Skip to main content
Log in

Neural effects of insecticides in the honey bee

  • Review article
  • Published:
Apidologie Aims and scope Submit manuscript

Abstract

During their foraging activity, honey bees are often exposed to direct and residual contacts with pesticides, especially insecticides, all substances specifically designed to kill, repel, attract or perturb the vital functions of insects. Insecticides may elicit lethal and sublethal effects of different natures that may affect various biological systems of the honey bee. The first step in the induction of toxicity by a chemical is the interaction between the toxic compound and its molecular target. The action on the molecular target can lead to the induction of observable or non-visible effects. The toxic substance may impair important processes involved in cognitive functions, behaviour or integrity of physiological functions. This review is focused on the neural effects of insecticides that have repercussions on (a) cognitive functions, including learning and memory, habituation, olfaction and gustation, navigation and orientation; (b) behaviour, including foraging and (c) physiological functions, including thermoregulation and muscle activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abbadie, C., McManus, O.B., Sun, S.-Y., Bugianesi, R.M., Dai, G., Haedo, R.J., Herrington, J.B., Kaczorowski, G.J., Smith, M.M., Swensen, A.M., Warren, V.A., Williams, B., Arneric, S.P., Eduljee, C., Snutch, T.P., Tringham, E.W., Jochnowitz, N., Liang, A., MacIntyre, D.E., McGowan, E., Mistry, S., White, V.V., Hoyt, S.B., London, C., Lyons, K.A., Bunting, P.B., Volksdorf, S., Duffy, J.L. (2010) Analgesic effects of a substituted N-triazole oxindole (TROX-1). A state-dependent, voltage-gated calcium channel 2 blocker. J. Pharmacol. Exp. Ther. 334, 545–555

    Article  PubMed  CAS  Google Scholar 

  • Adams, M.E., Miller, T.A. (1980) Neural and behavioral correlates of pyrethroid and DDT-type poisoning in the house fly, Musca domestica L. Pestic. Biochem. Physiol. 13, 137–147

    Article  CAS  Google Scholar 

  • Adigun, A.A., Wrench, N., Seidler, F.J., Slotkin, T.A. (2010) Neonatal Organophosphorus pesticide exposure alters the developmental trajectory of cell-signaling cascades controlling metabolism: differential effects of diazinon and parathion. Environ. Health Perspect. 118, 210–215

    Article  PubMed  CAS  Google Scholar 

  • Aliouane, Y., El Hassani, A.K., Gary, V., Armengaud, C., Lambin, M., Gauthier, M. (2009) Subchronic exposure of honeybees to sublethal doses of pesticides: Effects on behavior. Environ. Toxicol. Chem. 28, 113–122

    Article  PubMed  CAS  Google Scholar 

  • Antignac, E., Koch, B., Grolier, P., Cassand, P., Narbonne, J.F. (1990) Prochloraz as potent inhibitor of benzo-[A]-pyrene metabolism and mutagenic activity in rat-liver fractions. Toxicol. Lett. 54, 309–315

    Article  PubMed  CAS  Google Scholar 

  • Armengaud, C., Causse, N., Aït-Oubah, J., Ginolhac, A., Gauthier, M. (2000) Functional cytochrome oxidase histochemistry in the honeybee brain. Brain Res. 859, 390–393

    Article  PubMed  CAS  Google Scholar 

  • Atkins, E.L., Macdonald, R.L., McGovern, T.P., Beroza, M., Greywood-Hale, E.A. (1975) Repellent additives to reduce pesticide hazards to honeybees: laboratory testing. J. Apic. Res. 14, 85–97

    CAS  Google Scholar 

  • Atkins, E.L., Kellum, D., Neuman, K.J. (1977) Repellent additives to reduce pesticide hazards to honey bees. Am. Bee J. 117, 438–457

    CAS  Google Scholar 

  • Aussel, C., Breittmayer, J.P. (1993) Imidazole antimycotics inhibitors of cytochrome P450 increase phosphatidylserine synthesis similarly to K+-channel blockers in Jurkat T cells. FEBS Lett. 319, 155–158

    Article  PubMed  CAS  Google Scholar 

  • Babin, M., Casado, S., Chana, A., Herradon, B., Segner, H., Tarazona, J.V., Navas, J.M. (2005) Cytochrome P4501A induction caused by the imidazole derivative Prochloraz in a rainbow trout cell line. Toxicol. in Vitro 19, 899–902

    Article  PubMed  CAS  Google Scholar 

  • Bach, J., Snegaroff, J. (1989) Effects of the fungicide prochloraz on xenobiotic metabolism in rainbow-trout–In-vivo induction. Xenobiotica 19, 1–9

    Article  PubMed  CAS  Google Scholar 

  • Balderrama, N., Nunez, J., Giurfa, M., Torrealba, J., DeAlbornoz, E.G., Almeida, L.O. (1996) A deterrent response in honeybee (Apis mellifera) foragers: Dependence on disturbance and season. J. Insect Physiol. 42, 463–470

    Article  CAS  Google Scholar 

  • Barbara, G., Grünewald, B., Paute, S., Gauthier, M., Raymond-Delpech, V. (2008) Study of nicotinic acetylcholine receptors on cultured antennal lobe neurones from adult honeybee brains. Invert. Neurosci. 8, 19–29

    Article  PubMed  CAS  Google Scholar 

  • Barker, R.J., Lehner, Y., Kunzmann, M.R. (1980) Pesticides and honey bees–Nectar and pollen contamination in Alfalfa treated with dimethoate. Arch. Environ. Contam. Toxicol. 9, 125–133

    Article  PubMed  CAS  Google Scholar 

  • Barron, A.B., Zhu, H., Robinson, G.E., Srinivasan, M.V. (2005) Influence of flight time and flight environment on distance communication by dancing honey bees. Insectes Sociaux 52, 402–407

    Article  Google Scholar 

  • Barton, K.A., Whiteley, H.R., Yang, N.S. (1987) Bacillus thuringiensis delta-endotoxin expressed in transgenic Nicotiana tabacum provides resistance to Lepidopteran insects. Plant Physiol. 85, 1103–1109

    Article  PubMed  CAS  Google Scholar 

  • Belzunces, L.P., Vandame, R., Gu, X.F. (1996) Modulation of honey bee thermoregulation by adrenergic compounds. Neuroreport 7, 1601–1604

    Article  PubMed  CAS  Google Scholar 

  • Benzidane, Y., Touinsi, S., Motte, E., Jadas-Hécart, A., Communal, P.-Y., Leduc, L., Thany, S.H. (2010) Effect of thiamethoxam on cockroach locomotor activity is associated with its metabolite clothianidin. Pest Manag. Sci. 66, 1351–1359

    Article  PubMed  CAS  Google Scholar 

  • Bernadou, A., Démares, F., Couret-Fauvel, T., Sandoz, J.C., Gauthier, M. (2009) Effect of fipronil on side-specific antennal tactile learning in the honeybee. J. Insect Physiol. 55, 1099–1106

    Article  PubMed  CAS  Google Scholar 

  • Bitterman, M.E., Menzel, R., Fietz, A., Schafer, S. (1983) Classical conditioning of proboscis extension in honeybees (Apis mellifera). J. Comp. Psychol. 97, 107–119

    Article  PubMed  CAS  Google Scholar 

  • Bloch, G. (2010) The Social Clock of the Honeybee. J. Biol. Rhythms 25, 307–317

    Article  PubMed  Google Scholar 

  • Bordereau-Dubois, B., List, O., Calas-List, D., Marques, O., Communal, P.-Y., Thany, S.H., Lapied, B. (2012) Transmembrane potential polarization, calcium influx and receptor conformational state modulate the sensitivity of the imidacloprid-insensitive neuronal insect nAChR to the neonicotinoid insecticides. J. Pharmacol. Exp. Ther. doi:10.1124/jpet.111.188060

  • Bos, C., Masson, C. (1983) Repellent effect of deltamethrin on honey bees. Agronomie 3, 545–553

    Article  Google Scholar 

  • Bounias, M., Dujin, N., Popeskovic, D.S. (1985) Sublethal effects of a synthetic pyrethroid, deltamethrin, on the glycemia, the lipemia, and the gut alkaline phosphatases of honeybees. Pestic. Biochem. Physiol. 24, 149–160

    Article  CAS  Google Scholar 

  • Brandon, N.J., Jovanovic, J.N., Smart, T.G., Moss, S.J. (2002) Receptor for activated C kinase-1 facilitates protein kinase C-dependent phosphorylation and functional modulation of GABA(A) receptors with the activation of G-protein-coupled receptors. J. Neurosci. 22, 6353–6361

    PubMed  CAS  Google Scholar 

  • Braun, G., Bicker, G. (1992) Habituation of an appetitive reflex in the honeybee. J. Neurophysiol. 67, 588–598

    PubMed  CAS  Google Scholar 

  • Brunet, J.L., Badiou, A., Belzunces, L.P. (2005) In vivo metabolic fate of [14C]-acetamiprid in six biological compartments of the honeybee, Apis mellifera L. Pest Manag. Sci. 61, 742–748

    Article  PubMed  CAS  Google Scholar 

  • Caboni, P., Sammelson, R.E., Casida, J.E. (2003) Phenylpyrazole insecticide photochemistry, metabolism, and GABAergic action: Ethiprole compared with fipronil. J. Agric. Food Chem. 51, 7055–7061

    Article  PubMed  CAS  Google Scholar 

  • Calore, E.E., Cavaliere, M.J., Puga, F.R., Calore, N.M.P., Rosa, A.Rd., Weg, R., Dias, Sd.S., Santos, R.Pd. (2000) Histologic Peripheral Nerve Changes in Rats Induced by Deltamethrin. Ecotoxicol. Environ. Saf. 47, 82–86

    Article  PubMed  CAS  Google Scholar 

  • Cano Lozano, V., Gauthier, M. (1998) Effects of the Muscarinic Antagonists Atropine and Pirenzepine on Olfactory Conditioning in the Honeybee. Pharmacol. Biochem. Behav. 59, 903–907

    Article  PubMed  CAS  Google Scholar 

  • Cano Lozano, V., Bonnard, E., Gauthier, M., Richard, D. (1996) Mecamylamine-induced impairment of acquisition and retrieval of olfactory conditioning in the honeybee. Behav. Brain Res. 81, 215–222

    Article  Google Scholar 

  • Cano Lozano, V., Armengaud, C., Gauthier, M. (2001) Memory impairment induced by cholinergic antagonists injected into the mushroom bodies of the honeybee. J. Comp. Physiol. A 187, 249–254

    Article  Google Scholar 

  • Capaldi, E.A., Smith, A.D., Osborne, J.L., Fahrbach, S.E., Farris, S.M., Reynolds, D.R., Edwards, A.S., Martin, A., Robinson, G.E., Poppy, G.M., Riley, J.R. (2000) Ontogeny of orientation flight in the honeybee revealed by harmonic radar. Nature 403, 537–540

    Article  PubMed  CAS  Google Scholar 

  • Chalvet-Monfray, K., Belzunces, L.P., Colin, M.E., Fleche, C., Sabatier, P. (1995) Modelling synergistic effects of two toxic agents in the honeybee. J. Biol. Syst. 3, 253–263

    Article  Google Scholar 

  • Chalvet-Monfray, K., Auger, P., Belzunces, L.P., Fleche, C., Sabatier, P. (1996a) Modelling based method for pharmacokinetic hypotheses test. Acta Biotheoretica 44, 335–348

    Article  Google Scholar 

  • Chalvet-Monfray, K., Belzunces, L.P., Colin, M.E., Fleche, C., Sabatier, P. (1996b) Synergy between deltamethrin and prochloraz in bees: Modeling approach. Environ. Toxicol. Chem. 15, 525–534

    Article  CAS  Google Scholar 

  • Chambers, J.E. (1992) The role of target site activation of phosphorothionates in acute Toxicity. In: Chambers, J.E., Levi, P.E. (eds.) Organophosphates: Chemistry, Fate and effects, pp. 229–239. Academic, San Diego

    Google Scholar 

  • Clark, J., Symington, S. (2007) Pyrethroid action on calcium channels: neurotoxicological implications. Invert. Neurosci. 7, 3–16

    Article  PubMed  CAS  Google Scholar 

  • Clinch, P.G., Palmer-Jones, T., Forster, I.W., Jones, T.P. (1973) Effect on honey bees of dicrotophos and methomyl applied as sprays to white clover. New Zealand J. Exp. Agric. 1, 97–99

    Article  CAS  Google Scholar 

  • Colin, M.E., Belzunces, L.P. (1992) Evidence of synergy between prochloraz and deltamethrin in Apis mellifera L—A convenient biological approach. Pestic. Sci. 36, 115–119

    Article  CAS  Google Scholar 

  • Colin, M.E., Bonmatin, J.M., Moineau, I., Gaimon, C., Brun, S., Vermandere, J.P. (2004) A method to quantify and analyze the foraging activity of honey bees: Relevance to the sublethal effects induced by systemic insecticides. Arch. Environ. Contam. Toxicol. 47, 387–395

    Article  PubMed  CAS  Google Scholar 

  • Colliot, F., Kukorowski, K.A., Hawkins, D.W., Roberts, D.A. (1992) Fipronil: a new soil and foliar broad spectrum insecticide. Proc., Brighton Crop Protect. Conf., Pests and Diseases, 1992 Brighton, November 23–26, 1992., 29–34

  • Courjaret, R., Lapied, B. (2001) Complex intracellular messenger pathways regulate one type of neuronal alpha-bungarotoxin-resistant nicotinic acetylcholine receptors expressed in insect neurosecretory cells (dorsal unpaired median neurons). Mol. Pharmacol. 60, 80–91

    PubMed  CAS  Google Scholar 

  • Courjaret, R., Grolleau, F., Lapied, B. (2003) Two distinct calcium-sensitive and -insensitive PKC up- and down-regulate an alpha-bungarotoxin-resistant nAChR1 in insect neurosecretory cells (DUM neurons). Eur. J. Neurosci. 17, 2023–2034

    Article  PubMed  Google Scholar 

  • Couvillon, M.J., Barton, S.N., Cohen, J.A., Fabricius, O.K., Kaercher, M.H., Cooper, L.S., Silk, M.J., Helantera, H., Ratnieks, F.L.W. (2010) Alarm pheromones do not mediate rapid shifts in honey bee guard acceptance threshold. J. Chem. Ecol. 36, 1306–1308

    Article  PubMed  CAS  Google Scholar 

  • Dacke, M., Srinivasan, M.V. (2007) Honeybee navigation: distance estimation in the third dimension. J. Exp. Biol. 210, 845–853

    Article  PubMed  CAS  Google Scholar 

  • Danka, R.G., Collison, C.H. (1987) Laboratory evaluation of dimethoate repellence to honey bees. J. Appl. Entomol. 104, 211–214

    Article  Google Scholar 

  • Decourtye, A., Lacassie, E., Pham-Delegue, M.H. (2003) Learning performances of honeybees (Apis mellifera L) are differentially affected by imidacloprid according to the season. Pest Manag. Sci. 59, 269–278

    Article  PubMed  CAS  Google Scholar 

  • Decourtye, A., Armengaud, C., Renou, M., Devillers, J., Cluzeau, S., Gauthier, M., Pham-Delègue, M.-H. (2004a) Imidacloprid impairs memory and brain metabolism in the honeybee (Apis mellifera L.). Pestic. Biochem. Physiol. 78, 83–92

    Article  CAS  Google Scholar 

  • Decourtye, A., Devillers, J., Cluzeau, S., Charreton, M., Pham-Delègue, M.-H. (2004b) Effects of imidacloprid and deltamethrin on associative learning in honeybees under semi-field and laboratory conditions. Ecotoxicol. Environ. Saf. 57, 410–419

    Article  PubMed  CAS  Google Scholar 

  • Decourtye, A., Devillers, J., Genecque, E., Le Menach, K., Budzinski, H., Cluzeau, S., Pham-Delegue, M.H. (2005) Comparative sublethal toxicity of nine pesticides on olfactory learning performances of the honeybee Apis mellifera. Arch. Environ. Contam. Toxicol. 48, 242–250

    Article  PubMed  CAS  Google Scholar 

  • Decourtye, A., Devillers, J., Aupinel, P., Brun, F., Bagnis, C., Fourrier, J., Gauthier, M. (2011) Honeybee tracking with microchips: a new methodology to measure the effects of pesticides. Ecotoxicology 20, 429–437

    Article  PubMed  CAS  Google Scholar 

  • Déglise, P., Grünewald, B., Gauthier, M. (2002) The insecticide imidacloprid is a partial agonist of the nicotinic receptor of honeybee Kenyon cells. Neurosci. Lett. 321, 13–16

    Article  PubMed  Google Scholar 

  • Delabie, J., Bos, C., Fonta, C., Masson, C. (1985) Toxic and repellent effects of cypermethrin on the honeybee—Laboratory, glasshouse and field experiments. Pestic. Sci. 16, 409–415

    Article  CAS  Google Scholar 

  • Detzel, A., Wink, M. (1993) Attraction, deterrence or intoxication of bees (Apis mellifera) by plant allelochemicals. Chemoecology 4, 8–18

    Article  CAS  Google Scholar 

  • Dupuis, J.P., Bazelot, M., Barbara, G.S., Paute, S., Gauthier, M., Raymond-Delpech, V. (2010) Homomeric RDL and heteromeric RDL/LCCH3 GABA receptors in the honeybee antennal lobes: Two candidates for inhibitory transmission in olfactory processing. J. Neurophysiol. 103, 458–468

    Article  PubMed  CAS  Google Scholar 

  • Dupuis, J.P., Gauthier, M., Raymond-Delpech, V. (2011) Expression patterns of nicotinic subunits alpha 2, alpha 7, alpha 8, and beta 1 affect the kinetics and pharmacology of ACh-induced currents in adult bee olfactory neuropiles. J. Neurophysiol. 106, 1604–1613

    Article  PubMed  CAS  Google Scholar 

  • El Hassani, A.K., Dacher, M., Gauthier, M., Armengaud, C. (2005) Effects of sublethal doses of fipronil on the behavior of the honeybee (Apis mellifera). Pharmacol. Biochem. Behav. 82, 30–39

    Article  PubMed  CAS  Google Scholar 

  • El Hassani, A.K., Dacher, M., Gary, V., Lambin, M., Gauthier, M., Armengaud, C. (2008) Effects of sublethal doses of acetamiprid and thiamethoxam on the behavior of the honeybee (Apis mellifera). Arch. Environ. Contam. Toxicol. 54, 653–661

    Article  PubMed  CAS  Google Scholar 

  • El Hassani, A.K., Dupuis, J.P., Gauthier, M., Armengaud, C. (2009) Glutamatergic and GABAergic effects of fipronil on olfactory learning and memory in the honeybee. Invert. Neurosci. 9, 91–100

    Article  PubMed  CAS  Google Scholar 

  • Elbert, A., Overbeck, H., Iwaya, K., Tsuboi, S., (1990) Imidacloprid, a novel systemic nitromethylene analogue insecticide for crop protection. Brighton Crop Protection Conference, Pests and Diseases–1990. 1, 21–28

  • Enan, E., Matsumura, F. (1992) Specific-inhibition of calcineurin by type-II synthetic pyrethroid insecticides. Biochem. Pharmacol. 43, 1777–1784

    Article  PubMed  CAS  Google Scholar 

  • Epstein, L.H., Robinson, J.L., Roemmich, J.N., Marusewski, A. (2011) Slow rates of habituation predict greater zBMI gains over 12 months in lean children. Eating Behav. 12, 214–218

    Article  Google Scholar 

  • Esch, H.E., Zhang, S.W., Srinivasan, M.V., Tautz, J. (2001) Honeybee dances communicate distances measured by optic flow. Nature 411, 581–583

    Article  PubMed  CAS  Google Scholar 

  • Esquivel-Senties, M.S., Barrera, I., Ortega, A., Vega, L. (2010) Organophosphorous pesticide metabolite (DEDTP) induces changes in the activation status of human lymphocytes by modulating the interleukin 2 receptor signal transduction pathway. Toxicol. Appl. Pharmacol. 248, 122–133

    Article  PubMed  CAS  Google Scholar 

  • Es-Salah, Z., Lapied, B., Le Goff, G., Hamon, A. (2008) RNA editing regulates insect gamma-aminobutyric acid receptor function and insecticide sensitivity. Neuroreport 19, 939–943

    Article  PubMed  CAS  Google Scholar 

  • Evrard, E., Marchand, J., Theron, M., Pichavant-Rafini, K., Durand, G., Quiniou, L., Laroche, J. (2010) Impacts of mixtures of herbicides on molecular and physiological responses of the European flounder Platichthys flesus. Comp. Biochem. Physiol. C 152, 321–331

    Google Scholar 

  • Fahrenholz, L., Lamprecht, I., Schricker, B. (1989) Thermal investigations of a honey bee colony: thermoregulation of the hive during summer and winter and heat production of members of different bee castes. J. Comp. Physiol. B 159, 551–560

    Article  Google Scholar 

  • Faiz, M.S., Mughal, S., Memon, A.Q. (2011) Acute and Late Complications of Organophosphate Poisoning. J. College Phys. Surg. Pakistan 21, 288–290

    Google Scholar 

  • Farina, W.M., Wainselboim, A.J. (2001) Changes in the thoracic temperature of honeybees while receiving nectar from foragers collecting at different reward rates. J. Exp. Biol. 204, 1653–1658

    PubMed  CAS  Google Scholar 

  • Ford, K.A., Casida, J.E. (2006) Unique and Common Metabolites of Thiamethoxam, Clothianidin, and Dinotefuran in Mice. Chem. Res. Toxicol. 19, 1549–1556

    Article  PubMed  CAS  Google Scholar 

  • Fukuto, T.R. (1990) Mechanism of action of organophosphorus and carbamate insecticides. Environ. Health Perspect. 87, 245–254

    Article  PubMed  CAS  Google Scholar 

  • Gallai, N., Salles, J.-M., Settele, J., Vaissiere, B.E. (2009) Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 68, 810–821

    Article  Google Scholar 

  • Galloway, T., Handy, R. (2003) Immunotoxicity of organophosphorous pesticides. Ecotoxicology 12, 345–363

    Article  PubMed  CAS  Google Scholar 

  • Gauthier, M. (2010) State of the art on insect nicotinic acetylcholine receptor function in learning and memory. In: Thany, S.H. (ed.) Insect Nicotinic Acetylcholine Receptors, pp. 97–115. Springer, Berlin

    Chapter  Google Scholar 

  • Gauthier, M., Cano Lozano, V., Zaoujal, A., Richard, D. (1994) Effects of intracranial injections of scopolamine on olfactory conditioning retrieval in the honeybee. Behav. Brain Res. 63, 145–149

    Article  PubMed  CAS  Google Scholar 

  • Gauthier, M., Dacher, M., Thany, S.H., Niggebrügge, C., Déglise, P., Kljucevic, P., Armengaud, C., Grünewald, B. (2006) Involvement of [alpha]-bungarotoxin-sensitive nicotinic receptors in long-term memory formation in the honeybee (Apis mellifera). Neurobiol. Learn. Mem. 86, 164–174

    Article  PubMed  CAS  Google Scholar 

  • Gawleta, N., Zimmermann, Y., Eltz, T. (2005) Repellent foraging scent recognition across bee families. Apidologie 36, 325–330

    Article  Google Scholar 

  • Giurfa, M. (1993) The repellent scent-mark of the honeybee Apis mellifera ligustica and its role as communication cue during foraging. Insectes Soc. 40, 59–67

    Article  Google Scholar 

  • Glynn, P. (2005) Neuropathy target esterase and phospholipid deacylation. Biochim. Biophys. Acta -Mol. Cell Biol. Lipids 1736, 87–93

    CAS  Google Scholar 

  • Goldberg, F., Grünewald, B., Rosenboom, H., Menzel, R. (1999) Nicotinic acetylcholine currents of cultured Kenyon cells from the mushroom bodies of the honey bee Apis mellifera. J. Physiol. 514, 759–768

    Article  PubMed  CAS  Google Scholar 

  • Gordon, C.J., Watkinson, W.P. (1988) Behavioral and autonomic thermoregulation in the rat following chlordimeform administration. Neurotoxicol. Teratol. 10, 215–219

    Article  PubMed  CAS  Google Scholar 

  • Goulson, D., Chapman, J.W., Hughes, W.O.H. (2001) Discrimination of unrewarding flowers by bees; Direct detection of rewards and use of repellent scent marks. J. Insect Behav. 14, 669–678

    Article  Google Scholar 

  • Grosman, N., Diel, F. (2005) Influence of pyrethroids and piperonyl butoxide on the Ca2+-ATPase activity of rat brain synaptosomes and leukocyte membranes. Int. Immunopharmacol. 5, 263–270

    Article  PubMed  CAS  Google Scholar 

  • Grünewald, B., Wersing, A. (2008) An ionotropic GABA receptor in cultured mushroom body Kenyon cells of the honeybee and its modulation by intracellular calcium. J. Comp. Physiol. A 194, 329–340

    Article  CAS  Google Scholar 

  • Guez, D., Suchail, S., Gauthier, M., Maleszka, R., Belzunces, L.P. (2001) Contrasting effects of imidacloprid on habituation in 7- and 8-day-old honeybees (Apis mellifera). Neurobiol. Learn. Mem. 76, 183–191

    Article  PubMed  CAS  Google Scholar 

  • Guez, D., Belzunces, L.P., Maleszka, R. (2003) Effects of imidacloprid metabolites on habituation in honeybees suggest the existence of two subtypes of nicotinic receptors differentially expressed during adult development. Pharmacol. Biochem. Behav. 75, 217–222

    Article  PubMed  CAS  Google Scholar 

  • Guez, D., Zhang, S.W., Srinivasan, M.V. (2005) Methyl parathion modifies foraging behaviour in honeybees (Apis mellifera). Ecotoxicology 14, 431–437

    Article  PubMed  CAS  Google Scholar 

  • Guez, D., Zhu, H., Zhang, S.W., Srinivasan, M.V. (2010) Enhanced cholinergic transmission promotes recall in honeybees. J. Insect Physiol. 56, 1341–1348

    Article  PubMed  CAS  Google Scholar 

  • Han, P., Niu, C.-Y., Lei, C.-L., Cui, J.-J., Desneux, N. (2010) Use of an innovative T-tube maze assay and the proboscis extension response assay to assess sublethal effects of GM products and pesticides on learning capacity of the honey bee Apis mellifera L. Ecotoxicology 19, 1612–1619

    Article  PubMed  CAS  Google Scholar 

  • Han, S., Zhang, Y., Chen, Q., Duan, Y., Zheng, T., Hu, X., Zhang, Z., Zhang, L. (2011) Fluconazole inhibits hERG K+ channel by direct block and disruption of protein trafficking. Eur. J. Pharmacol. 650, 138–144

    Article  PubMed  CAS  Google Scholar 

  • Hanegan, J.L. (1973) Control of heart rate in Cecropia moths; Response to thermal stimulation. J. Exp. Biol. 59, 67–76

    Google Scholar 

  • Heinrich, B. (1974) Thermoregulation in endothermic insects. Science 185, 747–756

    Article  PubMed  CAS  Google Scholar 

  • Heinrich, B. (1980a) Mechanisms of body-temperature regulation in honeybees, Apis mellifera. 1. Regulation of head temperature. J. Exp. Biol. 85, 61–72

    Google Scholar 

  • Heinrich, B. (1980b) Mechanisms of body-temperature regulation in honeybees, Apis mellifera. 2. Regulation of thoracic temperature at high air temperatures. J. Exp. Biol. 85, 73–87

    Google Scholar 

  • Hofte, H., Whiteley, H.R. (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev. 53, 242–255

    PubMed  CAS  Google Scholar 

  • Horváth, F., Erdei, L., Wodala, B., Homann, U., Thiel, G. (2002) K+ outward rectifying channels as targets of phosphatase inhibitor deltamethrin in Vicia faba guard cells. J. Plant Physiol. 159, 1097–1103

    Article  Google Scholar 

  • Ikeda, T., Zhao, X., Salgado, V., Kono, Y., Yeh, J.Z., Narahashi, T. (2003) Fipronil block of glutamate-activated chloride currents in cockroach neurons. Toxicol. Sci. 72, 310–310

    Google Scholar 

  • Ito, A., Sasaguri, Y., Kitada, S., Kusaka, Y., Kuwano, K., Masutomi, K., Mizuki, E., Akao, T., Ohba, M. (2004) A Bacillus thuringiensis crystal protein with selective cytocidal action to human cells. J. Biol. Chem. 279, 21282–21286

    Article  PubMed  CAS  Google Scholar 

  • James, C. (2006) Global Status of Commercialized Biotech/GM Crops: 2006. ISAAA Brief ISAAA, Ithaca, NY

  • Jansens, S., Clercq, R.d., Reynaerts, A., Peferoen, M., De Clercq, R. (1992) Greenhouse evaluation of transgenic tomato plants, expressing a Bacillus thuringiensis insecticidal crystal protein, for control of Helicoverpa armigera (Lepidoptera: Noctuidae). Mededelingen van de Faculteit Landbouwwetenschappen, Universiteit Gent 57, 515–522

  • Johnston, A.M., Lohr, J., Moes, J., Solomon, K.R., Zaborski, E.R. (1986) Toxicity of synergized and unsynergized nitromethylene heterocycle insecticide (SD 35651) to susceptible and resistant strains of Musca domestica (Diptera, Muscidae). J. Econ. Entomol. 79, 1439–1442

    PubMed  CAS  Google Scholar 

  • Johnston, G., Dawson, A., Walker, C.H. (1996) Effects of prochloraz and malathion on the red-legged partridge: A semi-natural field study. Environ. Pollut. 91, 217–225

    Article  PubMed  CAS  Google Scholar 

  • Jokanovic, M., Kosanovic, M., Brkic, D., Vukomanovic, P. (2011) Organophosphate induced delayed polyneuropathy in man: An overview. Clin. Neurol. Neurosurg. 113, 7–10

    Article  PubMed  Google Scholar 

  • Joshi, S.C., Bansal, B., Jasuja, N.D. (2011) Evaluation of reproductive and developmental toxicity of cypermethrin in male albino rats. Toxicol. Environ. Chem. 93, 593–602

    Article  CAS  Google Scholar 

  • Kabeer, S., Ahammad, I., Rao, K.S.P., Desaiah, D. (1987) Pyrethroid inhibition of basal and calmodulin stimulated Ca2+-ATPase and adenylate cyclase in rat brain. J. Appl. Toxicol. 7, 75–80

    Article  CAS  Google Scholar 

  • Kadala, A., Charreton, M., Jakob, I., Le Conte, Y., Collet, C. (2011) A use-dependent sodium current modification induced by type I pyrethroid insecticides in honeybee antennal olfactory receptor neurons. NeuroToxicolology 32, 320–330

    Article  CAS  Google Scholar 

  • Kakko, I., Toimela, T., Tähti, H. (2000) Piperonyl butoxide potentiates the synaptosome ATPase inhibiting effect of pyrethrin. Chemosphere 40, 301–305

    Article  PubMed  CAS  Google Scholar 

  • Kammer, A.E. (1968) Motor patterns during flight and warm-up in Lepidoptera. J. Exp. Biol. 48, 89–109

    Google Scholar 

  • Kapteyn, J.C., Milling, R.J., Simpson, D.J., Dewaard, M.A. (1994) Inhibition of sterol biosynthesis in cell-free-extracts of Botrytis cinerea by prochloraz and prochloraz analogs. Pestic. Sci. 40, 313–319

    Article  CAS  Google Scholar 

  • Kather, R., Drijfhout, F.P., Martin, S.J. (2011) Task group differences in cuticular lipids in the honey bee Apis mellifera. J. Chem. Ecol. 37, 205–212

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi, K., Nagatomo, T., Abe, H., Kawakami, K., Duff, H.J., Makielski, J.C., January, C.T., Nakashima, Y. (2005) Blockade of HERG cardiac K+ current by antifungal drug miconazole. British J. Pharmacol. 144, 840–848

    Article  CAS  Google Scholar 

  • Kleinhenz, M., Bujok, B., Fuchs, S., Tautz, J. (2003) Hot bees in empty broodnest cells: heating from within. J. Exp. Biol. 206, 4217–4231

    Article  PubMed  Google Scholar 

  • Klis, S.F.L., Nijman, N.J., Vijverberg, H.P.M., Vandenbercken, J. (1991a) Phenylpyrazoles, a new class of pesticide—Effects on neuromuscular-transmission and acetylcholine responses. Pestic. Sci. 33, 213–222

    Article  CAS  Google Scholar 

  • Klis, S.F.L., Vijverberg, H.P.M., Vandenbercken, J. (1991b) Phenylpyrazoles, a new class of pesticides—An electrophysiological investigation into basic effects. Pestic. Biochem. Physiol. 39, 210–218

    Article  CAS  Google Scholar 

  • Kuwabara, M. (1957) Bildung des bedingten reflexes von Pavlovs typus bei der honigbiene, Apis mellifica. J. Fac Sci Hokkaido Uni. Ser. VI Zool. 13, 458–464

    Google Scholar 

  • Laignelet, L., Narbonne, J.F., Lhuguenot, J.C., Riviere, J.L. (1989) Induction and inhibition of rat-liver cytochrome(s) P-450 by an imidazole fungicide (prochloraz). Toxicology 59, 271–284

    Article  PubMed  CAS  Google Scholar 

  • Lambin, M., Armengaud, C., Raymond, S., Gauthier, M. (2001) Imidacloprid-induced facilitation of the proboscis extension reflex habituation in the honeybee. Arch. Insect Biochem. Physiol. 48, 129–134

    Article  PubMed  CAS  Google Scholar 

  • Laurent, F.M., Rathahao, E. (2003) Distribution of [14C]-imidacloprid in sunflowers (Helianthus annuus L.) following seed treatment. J. Agric. Food Chem 51, 8005–8010

    Article  CAS  Google Scholar 

  • Lavialle-Defaix, C., Apaire-Marchais, V., Legros, C., Pennetier, C., Mohamed, A., Licznar, P., Corbel, V., Lapied, B. (2011) Anopheles gambiae mosquito isolated neurons: A new biological model for optimizing insecticide/repellent efficacy. J. Neurosci. Meth. 200, 68–73

    Article  CAS  Google Scholar 

  • Lax, A., Soler, F., Fernandez-Belda, F. (2002) Inhibition of sarcoplasmic reticulum Ca2+-ATPase by miconazole. Am. J. of Physiol.–Cell Physiol. 283, C85–C92

    CAS  Google Scholar 

  • Leemans, J., Reynaerts, A., Hofte, H., Peferoen, M., Mellaert, H.v., Joos, H., Van Mellaert, H. (1990) Insecticidal crystal proteins from Bacillus thuringiensis and their use in transgenic crops. Alan R. Liss, New York

  • Li, P., Akk, G. (2008) The insecticide fipronil and its metabolite fipronil sulphone inhibit the rat α1β2γ2L GABAA receptor. British J. Pharmacol. 155, 783–794

    Article  CAS  Google Scholar 

  • Li, H., Feng, T., Liang, P., Shi, X., Gao, X., Jiang, H. (2006a) Effect of temperature on toxicity of pyrethroids and endosulfan, activity of mitochondrial Na+-K+-ATPase and Ca2+-Mg2+-ATPase in Chilo suppressalis (Walker) (Lepidoptera: Pyralidae). Pestic. Biochem. Physiol. 86, 151–156

    Article  CAS  Google Scholar 

  • Li, H., Feng, T., Tao, L., Liu, X., Jiang, H., Lin, R., Liang, P., Gao, X., Li, H.P., Feng, T., Tao, L.M., Liu, X., Jiang, H., Lin, R.H., Liang, P., Gao, X.W. (2006b) Inhibition of ATPase activity in mitochondria of Chilo suppressalis by nine common insecticides. Acta Entomol. Sinica 49, 254–259

    CAS  Google Scholar 

  • Li, J., Shao, Y., Ding, Z., Bao, H., Liu, Z., Han, Z., Millar, N.S. (2010a) Native subunit composition of two insect nicotinic receptor subtypes with differing affinities for the insecticide imidacloprid. Insect Biochem. Mol. Biol. 40, 17–22

    Article  PubMed  CAS  Google Scholar 

  • Li, Y., Meissle, M., Romeis, J. (2010b) Use of maize pollen by adult Chrysoperla carnea (Neuroptera: Chrysopidae) and fate of Cry proteins in Bt-transgenic varieties. J. Insect Physiol. 56, 157–164

    Article  PubMed  CAS  Google Scholar 

  • Li, Z.-H., Zlabek, V., Grabic, R., Li, P., Machova, J., Velisek, J., Randak, T. (2010c) Effects of exposure to sublethal propiconazole on the antioxidant defense system and Na+-K+-ATPase activity in brain of rainbow trout, Oncorhynchus mykiss. Aquatic Toxicol. 98, 297–303

    Article  CAS  Google Scholar 

  • Lind, R.J., Clough, M.S., Reynolds, S.E., Earley, F.G.P. (1998) [3H]-Imidacloprid Labels high- and low-affinity nicotinic acetylcholine receptor-like binding sites in the Aphid Myzus persicae (Hemiptera: Aphididae). Pestic. Biochem. Physiol. 62, 3–14

    Article  CAS  Google Scholar 

  • Linn Jr., C.E., Roelofs, W.L. (1984) Sublethal effects of neuroactive compounds on pheromone response thresholds in male oriental fruit moths. Arch. Insect Biochem. Physiol. 1, 331–344

    Article  CAS  Google Scholar 

  • Maeder, V., Escher, B.I., Scheringer, M., Hungerbuhler, K. (2004) Toxic ratio as an indicator of the intrinsic toxicity in the assessment of persistent, bioaccumulative, and toxic chemicals. Environ. Sci. Technol. 38, 3659–3666

    Article  PubMed  CAS  Google Scholar 

  • Maisonnasse, A., Lenoir, J.-C., Beslay, D., Crauser, D., Le Conte, Y. (2010) E-b-Ocimene, a volatile brood pheromone involved in social regulation in the honey bee colony (Apis mellifera). PLos One 5(10): e13531

  • Mamood, A.N., Waller, G.D. (1990) Recovery of learning responses by honeybees following a sublethal exposure to permethrin. Physiol. Entomol. 15, 55–60

    Article  CAS  Google Scholar 

  • Mason, M.J., Mayer, B., Hymel, L.J. (1993) Inhibition of Ca2+ transport pathways in thymic lymphocytes by econazole, miconazole and SFK-96365. Am. J. Physiol. 264, C654–C662

    PubMed  CAS  Google Scholar 

  • Meled, M., Thrasyvoulou, A., Belzunces, L.P. (1998) Seasonal variations in susceptibility of Apis mellifera to the synergistic action of prochloraz and deltamethrin. Environ. Toxicol. Chem. 17, 2517–2520

    CAS  Google Scholar 

  • Menzel, R., Erber, J., Masuhr, J. (1974) Learning and memory in the honeybee. In: Brown, B. (ed.) Experimental analysis of insect behaviour, pp. 195–217. Springer Verlag, Berlin

    Chapter  Google Scholar 

  • Menzel, R., Greggers, U., Smith, A., Berger, S., Brandt, R., Brunke, S., Bundrock, G., Hülse, S., Plümpe, T., Schaupp, F., Schüttler, E., Stach, S., Stindt, J., Stollhoff, N., Watzl, S. (2005) Honey bees navigate according to a map-like spatial memory. Proc. Nat. Acad. Sci. USA 102, 3040–3045

    Article  PubMed  CAS  Google Scholar 

  • Menzel, R., De Marco, R.J., Greggers, U. (2006) Spatial memory, navigation and dance behaviour in Apis mellifera. J. Comp. Physiol. A 192, 889–903

    Article  Google Scholar 

  • Mommaerts, V., Reynders, S., Boulet, J., Besard, L., Sterk, G., Smagghe, G. (2010) Risk assessment for side-effects of neonicotinoids against bumblebees with and without impairing foraging behavior. Ecotoxicology 19, 207–215

    Article  PubMed  CAS  Google Scholar 

  • Moore, D. (2001) Honey bee circadian clocks: behavioral control from individual workers to whole-colony rhythms. J. Insect Physiol. 47, 843–857

    Article  CAS  Google Scholar 

  • Murillo, L., Hamon, A., Es-Salah-Lamoureux, Z., Itier, V., Quinchard, S., Lapied, B. (2011) Inhibition of protein kinase C decreases sensitivity of GABA receptor subtype to fipronil insecticide in insect neurosecretory cells. NeuroToxicology 32, 828–835

    Google Scholar 

  • Murphy Jr., B.F., Heath, J.E. (1983) Temperature sensitivity in the prothoracic ganglion of the cockroach, Periplaneta americana, and its relationship to thermoregulation. J. Exp. Biol. 105, 305–315

    Google Scholar 

  • Narahashi, T., Zhao, X., Ikeda, T., Salgado, V.L., Yeh, J.Z. (2010) Glutamate-activated chloride channels: Unique fipronil targets present in insects but not in mammals. Pestic. Biochem. Physiol. 97, 149–152

    Article  PubMed  CAS  Google Scholar 

  • Nauen, R., Ebbinghaus-Kintscher, U., Schmuck, R. (2001) Toxicity and nicotinic acetylcholine receptor interaction of imidacloprid and its metabolites in Apis mellifera (Hymenoptera: Apidae). Pest Manag. Sci. 57, 577–586

    Article  PubMed  CAS  Google Scholar 

  • Nauen, R., Ebbinghaus-Kintscher, U., Salgado, V.L., Kaussmann, M. (2003) Thiamethoxam is a neonicotinoid precursor converted to clothianidin in insects and plants. Pestic. Biochem. Physiol. 76, 55–69

    Article  CAS  Google Scholar 

  • Neal, A.P., Yuan, Y., Atchison, W.D. (2010) Allethrin Differentially Modulates Voltage-Gated Calcium Channel Subtypes in Rat PC12 Cells. Toxicol. Sci. 116, 604–613

    Article  PubMed  CAS  Google Scholar 

  • Nielsen, S.A., Brodsgaard, C.J., Hansen, H. (2000) Effects on detoxification enzymes in different life stages of honey bees (Apis mellifera L., Hymenoptera: Apidae) treated with a synthetic pyrethroid (flumethrin). Atla-Altern. Labor. Anim. 28, 437–443

    Google Scholar 

  • Nigg, H.N., Russ, R.V., Mahon, W.D., Stamper, J.H., Knapp, J.L. (1991) Contamination of sucrose solution with aldicarb sulfoxide inhibits foraging by honeybees (Hymenoptera, Apidae). J. Econ. Entomol. 84, 810–813

    CAS  Google Scholar 

  • Ohashi, K., D’Souza, D., Thomson, J.D. (2010) An automated system for tracking and identifying individual nectar foragers at multiple feeders. Behav. Ecol. Sociobiol. 64, 891–897

    Article  Google Scholar 

  • Olivari, C., Pugliarello, M.C., Cocucci, M.C., Rasicaldogno, F. (1991) Effects of penconazole on plasma-membranes isolated from radish seedlings. Pestic. Biochem. Physiol. 41, 8–13

    Article  CAS  Google Scholar 

  • Pahl, M., Zhu, H., Tautz, J., Zhang, S. (2011) Large Scale Homing in Honeybees. PLos One 6, e19669

    Article  PubMed  CAS  Google Scholar 

  • Pande, Y.D., Bandopadhyay, S. (1985) Effect of fenitrothion on the foraging activity of honey bees on Cajanus cajan in Tripura. Indian Bee J. 47, 42–43

    Google Scholar 

  • Papaefthimiou, C., Theophilidis, G. (2001) The Cardiotoxic action of the pyrethroid insecticide deltamethrin, the azole fungicide prochloraz, and their synergy on the semi-isolated heart of the Bbee Apis mellifera macedonica. Pestic. Biochem. Physiol. 69, 77–91

    Article  CAS  Google Scholar 

  • Papaefthimiou, C., Pavlidou, V., Gregorc, A., Theophilidis, G. (2002) The action of 2,4-Dichlorophenoxyacetic acid on the isolated heart of insect and amphibia. Environ. Toxicol. Pharmacol. 11, 127–140

    Article  PubMed  CAS  Google Scholar 

  • Papaefthimiou, C., Zafeiridou, G., Topoglidi, A., Chaleplis, G., Zografou, S., Theophilidis, G. (2003) Triazines facilitate neurotransmitter release of synaptic terminals located in hearts of frog (Rana ridibunda) and honeybee (Apis mellifera) and in the ventral nerve cord of a beetle (Tenebrio molitor). Comp. Biochem. Physiol. C 135, 315–330

    Google Scholar 

  • Pennetier, C., Costantini, C., Corbel, V., Licciardi, S., Dabire, R.K., Lapied, B., Chandre, F., Hougard, J.M. (2009) Synergy between repellents and organophosphates on bed nets: efficacy and behavioural response of natural free-flying An. gambiae mosquitoes. PLos One 4, e7896

    Article  PubMed  CAS  Google Scholar 

  • Petroianu, G., Karcher, B., Kern, N., Bergler, W., Rufer, R. (2001) Paraoxon sensitive phenylvalerate hydrolase in assessing the severity of acute paraoxon poisoning. J. Toxicol. Clin. Toxicol. 39, 27–31

    Article  PubMed  CAS  Google Scholar 

  • Pigott, C.R., Ellar, D.J. (2007) Role of receptors in Bacillus thuringiensis crystaltoxin activity. Microbiol. Mol. Biol. Rev. 71, 255–281

    Article  PubMed  CAS  Google Scholar 

  • Pilling, E.D., Jepson, P.C. (1993) Synergism between EBI fungicides and a pyrethroid insecticide in the honeybee (Apis mellifera). Pestic. Sci. 39, 293–297

    Article  CAS  Google Scholar 

  • Pilling, E.D., Bromley-Challenor, K.A.C., Walker, C.H., Jepson, P.C. (1995) Mechanism of synergism between the pyrethroid insecticide lambda-cyhalothrin and the imidazole fungicide prochloraz, in the honeybee (Apis mellifera L). Pestic. Biochem. Physiol. 51, 1–11

    Article  CAS  Google Scholar 

  • Polyzou, A., Froment, M.T., Masson, P., Belzunces, L.P. (1998) Absence of a protective effect of the Oxime 2-PAM toward paraoxon-poisoned honey bees: Acetylcholinesterase reactivation not at fault. Toxicol. Appl. Pharmacol. 152, 184–192

    Article  PubMed  CAS  Google Scholar 

  • Punzo, F. (1993) Detoxification enzymes and the effects of temperature on the toxicity of pyrethroids to the fall armyworm, Spodoptera frugiperda (Lepidoptera, Noctuidae). Comp. Biochem. Physiol. C 105, 155–158

    Article  Google Scholar 

  • Ramirez-Romero, R., Chaufaux, J., Pham-Delegue, M.H. (2005) Effects of Cry1Ab protoxin, deltamethrin and imidacloprid on the foraging activity and the learning performances of the honeybee Apis mellifera, a comparative approach. Apidologie 36, 601–611

    Article  CAS  Google Scholar 

  • Ramirez-Romero, R., Desneux, N., Decourtye, A., Chaffiol, A., Pham-Delègue, M.H. (2008) Does Cry1Ab protein affect learning performances of the honey bee Apis mellifera L. (Hymenoptera, Apidae)? Ecotoxicol. Environ. Saf. 70, 327–333

    Article  PubMed  CAS  Google Scholar 

  • Reinhard, J., Srinivasan, M.V., Zhang, S.W. (2004) Scent-triggered navigation in honeybees. Nature 427, 411–411

    Article  CAS  Google Scholar 

  • Reynolds, D.R., Riley, J.R. (2002) Remote-sensing, telemetric and computer-based technologies for investigating insect movement: a survey of existing and potential techniques. Comput. Elect. Agric. 35, 271–307

    Article  Google Scholar 

  • Rieth, J.P., Levin, M.D. (1988) The repellent effect of two pyrethroid insecticides on the honey bee. Physiol. Entomol. 13, 213–218

    Article  CAS  Google Scholar 

  • Rieth, J.P., Levin, M.D. (1989) Repellency of two phenylacetate-ester pyrethroids to the honeybee. J. Apic. Res. 28, 175–179

    Google Scholar 

  • Riley, J.R., Smith, A.D., Reynolds, D.R., Edwards, A.S., Osborne, J.L., Williams, I.H., Carreck, N.L., Poppy, G.M. (1996) Tracking bees with harmonic radar. Nature 379, 29–30

    Article  CAS  Google Scholar 

  • Riley, J.R., Greggers, U., Smith, A.D., Reynolds, D.R., Menzel, R. (2005) The flight paths of honeybees recruited by the waggle dance. Nature 435, 205–207

    Article  PubMed  CAS  Google Scholar 

  • Riviere, J.L. (1983) Prochloraz, a potent inducer of the microsomal cytochrome-P-450 system. Pestic. Biochem. Physiol. 19, 44–52

    Article  CAS  Google Scholar 

  • Ruzo, L.O., Holmstead, R.L., Casida, J.E. (1977) Pyrethroid photochemistry—Decamethrin. J. Agric. Food Chem. 25, 1385–1394

    Article  CAS  Google Scholar 

  • Ruzo, L.O., Gaughan, L.C., Casida, J.E. (1980) Pyrethroid photochemistry—S-Bioallethrin. J. Agric. Food Chem. 28, 246–249

    Article  CAS  Google Scholar 

  • Ruzzin, J., Petersen, R., Meugnier, E., Madsen, L., Lock, E.-J., Lillefosse, H., Ma, T., Pesenti, S., Sonne, S.B., Marstrand, T.T., Malde, M.K., Du, Z.-Y., Chavey, C., Fajas, L., Lundebye, A.-K., Brand, C.L., Vidal, H., Kristiansen, K., Frøyland, L. (2009) Persistent Organic Pollutant Exposure Leads to Insulin Resistance Syndrome. Environ. Health Perspect. 118, 465–471

    Article  PubMed  CAS  Google Scholar 

  • Sadler, N., Nieh, J.C. (2011) Honey bee forager thoracic temperature inside the nest is tuned to broad-scale differences in recruitment motivation. J. Exp. Biol. 214, 469–475

    Article  PubMed  Google Scholar 

  • Sanahuja, G., Banakar, R., Twyman, R.M., Capell, T., Christou, P. (2011) Bacillus thuringiensis: a century of research, development and commercial applications. Plant Biotechnol. J. 9, 283–300

    Article  PubMed  CAS  Google Scholar 

  • Sattelle, D.B., Yamamoto, D. (1988) Molecular targets of pyrethroid insecticides. Adv. Insect Physiol. 20, 147–213

    Article  CAS  Google Scholar 

  • Scharf, M.E., Siegfried, B.D. (1999) Toxicity and neurophysiological effects of fipronil and fipronil sulfone on the western corn rootworm (Coleoptera: Chrysomelidae). Arch. Insect Biochem. Physiol. 40, 150–156

    Article  CAS  Google Scholar 

  • Schmaranzer, S., Stabentheiner, A., Heran, H. (1987) Effect of Roxion-S (dimethoate) on the body temperature of the honey bee. In: Eder, J., Rembold, H. (eds.) Chemical Biology of Social Insects, p. 241. Verlag, München

    Google Scholar 

  • Schneider, C.W., Tautz, J., Grünewald, B., Fuchs, S. (2012) RFID Tracking of Sublethal Effects of Two Neonicotinoid Insecticides on the Foraging Behavior of Apis mellifera. PLoS One 7, e30023

    Article  PubMed  CAS  Google Scholar 

  • Schricker, B. (1974) Der einfluss subletaler dosen von parathion (E 605) auf das zeitgedächtnis der honigbiene. Apidologie 5, 385–398

    Article  Google Scholar 

  • Schricker, B., Stephen, W.P. (1970) The effect of sublethal doses of parathion on honeybee behaviour. I. Oral administration and the communication dance. J. Apic. Res. 9, 141–153

    CAS  Google Scholar 

  • Schroeder, M.E., Flattum, R.F. (1984) The mode of action and neurotoxic properties of the nitromethylene heterocycle insecticides. Pestic. Biochem. Physiol. 22, 148–160

    Article  CAS  Google Scholar 

  • Seifert, J., Stollberg, J. (2005) Antagonism of a neonicotinoid insecticide imidacloprid at neuromuscular receptors. Environ. Toxicol. Pharmacol. 20, 18–21

    Article  PubMed  CAS  Google Scholar 

  • Shires, S.W., Leblanc, J., Debray, P., Forbes, S., Louveaux, J. (1984a) Field experiments on the effects of a new pyrethroid insecticide WL-85871 on bees foraging artificial aphid honeydew on winter-wheat. Pestic. Sci. 15, 543–552

    Article  CAS  Google Scholar 

  • Shires, S.W., Murray, A., Debray, P., Leblanc, J. (1984b) The effects of a new pyrethroid insecticide WL-85871 on foraging honey bees (Apis-mellifera L). Pestic. Sci. 15, 491–499

    Article  CAS  Google Scholar 

  • Sidiropoulou, E., Sachana, M., Flaskos, J., Harris, W., Hargreaves, A.J., Woldehiwet, Z. (2011) Fipronil interferes with the differentiation of mouse N2a neuroblastoma cells. Toxicol. Lett. 201, 86–91

    Article  PubMed  CAS  Google Scholar 

  • Snegaroff, J., Bach, J. (1989) Effects of the fungicide prochloraz on xenobiotic metabolism in rainbow-trout—Inhibition in-vitro and time course of induction in-vivo. Xenobiotica 19, 255–267

    Article  PubMed  CAS  Google Scholar 

  • Soderlund, D.M., Bloomquist, J.R. (1989) Neurotoxic actions of pyrethroid insecticides. Annu. Rev. Entomol. 34, 77–96

    Article  PubMed  CAS  Google Scholar 

  • Soderlund, D.M., Clark, J.M., Sheets, L.P., Mullin, L.S., Piccirillo, V.J., Sargent, D., Stevens, J.T., Weiner, M.L. (2002) Mechanisms of pyrethroid neurotoxicity: implications for cumulative risk assessment. Toxicology 171, 3–59

    Article  PubMed  CAS  Google Scholar 

  • Solomon, M.G., Hooker, K.J.M. (1989) Chemical reppelents for reducing pesticide hazard to honeybees in apple orchards. J. Apic. Res. 28, 223–227

    Google Scholar 

  • Southwick, E.E. (1982) Metabolic energy of intact honey bee colonies. Comp. Biochem. Physiol. A 71, 277–281

    Article  Google Scholar 

  • Southwick, E.E. (1983) The honey bee cluster as a homeothermic superorganism. Comp. Biochem. Physiol. A 75, 641–645

    Article  Google Scholar 

  • Southwick, E.E. (1987) Cooperative metabolism in honey bees: An alternative to antifreeze and hibernation. J. Therm. Biol. 12, 155–158

    Article  Google Scholar 

  • Southwick, E.E., Heldmaier, G. (1987) Temperature control in honey bee colonies. Bioscience 37, 395–399

    Article  Google Scholar 

  • Srinivasan, M.V. (2011) Honeybees as a Model for the Study of Visually Guided Flight, Navigation, and Biologically Inspired Robotics. Physiol. Rev. 91, 413–460

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan, M.V., Zhang, S.W., Lehrer, M., Collett, T.S. (1996) Honeybee navigation en route to the goal: Visual flight control and odometry. J. Exp. Biol. 199, 237–244

    PubMed  Google Scholar 

  • Stabentheiner, A. (2001) Thermoregulation of dancing bees: thoracic temperature of pollen and nectar foragers in relation to profitability of foraging and colony need. J. Insect Physiol. 47, 385–392

    Article  PubMed  CAS  Google Scholar 

  • Stabentheiner, A., Vollmann, J., Kovac, H., Crailsheim, K. (2003) Oxygen consumption and body temperature of active and resting honeybees. J. Insect Physiol. 49, 881–889

    Article  PubMed  CAS  Google Scholar 

  • Stelzer, R.J., Stanewsky, R., Chittka, L. (2010) Circadian foraging rhythms of bumblebees monitored by radio-frequency identification. J. Biol. Rhythms 25, 257–267

    Article  Google Scholar 

  • Stephen, W.P., Schricker, B. (1970) The effect of sublethal doses of parathion. II. Site of parathion activity, and signal integration. J. Apic. Res. 9, 155–164

    CAS  Google Scholar 

  • Streit, S., Bock, F., Pirk, C.W.W., Tautz, J. (2003) Automatic life-long monitoring of individual insect behaviour now possible. Zoology 106, 169–171

    Article  PubMed  Google Scholar 

  • Suchail, S., Guez, D., Belzunces, L.P. (2001) Discrepancy between acute and chronic toxicity induced by imidacloprid and its metabolites in Apis mellifera. Environ. Toxicol. Chem. 20, 2482–2486

    PubMed  CAS  Google Scholar 

  • Suchail, S., De Sousa, G., Rahmani, R., Belzunces, L.P. (2004) In vivo distribution and metabolisation of [14C]-imidacloprid in different compartments of Apis mellifera L. Pest Manag. Sci. 60:1056–1062

    Google Scholar 

  • Takahashi, N., Mikami, N., Yamada, H., Miyamoto, J. (1985) Photodegradation of the pyrethroid insecticide fenpropathrin in water, on soil and on plant foliage. Pestic. Sci. 16, 119–131

    Article  CAS  Google Scholar 

  • Tank, J.L., Rosi-Marshall, E.J., Royer, T.V., Whiles, M.R., Griffiths, N.A., Frauendorf, T.C., Treering, D.J. (2010) Occurrence of maize detritus and a transgenic insecticidal protein (Cry1Ab) within the stream network of an agricultural landscape. Proc. Nat. Acad. Sci. USA 107, 17645–17650

    Article  PubMed  CAS  Google Scholar 

  • Taylor, K.S., Waller, G.D., Crowder, L.A. (1987) Impairment of a classical conditioned response of the honey bee (Apis mellifera) by sublethal doses of synthetic pyrethroid insecticides. Apidologie 18, 243–252

    Article  CAS  Google Scholar 

  • Thany, S.H., Gauthier, M. (2005) Nicotine injected into the antennal lobes induces a rapid modulation of sucrose threshold and improves short-term memory in the honeybee Apis mellifera. Brain Res. 1039, 216–219

    Article  PubMed  CAS  Google Scholar 

  • Thany, S.H., Lenaers, G., Crozatier, M., Armengaud, C., Gauthier, M. (2003) Identification and localization of the nicotinic acetylcholine receptor alpha3 mRNA in the brain of the honeybee, Apis mellifera. Insect Mol. Biol. 12, 255–262

    Article  PubMed  CAS  Google Scholar 

  • Thompson, H., Wilkins, S. (2003) Assessment of the synergy and repellency of pyrethroid/fungicide mixtures. Bull. Insectol. 56, 131–134

    Google Scholar 

  • Tian, Y.C., Qin, X.F., Xu, B.Y., Li, T.Y., Fang, R.X., Mang, K.Q., Li, W.G., Fu, W.J., Li, Y.P., Zhang, S.F. (1991) Insect resistance of transgenic tobacco plants expressing delta-endotoxin gene of Bacillus thuringiensis. Chin J. Biotechnol. 7, 1–13

    PubMed  CAS  Google Scholar 

  • Tomasi, T.E., Ashcraft, J., Britzke, E. (2001) Effects of fungicides on thyroid function, metabolism, and thermoregulation in cotton rats. Environ. Toxicol. Chem. 20, 1709–1715

    Article  PubMed  CAS  Google Scholar 

  • Tomizawa, M., Casida, J.E. (2005) Neonicotinoid insecticide toxicology: Mechanisms of selective action, Annu. Rev. Pharmacol. Toxicol. 45, 247–268

    Google Scholar 

  • Ueda, K., Gaughan, L.C., Casida, J.E. (1974) Photodecomposition of resmethrin and related pyrethroids. J. Agric. Food Chem. 22, 212–220

    Article  PubMed  CAS  Google Scholar 

  • UIPP (2011) La nature, une richesse à cultiver. Rapport d’activité 2010/2011, 29 pp

  • Vaeck, M., Reynaerts, A., Hofte, H., Vanderbruggen, H., Jansens, S., Leemans, J. (1987) Insect resistance in transgenic plants expressing Bacillus thuringiensis toxin genes. Anais da Soc. Entomol. Brasil 16, 427–435

    CAS  Google Scholar 

  • Vaidya, D.N., Kumar, S., Mehta, P.K. (1996) Repellency of some insecticides to Apis mellifera F. foragers on treated bloom of sarson, Brassica campestris L. var. brown sarson. Ann. Biology (Ludhiana) 12, 134–138

    Google Scholar 

  • Vandame, R., Belzunces, L.P. (1998) Joint actions of deltamethrin and azole fungicides on honey bee thermoregulation. Neurosci. Lett. 251, 57–60

    Article  PubMed  CAS  Google Scholar 

  • Vandame, R., Meled, M., Colin, M.-E., Belzunces, L.P. (1995) Alteration of the homing-flight in the honey bee Apis mellifera L. Exposed to sublethal dose of deltamethrin. Environ. Toxicol. Chem. 14, 855–860

    Article  CAS  Google Scholar 

  • Waller, G.D., Barker, R.J., Martin, J.H. (1979) Effects of dimethoate on honey bee foraging. Chemosphere 8, 461–463

    Google Scholar 

  • Wang, C.M., Narahashi, T., Scuka, M. (1972) Mechanism of negative temperature coefficient of nerve blocking action of allethrin. J. Pharmacol. Exp. Ther. 182, 442–453

    PubMed  CAS  Google Scholar 

  • Wei, J.-Z., Hale, K., Carta, L., Platzer, E., Wong, C., Fang, S.-C., Aroian, R.V. (2003) Bacillus thuringiensis crystal proteins that target nematodes. Proc. Nat. Acad. Sci. USA 100, 2760–2765

    Article  PubMed  CAS  Google Scholar 

  • Wolstenholme, A.J., Horoszok, L., Raymond, V., Sattelle, D.B. (2000) GLC-3: A novel fipronil and BIDN-sensitive, but picrotoxinin-insensitive, L-glutamate-gated chloride channel subunit from Caenorhabditis elegans. Eur. J. Neurosci. 12, 398–398

    Google Scholar 

  • Wraight, C.L., Zangerl, A.R., Carroll, M.J., Berenbaum, M.R. (2000) Absence of toxicity of Bacillus thuringiensis pollen to black swallowtails under field conditions. Proc. Nat. Acad. Sci. USA 97, 7700–7703

    Article  PubMed  CAS  Google Scholar 

  • Wüstenberg, D.G., Grünewald, B. (2004) Pharmacology of the neuronal nicotinic acetylcholine receptor of cultured Kenyon cells of the honeybee, Apis mellifera. J. Comp. Physiol. A 190, 807–821

    Article  CAS  Google Scholar 

  • Yang, E.C., Chuang, Y.C., Chen, Y.L., Chang, L.H. (2008) Abnormal foraging behavior induced by sublethal dosage of imidacloprid in the honey bee (Hymenoptera: Apidae). J. Econ. Entomol. 101, 1743–1748

    Article  PubMed  CAS  Google Scholar 

  • Yousef, M.I. (2010) Vitamin E modulates reproductive toxicity of pyrethroid lambda-cyhalothrin in male rabbits. Food Chem. Toxicol. 48, 1152–1159

    Article  PubMed  CAS  Google Scholar 

  • Zhang, S.W., Lehrer, M., Srinivasan, M.V. (1999) Honeybee memory: navigation by associative grouping and recall of visual stimuli. Neurobiol. Learn. Mem. 72, 180–201

    Article  PubMed  CAS  Google Scholar 

  • Zhang, H., Wang, H., Ji, Y.-L., Zhang, Y., Yu, T., Ning, H., Zhang, C., Zhao, X.-F., Wang, Q., Liu, P., Xu, D.-X. (2010a) Maternal fenvalerate exposure during pregnancy persistently impairs testicular development and spermatogenesis in male offspring. Food Chem. Toxicol. 48, 1160–1169

    Article  PubMed  CAS  Google Scholar 

  • Zhang, H., Wang, H., Wang, Q., Zhao, X.-F., Liu, P., Ji, Y.-L., Ning, H., Yu, T., Zhang, C., Zhang, Y., Meng, X.-H., Xu, D.-X. (2010b) Pubertal and early adult exposure to fenvalerate disrupts steroidogenesis and spermatogenesis in mice at adulthood. J. Appl. Toxicol. 30, 369–377

    PubMed  Google Scholar 

  • Zhao, X., Salgado, V.L. (2010) The role of GABA and glutamate receptors in susceptibility and resistance to chloride channel blocker insecticides. Pestic. Biochem. Physiol. 97, 153–160

    Article  CAS  Google Scholar 

  • Zhao, X.L., Salgado, V.L., Yeh, J.Z., Narahashi, T. (2003) Differential actions of fipronil and dieldrin insecticides on GABA-gated chloride channels in cockroach neurons. J. Pharmacol. Exp. Ther. 306, 914–924

    Article  PubMed  CAS  Google Scholar 

  • Zhao, X.L., Yeh, J.Z., Salgado, V.L., Narahashi, T. (2004) Fipronil is a potent open channel blocker of glutamate-activated chloride channels in cockroach neurons. J. Pharmacol. Exp. Ther. 310, 192–201

    Article  PubMed  CAS  Google Scholar 

  • Zhao, X., Yeh, J.Z., Salgado, V.L., Narahashi, T. (2005) Sulfone metabolite of fipronil blocks γ-aminobutyric acid- and glutamate-activated chloride channels in mammalian and insect neurons. J. Pharmacol. Exp. Ther. 314, 363–373

    Article  PubMed  CAS  Google Scholar 

  • Zhao, Q., Li, Y., Xiong, L., Wang, Q. (2010) Design, Synthesis and Insecticidal Activity of Novel Phenylpyrazoles Containing a 2,2,2-Trichloro-1-alkoxyethyl Moiety. J. Agric. Food Chem. 58, 4992–4998

    Article  PubMed  CAS  Google Scholar 

  • Zhao, X.-F., Wang, Q., Ji, Y.-L., Wang, H., Liu, P., Zhang, C., Zhang, Y., Xu, D.-X. (2011) Fenvalerate induces germ cell apoptosis in mouse testes through the Fas/FasL signaling pathway. Arch. Toxicol. 85, 1101–1108

    Google Scholar 

  • Zhou, T., Zhou, W., Wang, Q., Dai, P.-L., Liu, F., Zhang, Y.-L., Sun, J.-H. (2011) Effects of pyrethroids on neuronal excitability of adult honeybees Apis mellifera. Pestic. Biochem. Physiol. 100, 35–40

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Pr Bruno Lapied for his critical reading of the manuscript

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc P. Belzunces.

Additional information

Manuscript editor: Bernd Grünewald

Effets des insecticides sur le système nerveux de l’abeille

insecticides / effets sur le système nerveux / mode d’action / cibles moléculaires / comportement / cognition / Apidae

Neuronale Wirkungen von Insektiziden in der Honigbiene

insektizide / neuronale wirkungen / wirkmechanismen / zielmoleküle / verhalten / Apidae

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belzunces, L.P., Tchamitchian, S. & Brunet, JL. Neural effects of insecticides in the honey bee. Apidologie 43, 348–370 (2012). https://doi.org/10.1007/s13592-012-0134-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13592-012-0134-0

Keywords

Navigation