Skip to main content
Log in

Identification of key leaf color-associated genes in Gleditsia sinensis using bioinformatics

  • Research Report
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

This study aimed to explore leaf-color associated genes in Gleditsia sinensis (G. sinensis) using bioinformatics methods. Green, purple, and yellow leaves were collected from G. sinensis in Shandong Institute of Pomology. Total RNA was collected from leaves and subjected to transcriptome sequencing. Differentially expressed genes (DEGs) were identified among the different colored leaves using RSEM method followed by functional enrichment analysis. Finally, qRT-PCR analysis was used to assess the expression of several pigment-related genes enriched in significant GO or KEGG terms. A total of 10,953, 14,961, and 8916 DEGs were identified between green vs. purple leaves, green vs. yellow leaves, and purple vs. yellow leaves, respectively. Among the green vs. purple leaves, DEGs were significantly enriched in terms of iron ion binding, tetrapyrrole binding, (e.g., CYP26A1, CYP97A3, and CYP86A1), and starch and sucrose metabolism (e.g., TPS and VTC2). DEGs for green/purple vs. yellow groups were markedly enriched in circadian rhythm-plant KEGG pathway, including ELF3 and CHS. Compared with their expression in green leaves, CYP26A1, CYP97A3, CYP86A1, TPS and VTC2 were significantly downregulated in purple leaves, while downregulation of ELF3 and upregulation of CHS was detected in yellow leaves. CYPs (e.g., CYP26A1 and CYP97A3) might play critical roles in the determination of leaf color in G. sinensis via iron ion and tetrapyrrole binding. In addition, genes related to starch and sucrose metabolism (e.g., TPS and VTC2), and circadian rhythms (e.g., ELF3 and CHS) might also be involved in controlling leaf color.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arango J, Welsch R (2014) Carotene hydroxylase activity determines the levels of both α-carotene and total carotenoids in orange carrots. Plant Cell 26:2223–2233

    Article  CAS  Google Scholar 

  • Bunce RGH, Wood CM, Smart SM, Oakley R, Browning G, Daniels MJ, Ashmole P, Cresswell J, Holl K (2014) The landscape ecological impact of afforestation on the british uplands and some initiatives to restore native woodland cover. J Landsc Ecol 7:5–24

    Article  Google Scholar 

  • Chung JS (2008) A trehalose 6-phosphate synthase gene of the hemocytes of the blue crab, Callinectes sapidus: cloning, the expression, its enzyme activity and relationship to hemolymph trehalose levels. Aquat Biosyst 4:18

    Google Scholar 

  • Covington MF, Panda S, Liu XL, Strayer CA, Wagner DR, Kay SA (2001) ELF3 modulates resetting of the circadian clock in Arabidopsis. Plant Cell 13:1305–1315

    Article  CAS  Google Scholar 

  • Deng X, Zhang H, Wang Y, He F, Liu J, Xiao X, Shu Z, Li W, Wang G, Wang G (2014) Mapped clone and functional analysis of leaf-color gene Ygl7 in a rice hybrid (Oryza sativa L. ssp. indica). PLoS ONE 9:e99564

    Article  Google Scholar 

  • Eloy N, Voorend W, Lan W, Saleme ML, Cesarino I, Vanholme R, Smith RA, Goeminne G, Pallidis A, Morreel K (2017) Silencing chalcone synthase impedes the incorporation of tricin in lignin and increases lignin content. Plant Physiologypp 01108:02016

    Google Scholar 

  • Fahey JW, Stephenson KK, Dinkovakostova AT, Egner PA, Kensler TW, Talalay P (2005) Chlorophyll, chlorophyllin and related tetrapyrroles are significant inducers of mammalian phase 2 cytoprotective genes. Carcinogenesis 26:1247

    Article  CAS  Google Scholar 

  • Gang M, Zhang L, Witchulada Y, Issei T, Natsumi I, Michiru O, Kazuki Y, Masaki Y, Masaya K (2016) Expression and functional analysis of citrus carotene hydroxylases: unravelling the xanthophyll biosynthesis in citrus fruits. BMC Plant Biol 16:148

    Article  Google Scholar 

  • Gao Y, Badejo AA, Shibata H, Sawa Y, Maruta T, Shigeoka S, Page M, Smirnoff N, Ishikawa T (2011) Expression analysis of the VTC2 and VTC5 genes encoding GDP-L-galactose phosphorylase, an enzyme involved in ascorbate biosynthesis, in Arabidopsis thaliana. J Agric Chem Soc Jpn 75:1783–1788

    CAS  Google Scholar 

  • Hadian J, Ebrahimi SN, Salehi P (2010) Variability of morphological and phytochemical characteristics among Satureja hortensis L. accessions of Iran. Ind Crops Product 32:62–69

    Article  CAS  Google Scholar 

  • Hatlestad GJ, Sunnadeniya RM, Akhavan NA, Gonzalez A, Goldman IL, Mcgrath JM, Lloyd AM (2012) The beet R locus encodes a new cytochrome P450 required for red betalain production. Nat Genet 44:816–820

    Article  CAS  Google Scholar 

  • Jian HL, Cristhian C, Zhang WM, Jiang JX (2011) Influence of dehulling pretreatment on physicochemical properties of Gleditsia sinensis Lam. gum. Food Hydrocoll 25:1337–1343

    Article  CAS  Google Scholar 

  • Karimi HR, Farahmand H, Hashemipour M (2013) Morphological diversity of some old accessions of Cupressus sempervirens L. in Iran. Plant Syst Evol 299:1379–1386

    Article  Google Scholar 

  • Kontturi J, Osama R, Deng X, Bashandy H, Albert VA, Teeri TH (2016) Functional characterization and expression of GASCL1 and GASCL2, two anther-specific chalcone synthase like enzymes from Gerbera hybrida. Phytochemistry 134:38–45

    Article  Google Scholar 

  • Kretzschmar T, Pelayo MA, Trijatmiko KR, Gabunada LF, Alam R, Jimenez R, Mendioro MS, Slamet-Loedin IH, Sreenivasulu N, Bailey-Serres J (2015) A trehalose-6-phosphate phosphatase enhances anaerobic germination tolerance in rice. Nat Plants 1:15124

    Article  CAS  Google Scholar 

  • Li HW, Zang BS, Deng XW, Wang XP (2011) Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta 234:1007–1018

    Article  CAS  Google Scholar 

  • Lu SX, Tobin EM (2012) CCA1 and ELF3 interact in the control of hypocotyl length and flowering time in arabidopsis. Plant Physiol 158:1079

    Article  CAS  Google Scholar 

  • Nakatsuka T, Nishihara M, Mishiba K, Yamamura S (2006) Heterologous expression of two gentian cytochrome P450 Genes can modulate the intensity of flower pigmentation in transgenic tobacco plants. Mol Breed 17:91–99

    Article  CAS  Google Scholar 

  • Nelson D, Werck-Reichhart D (2011) A P450-centric view of plant evolution. Plant J 66:194–211

    Article  CAS  Google Scholar 

  • Nuccio ML, Wu J, Mowers R, Zhou HP, Meghji M, Primavesi LF, Paul MJ, Chen X, Gao Y, Haque E (2015) Expression of trehalose-6-phosphate phosphatase in maize ears improves yield in well-watered and drought conditions. Nat Biotechnol 33:862–869

    Article  CAS  Google Scholar 

  • Nusinow DA, Helfer A, Hamilton EE, King JJ, Imaizumi T, Schultz TF, Farrãe EM, Kay SA (2012) The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature 475:398–402

    Article  Google Scholar 

  • Oserkowsky J (1933) Quantitative relation between chlorophyll and iron in green and chlorotic pear leaves. Plant Physiol 8:449–468

    Article  CAS  Google Scholar 

  • Shibghatallah MAH, Khotimah SN, Suhandono S, Viridi S, Kesuma T (2013) Measuring leaf chlorophyll concentration from its color: a way in monitoring environment change to plantations. In: AIP conference proceedings, pp 210–213

  • Stephens ES (2012) Cytochromes P450: inhibition of CYP2A enzymes involved in xenobiotic metabolism and generation of CYP26 enzymes involved in retinoic acid metabolism, University of Kansas

  • Tian L, Dellapenna D (2004) Progress in understanding the origin and functions of carotenoid hydroxylases in plants. Arch Biochem Biophys 430:22–29

    Article  CAS  Google Scholar 

  • Tian J, Shen H, Zhang J, Song T, Yao Y (2011) Characteristics of chalcone synthase promoters from different leaf-color malus crabapple cultivars. Sci Hortic 129:449–458

    Article  CAS  Google Scholar 

  • Xia LI, Xue AN, Pan HT (2010) Species and landscape application of color-leafed plants in Beijing. Chin Landsc Archit 3:62–68

    Google Scholar 

  • Yoshimura K, Nakane T, Kume S, Shiomi Y, Maruta T, Ishikawa T, Shigeoka S (2014) Transient expression analysis revealed the importance of VTC2 expression level in light/dark regulation of ascorbate biosynthesis in Arabidopsis. J Agric Chem Soc Jpn 78:60–66

    CAS  Google Scholar 

  • Zhao Q, Chuanwei HU, Sun B, Gan M, Gao X (2017) Aesthetic evaluation and application of ornamental plant landscape. J Landsc Res 9:103–105

    Google Scholar 

  • Zhou K, Ren Y, Lv J, Wang Y, Liu F, Zhou F, Zhao S, Chen S, Peng C, Zhang X (2013) Young Leaf Chlorosis 1, a chloroplast-localized gene required for chlorophyll and lutein accumulation during early leaf development in rice. Planta 237:279–292

    Article  CAS  Google Scholar 

  • Zuk M, Działo M, Richter D, Dymińska L, Matuła J, Kotecki A, Hanuza J, Szopa J (2016) Chalcone synthase (CHS) gene suppression in flax leads to changes in wall synthesis and sensing genes, cell wall chemistry and stem morphology parameters. Front Plant Sci 7:894

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Shandong Natural Science Foundation (No. ZR2018LC002), Shandong Provincial Key Research and Development Program (No. 2018JHZ003), Project grant from Shandong academy of agricultural youth fund (No. 2016YQN31) and Shandong Institute of Pomology fund (No. 2016KY09).

Author information

Authors and Affiliations

Authors

Contributions

CW and XY contributed to the study design, conducting the study, data analysis, and writing of the manuscript. LF and FW contributed to the data collection and conducting the study. HT and YY contributed to data interpretation and discussion. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yanlei Yin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Sung-Chur Sim.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, C., Yang, X., Feng, L. et al. Identification of key leaf color-associated genes in Gleditsia sinensis using bioinformatics. Hortic. Environ. Biotechnol. 60, 711–720 (2019). https://doi.org/10.1007/s13580-019-00161-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-019-00161-5

Keywords

Navigation