Skip to main content
Log in

Genetic diversity of natural and artificial populations of model grass Brachypodium species evaluated by AFLP markers

  • Research Report
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

Brachypodium, a monocot grass with wide distribution in temperate areas, has been considered a new model plant for many grass species, such as turfgrass or miscanthus, due to its small genome size, self-pollination, rapid life cycle, higher seed yield, and small stature. The objectives of this study were to compare the genetic diversity of natural and artificial populations, and to determine the effects of γ-radiation on genetic variability when evaluated by amplified fragment length polymorphism (AFLP) markers. Two populations used in this study include 66 plant introductions (PI) from the U.S. Department of Agriculture (USDA; POP1), and 43 mutants derived from one of the plant introductions, Bd43 (PI 227011; POP2) treated with a γ-irradiation ranging from 100 to 600 Gy. The highest performance of the phenotypic traits was observed at 200 Gy for germination rate, 100 Gy for height, and 600 Gy for tiller number, implying that the LD50 for determining of optimum dosage depends on the physiological parameters measured. Based on AFLP analysis, POP2 showed higher polymorphism (79.4%), PIC (polymorphism information content; 0.162), and genetic diversity (0.195) than POP1 (59.4%, 0.113, and 0.130, respectively). Those three genetic parameters were evaluated for the mutants derived at various γ-radiation dosages and were found to be the highest when irradiated at 300 Gy. Artificial mutagenesis using γ-radiation improved genetic diversity compared to that of the natural population, and 300 Gy was a useful dosage to enlarge genetic variability in Brachypodium. Results suggest that a dosage maximizing the genetic diversity when evaluated with AFLP markers is an alternative index to LD50 for determining the optimum level for mutation induction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Bevan, M.W., D.F. Garvin, and J.P. Vogel. 2010. Brachypodium distachyon genomics for sustainable food and fuel production. Curr. Opin. Biotechnol. 21:211–217.

    Article  PubMed  CAS  Google Scholar 

  • Bibi, S., I.A. Khan, H.U.R. Bughio, I.A. Odhano, M.A. Asad, and A. Khatri. 2009. Genetic differentiation of rice mutants based on morphological traits and molecular marker (RAPD). Pak. J. Bot. 41:737–743.

    CAS  Google Scholar 

  • Borzouei, A., M. Kafi, H. Khazaei, B. Naseriyan, and A. Majdabadi. 2010. Effects of gamma radiation on germination and physiological aspects of wheat (Triticum aestivum L.) seedlings. Pak. J. Bot. 42:2281–2290.

    CAS  Google Scholar 

  • Chung, S.J., G.J. Lee, H.J. Lee, J.B. Kim, D.S. Kim, and S.Y. Kang. 2010. Isolation of a leucoanthocyanidin dioxygenase (LDOX) gene from a spray-type chrysanthemum (Dendranthema × grandiflorum) and its colored mutants. Kor. J. Hort. Sci. Technol. 28:818–827.

    CAS  Google Scholar 

  • Filiz, E., B.S. Ozdemir, F. Budak, J.P. Vogel, M. Tuna, and H. Budak. 2009. Molecular, morphological, and cytological analysis of diverse Brachypodium distachyon inbred lines. Genome 52:876–890.

    Article  PubMed  CAS  Google Scholar 

  • Jamil, M. and U.Q. Khan. 2002. Study of genetic variation in yield components of wheat cultivar Bukhtwar-92 as induced by gamma radiation. Asian J. Plant Sci. 5:579–580.

    Google Scholar 

  • Kellogg, E.A. 2001. Evolutionary history of the grasses. Plant Physiol. 125:1198–1205.

    Article  PubMed  CAS  Google Scholar 

  • Keim, P., T.C. Olson, and R.C. Shoemaker. 1988. A rapid protocol for isolating soybean DNA. Soybean Genet. Newsl. 15:150–152.

    Google Scholar 

  • Kumar, P.P., J.C.K. Yau, and C.J. Goh. 1998. Genetic analyses of heliconia species and cultivars with randomly amplified polymorphic DNA (RAPD) markers. J. Amer. Soc. Hort. Sci. 123:91–97.

    CAS  Google Scholar 

  • Kumar, S., K. Tamura, J. Dudley, and M. Nei. 2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:1596–1599.

    Article  PubMed  Google Scholar 

  • Lee, J.D., J.K. Yu, Y.H Hwang, S. Blake, Y.S. So, G.J. Lee, H.T. Nguyen, and J.G. Shannon. 2008. Genetic diversity of wild soybean (Glycine soja Sieb. and Zucc.) accessions from south Korea and other countries. Crop Sci. 48:606–616.

    Article  Google Scholar 

  • Mudibu, J., K.K.C. Nkongolo, M. Mehes-Smith, and A. Kanlonji-Mbuyi. 2011. Genetic analysis of a soybean genetic pool using ISSR markers: Effect of gamma radiation on genetic variability. Plant Breeding Genet. 5:235–245.

    Article  Google Scholar 

  • Muse, S.V. and K.J. Liu. 2005. Powermarker: An integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129.

    Article  PubMed  Google Scholar 

  • Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590.

    PubMed  CAS  Google Scholar 

  • Opanowicz, M., P. Vain, J. Draper, D. Parker, and J.H. Doonan. 2008. Brachypodium distachyon: Making hay with a wild grass. Trends Plant Sci. 13:172–177.

    Article  PubMed  CAS  Google Scholar 

  • Peng, J.H., H. Zhao, J.Y. Yu, F.M. You, and M.C. Luo. 2011. Transferability of microsatellite markers from Brachypodium distachyon to Miscanthus sinensis, a potential biomass crop. J. Integrative Plant Biol. 53:232–245.

    Article  Google Scholar 

  • Prashanth, S.R., M. Parani, B.P. Mohanty, V. Talame, R. Tuberosa, and A. Parida. 2002. Genetic diversity in cultivars and landraces of Oryza sativa subsp indica as revealed by AFLP markers. Genome 45:451–459.

    Article  PubMed  CAS  Google Scholar 

  • van Harten, A.M. 1998. Mutation breeding: Theory and practical applications. Cambridge University Press, London.

    Google Scholar 

  • Vogel, J.P., M. Tuna, H. Budak, N.X. Huo, Y.Q. Gu, and M.A. Steinwand. 2009. Development of SSR markers and analysis of diversity in Turkish populations of Brachypodium distachyon. BMC Plant Biol. 9:88.

    Article  PubMed  Google Scholar 

  • Vogel, J.P., Y.Q. Gu, P. Twigg, G.R. Lazo, D. Laudencia-Chingcuanco, D.M. Hayden, T.J. Donze, L.A. Vivian, B. Stamova, and D. Coleman-Derr. 2006. EST sequencing and phylogenetic analysis of the model grass Brachypodium distachyon. Theor. Appl. Genet. 113:186–195.

    Article  PubMed  CAS  Google Scholar 

  • Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. van de Lee, M. Hornes, A. Friters, J. Pot, J. Paleman, M. Kuiper, and M. Zabeau. 1995. AFLP — A new technique for DNA-fingerprinting. Nucleic Acids Res. 23:4407–4414.

    Article  PubMed  CAS  Google Scholar 

  • Witkowicz, J., E. Urbanczyk-Wochniak, and Z. Przybecki. 2003. AFLP marker polymorphism in cucumber (Cucumis sativus L.) near isogenic lines differing in sex expression. Cell Mol. Biol. Lett. 8:857–857.

    Google Scholar 

  • Zhu, J., M.D. Gale, S. Quarrie, M.T. Jackson, and G.J. Bryan. 1998. AFLP markers for the study of rice biodiversity. Theor. Appl. Genet. 96:602–611.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geung-Joo Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Jeon, YJ., Kang, SY. et al. Genetic diversity of natural and artificial populations of model grass Brachypodium species evaluated by AFLP markers. Hortic. Environ. Biotechnol. 53, 143–150 (2012). https://doi.org/10.1007/s13580-012-0104-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-012-0104-5

Additional key words

Navigation