT, Boxall ABA (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65(5):725–759

    PubMed  CAS  Google Scholar 

  • Sassman SA, Lee LS (2005) Sorption of three tetracyclines by several soils: role of pH and cation exchange. Environ Sci Technol 39:7452–7459

    PubMed  CAS  Google Scholar 

  • Sassman AS, Sarmah AK, Lee LS (2007) Sorption of tylosin A D, and tylsoin A-Aldol and degradation of tylosin A in soils. Environ Toxicol & Chem 26:1629–1635

    CAS  Google Scholar 

  • Schlüsener MP, Bester K (2006) Persistence of antibiotics such as macrolides, tiamulin and salinomycin in soil. Environ Pollut 143:565–571

    PubMed  Google Scholar 

  • Shanahan P, Borro A, ÓGara F, Glennon JD (1992) Isolation, trace enrichment and liquid chromatographic analysis of diacetylpholoroglucinol in culture and soil samples using UV and amperometric detection. J Chromatogr A 606:171–177

    CAS  Google Scholar 

  • Shi Y, Zhao MQ, Wang J, Song YF (2010) Effect of antibiotics from organic manure on protected vegetable soil–plant system: a review. J Agro-Environ Sci 29(supl):240–244

    Google Scholar 

  • Siderer Y, Maquet A, Anklam E (2005) Need for research to support consumer confidence in the growing organic food market. Trends Food Sci Technol 16:332–343

    CAS  Google Scholar 

  • Smith DL, Harris AD, Johnson JA, Silbergeld EK, Morris JG Jr (2002) Animal antibiotic use has an early but important impact on the emergence of antibiotic resistance in human commensal bacteria. Proc Nat Acad Sci U S A 99:6434–6439

    CAS  Google Scholar 

  • Smukler SM, Jackson LE, Murphree L, Yokota R, Koike ST, Smith RF (2008) Transition to large-scale organic vegetable production in the Salinas Valley, California. Agric Ecosyst Environ 126:168–188

    Google Scholar 

  • Snow DD, Bartelt-Hunty SL, Saunders SE, Devivo SL, Cassada DA (2009) Detection, occurrence, and fate of emerging contaminants in agricultural environments. Water Environ Res 81(10):941–958

    CAS  Google Scholar 

  • Stolker AMM, Niesing W, Hogendoorn EA, Versteegh JFM, Fuchs R, Brinkman UAT (2004) Liquid chromatography with triplequadrupole or quadrupole-time of flight mass spectrometry for screening and confirmation of residues of pharmaceuticals in water. Anal Bioanal Chem 378:955–963

    PubMed  CAS  Google Scholar 

  • Stone JJ, Clay SA, Zhu ZW, Wong KL, Porath LR, Spellman GM (2009) Effect of antimicrobial compounds TYL and chlortetracycline during batch anaerobic swine manure digestion. Water Res 43:4740–4750

    PubMed  CAS  Google Scholar 

  • Stoob K, Singer HP, Mueller SR, Schwarzenbach RP, Stamm CH (2007) Dissipation and transport of veterinary sulfonamide antibiotics after manure application to grassland in a small catchment. Environ Sci Technol 41(21):7349–7355

    PubMed  CAS  Google Scholar 

  • Summer ME (2000) Beneficial use of effluents, wastes, and biosolids. Commun Soil Sci Plant Anal 31:1701–1715

    Google Scholar 

  • Tai YP, Mo CH, Li YW, Wu XL, Zou X, Gao P, Huang XD (2010) Concentration and distribution of quinolone antibiotics in long-term manure-amended soils. China Environ Sci 30(6):816–821

    CAS  Google Scholar 

  • Tamtam F, Mercierb F, Le Botb B, Eurinc J, Tuc DQ, Clémentb M, Chevreuilc M (2008) Occurrence and fate of antibiotics in the Seine River in various hydrological conditions. Sci Total Environ 393:84–95

    PubMed  CAS  Google Scholar 

  • Ternes TA (1998) Occurrence of drugs in German sewage treatment plants and rivers. Water Res 32:3245–3260

    CAS  Google Scholar 

  • Thiele-Bruhn S (2003) Pharmaceutical antibiotic compounds in soils: a review. J Plant Nutr Soil Sci 166:45–167

    Google Scholar 

  • Thiele-Bruhn S, Beck IC (2005) Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass. Chemosphere 59:457–465

    PubMed  CAS  Google Scholar 

  • Thiele-Bruhn S, Peters D (2007) Photodegradation of pharmaceutical antibiotics on slurry and soil surfaces. Landbauforschung Völkenrode 57:13–23

    CAS  Google Scholar 

  • Thomashow LS, Weller DM (1995) Current concepts in the use of introduced bacteria for biological disease control: mechanisms and antifungal metabolites. In: Stacey G, Keen N (eds) Plant–microbe interactions, vol 1. Chapman & Hall, New York, pp 187–235

    Google Scholar 

  • Thomashow LS, Bonsall RF, Weller DM (1997) Antibiotic production by soil and rhizosphere microbes in situ. In: Hurst CJ, Knudson GR, Mclnerney MJ, Stetzenbach LD, Walter MV (eds) Manual of environmental microbiology. ASM Press, Washington, pp 493–499

    Google Scholar 

  • Tolls J (2001) Sorption of veterinary pharmaceuticals in soils: a review. Environ Sci Technol 35:3397–3406

    PubMed  CAS  Google Scholar 

  • Topp W (1981) Biologie der Bodenorganismen. Quelle & Meier-UTB, Heidelberg, p p224

    Google Scholar 

  • UCS(Union of Concerned Scientist). Hogging it!: estimates of antimicrobial abuse in livestock. 2001. p.4 http://www.ucsusa.org/food_and_environment/antibiotic_resistance/indexN

  • Vieno N, Tuhkanen T, Kronberg L (2006) Analysis of neutral and basic pharmaceuticals in sewage treatment plants and in recipient rivers using solid phase extraction and liquid chromatography-tandem mass spectrometry detection. J Chromatogr A 1134:101–111

    PubMed  CAS  Google Scholar 

  • Wang J, Han JZ (2008) Effects of heavy metals and antibiotics on soil and vegetables. J Ecol Rural Environ 24(4):90–93

    Google Scholar 

  • Wang M, Tang JC (2010) Research of antibiotics pollution in soil environments and its ecological toxicity. J Agro-Environ Sci 29(supl):261–266

    Google Scholar 

  • Wang R, Liu TZ, Wang T (2006) The fate of antibiotics in environment and its ecotoxicology: a review. Acta Ecologica Sinica 26(1):265–270

    CAS  Google Scholar 

  • Wang B, Sun C, Hu GJ (2007) Advances in the potential risks of antibiotics in environment. Environ Sci Technol 30(3):108–111

    Google Scholar 

  • Watanabe N, Bergamaschi BA, Loftin KA, Meyer MT, Harter T (2010) Use and environmental occurrence of antibiotics in freestall dairy farms with manured forage fields. Environ Sci Technol 44:6591–6600

    PubMed  CAS  Google Scholar 

  • Watts CD, Crathorne B, Fielding M, Killops SD (1982) Nonvolatile organic compounds in treated waters. Environ Heal Perspect 46:87–89

    CAS  Google Scholar 

  • Wegener HC (1999) The consequences for food safety of the use of fluoroquinolones in food animals. New Eng J Med 340:1581–1582

    PubMed  CAS  Google Scholar 

  • Wehrhan A, Kasteel R, Simunek J, Groeneweg J, Vereecken H (2007) Transport of sulfadiazine in soil columns—experiments and modelling approaches. J Contam Hydrol 89(1–2):107–135

    PubMed  CAS  Google Scholar 

  • Wei X, Wu SC, Nie XP, Yediler A, Wong MH (2009) The effects of residual tetracycline on soil enzymatic activities and plant growth. J Environ Sci Health Part B 44:461–471

    CAS  Google Scholar 

  • Willer H, Lilcher L (eds.) The world of organic agriculture-statistics and emerging trends 2010. International Federation of Organic Agriculture Movements (IFOAM). Boon and FiBL Frick

  • Winckler C, Grafe A (2001) Use of veterinary drugs in intensive animal production: evidence for persistence of tetracycline in pig slurry. J Soils Sediments 1:66–70

    CAS  Google Scholar 

  • Winding A, Hund-Rinke K, Rutgers M (2005) The use of microorganisms in ecological soil classification and assessment concepts. Ecotoxicol Environ Saf 62:230–248

    PubMed  CAS  Google Scholar 

  • Witte W (1998) Medical consequences of antibiotic use in agriculture. Science 279:996–997

    PubMed  CAS  Google Scholar 

  • Wu CX, Spongberg AL, Witter JD, Fang M, Czajkowski KP (2010a) Uptake of pharmaceutical and personal care products by soybean plants from soils applied with biosolids and irrigated with contaminated water. Environ Sci Technol 44(16):6157–6161

    PubMed  CAS  Google Scholar 

  • Wu QF, Hong HL, Li ZH (2010b) Progress of research on antibiotic contamination. Safety Environ Eng 17(2):68–72

    CAS  Google Scholar 

  • Xiao QM, Yang YH (1997) Analyzing soil fertility of protected lands of Liaoning province. Liaoning Agric Sci 3:17–21

    Google Scholar 

  • Xie XY, Zhang YQ, Li ZJ, Liang YC, Yao JH, Zhang SQ (2009) Cultivar differences in toxic effects of oxytetracycline on wheat (Triticum durum). Asian J Ecotoxicol 4(4):577–583

    Google Scholar 

  • Xu WH, Zhang G, Zou SC (2007a) Determination of selected antibiotics in the Victoria Harbour and the Pearl River, South China using high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. Environ Pollut 145:672–679

    PubMed  CAS  Google Scholar 

  • Xu WH, Zhang G, Li XD, Zou SC, Li P, Hu ZH (2007b) Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta (PRD), South China. Water Res 41:4526–4534

    PubMed  CAS  Google Scholar 

  • Yang YD, Chen DH, Huang MH (2010a) The source of antibiotics in the environment and progress of its ecological impact research. Environ Sci Manag 35(1):140–143

    CAS  Google Scholar 

  • Yang JF, Ying GG, Zhao JL, Tao R, Su HC, Chen F (2010b) Simultaneous determination of four classes of antibiotics in sediments of the Pearl Rivers using RRLC–MS/MS. Sci Total Environ 408:3424–3432

    PubMed  CAS  Google Scholar 

  • Yao H, He Z, Wilson MJ, Campbell CD (2000) Microbial biomass and community structure in a sequence of soils with increasing fertility and changing land use. Microb Ecol 40:223–237

    PubMed  CAS  Google Scholar 

  • Yao LX, Li GL, Dang Z (2006) Major chemical components of poultry and livestock manures under intensive breeding. Chin J Appl Ecol 17(10):1989–1992

    CAS  Google Scholar 

  • Yao JH, Niu DK, Li ZJ, Liang YC, Zhang SQ (2010) Effects of antibiotics oxytetracycline on soil enzyme activities and microbial biomass in wheat rhizosphere. Scientia Agricultura Sinica 43(4):721–728

    CAS  Google Scholar 

  • Ye S, Yao ZW, Na GS, Wang JY, Ma DY (2007a) Rapid simultaneous determination of 14 sulfonamides in wastewater by liquid chromatography tandem mass spectrometry. J Sep Sci 30:2360–2369

    PubMed  CAS  Google Scholar 

  • Ye Z, Weinberg HS, Meyer MT (2007b) Trace analysis of trimethoprim and sulfonamide, macrolide, quinolone, and tetracycline antibiotics in chlorinated drinking water using liquid chromatography electrospray tandem mass spectrometry. Anal Chem 79:1135–1144

    PubMed  CAS  Google Scholar 

  • Zhang FS (2008) Report on the strategies for fertilizer industry and scientific fertilization in China. China Agricultural University Press, Beijing, pp 5–53

    Google Scholar 

  • Zhang T, Li B (2011) Occurrence, transformation, and fate of antibiotics in municipal wastewater treatment plants. Crit Rev Environ Sci Technol 41(11):951–998

    CAS  Google Scholar 

  • Zhang JQ, Dong YH, An Q, Liu XC (2005a) Environmental fate of veterinary medicines in soil. Soils 37(4):353–361

    CAS  Google Scholar 

  • Zhang YC, Li QY, Zhai CX (2005b) Analysis and assessment of fertilization status in greenhouse of Hebei. Hebei Agric Sci 9(3):61–67

    Google Scholar 

  • Zhang H, Luo Y, Zhou QX (2008a) Research advancement of eco-toxicity of tetracycline antibiotics. J Agro-Environ Sci 27(2):407–413

    CAS  Google Scholar 

  • Zhang HM, Zhang MK, Gu GP (2008b) Residues of tetracyclines in livestock and poutry manures and agricultural soils from North Zhejing provinces. J Ecol Rural Environ 24(3):69–73

    Google Scholar 

  • Zhang MK, Wang LP, Zhang SA (2008c) Adsorption and transport characteristics of two exterior two source antibiotics in some agricultural soils. Acta Ecologica Sinica 28(2):761–766

    CAS  Google Scholar 

  • Zhao N (2007) Status of soil antibiotic pollution from typical vegetable fields in Pearl River Delta. Master thesis of Jinan University, Guangzhou

    Google Scholar 

  • Zhao FY, Chen CL (2001) Effects of nitrogen rate on yield and quality of vegetables. Syst Sci Compr Stud Agric 17(1):43–44

    Google Scholar 

  • Zhao L, Dong YH, Wang H (2010) Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China. Sci Total Environ 408:1069–1075

    PubMed  CAS  Google Scholar 

  • Zhou QX, Luo Y, Wang ME (2007) Environmental residues and ecotoxicity of antibiotics and rheir resistance gene pollution: a review. Asian J Ecotoxicol 2(3):243–251

    CAS  Google Scholar 

  • Zhu CX, Song Y (2006) Discussion on the situation and development of agro-antibiotic in China. Rev China Agric Sci Technol 8(6):17–19

    Google Scholar 

  • Zielezny Y, Groeneweg J, Vereecken H, Tappe W (2006) Impact of sulfadiazine and chlortetracycline on soil bacterial community structure and respiratory activity. Soil Biol Biochem 38:2372–2380

    CAS  Google Scholar 

  • Zuccato E, Calamari D, Natangelo M, Fanelli R (2000) Presence of therapeutic drugs in the environment. Lancet 355:1789–1790

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the project of research and development program for China’s sustainable agriculture (II), 2009–2014. I also want to thank three anonymous reviewers for their helpful comments and suggestions and Dr. Zhiping Zhu for providing some pictures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenke Liu.

About this article

Cite this article

Du, L., Liu, W. Occurrence, fate, and ecotoxicity of antibiotics in agro-ecosystems. A review. Agron. Sustain. Dev. 32, 309–327 (2012). https://doi.org/10.1007/s13593-011-0062-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13593-011-0062-9

Keywords

Navigation