Skip to main content

Advertisement

Log in

A new lymphedema treatment using pyro-drive jet injection

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Lymphedema, resulting from impaired lymphatic drainage, causes inflammation, fibrosis and tissue damage leading to symptoms such as limb swelling and restricted mobility. Despite various treatments under exploration, no standard effective therapy exists. Here a novel technique using the pyro-drive jet injection (PJI) was used to create artificial clefts between collagen fibers, which facilitated the removal of excess interstitial fluid. The PJI was used to deliver a mixture of lactated Ringer’s solution and air into the tail of animals with secondary skin edema. Edema levels were assessed using micro-CT scanning. Histopathological changes and neovascularization were evaluated on the injury-induced regenerative tissue. Regarding tissue remodeling, we focused on connective tissue growth factor (CTGF) and vascular endothelial growth factor (VEGF)-C. PJI markedly diminished soft tissue volume in the experimental lymphedema animals compared to the non-injected counterparts. The PJI groups exhibited a significantly reduced proportion of inflammatory granulation tissue and an enhanced density of lymphatic vessels and α-smooth muscle actin (αSMA)-positive small vessels in the fibrous granulation tissue compared to the controls. In addition, PJI curtailed the prevalence of CTGF- and VEGF-C-positive cells in regenerative tissue. In a lymphedema animal model, PJI notably ameliorated interstitial edema, promoted lymphatic vessel growth, and bolstered αSMA-positive capillaries in fibrous granulation tissue. PJI’s minimal tissue impact post-lymph node dissection indicates significant potential as an early, standard preventative measure. Easily applied in general clinics without requiring specialized training, it offers a cost-effective and highly versatile solution to the management of lymphedema.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors, SA and MN, upon reasonable request.

References

  1. Kumar V, Abbas AK, Aster JC, Elsevier C. Robbins & Cotran pathologic basis of disease. Tenth edition ed. Robbins pathology. Amsterdam: Elsevier; 2020.

    Google Scholar 

  2. Grada AA, Phillips TJ. Lymphedema: pathophysiology and clinical manifestations. J Am Acad Dermatol. 2017;77(6):1009–20.

    Article  PubMed  Google Scholar 

  3. Mortimer PS. The pathophysiology of lymphedema. Cancer. 1998;83(S12B):2798–802.

    Article  CAS  PubMed  Google Scholar 

  4. Maclellan RA, Couto RA, Sullivan JE, Grant FD, Slavin SA, Greene AK. Management of primary and secondary lymphedema: analysis of 225 referrals to a center. Ann Plast Surg. 2015;75(2):197–200.

    Article  CAS  PubMed  Google Scholar 

  5. Lasinski BB, Thrift KM, Squire D, Austin MK, Smith KM, Wanchai A, et al. A systematic review of the evidence for complete decongestive therapy in the treatment of lymphedema from 2004 to 2011. PM&R. 2012;4(8):580–601.

    Article  Google Scholar 

  6. Mondry TE, Riffenburgh RH, Johnstone PA. Prospective trial of complete decongestive therapy for upper extremity lymphedema after breast cancer therapy. Cancer J. 2004;10(1):42–8.

    Article  PubMed  Google Scholar 

  7. Nagase T, Gonda K, Inoue K, Higashino T, Fukuda N, Gorai K, et al. Treatment of lymphedema with lymphaticovenular anastomoses. Int J Clin Oncol. 2005;10:304–10.

    Article  PubMed  Google Scholar 

  8. Koshima I, Inagawa K, Urushibara K, Moriguchi T. Supermicrosurgical lymphaticovenular anastomosis for the treatment of lymphedema in the upper extremities. J Reconstr Microsurg. 2000;16(06):437–42.

    Article  CAS  PubMed  Google Scholar 

  9. Saaristo AM, Niemi TS, Viitanen TP, Tervala TV, Hartiala P, Suominen EA. Microvascular breast reconstruction and lymph node transfer for postmastectomy lymphedema patients. Ann Surg. 2012;255(3):468–73.

    Article  PubMed  Google Scholar 

  10. Patel KM, Lin C-Y, Cheng M-H. A prospective evaluation of lymphedema-specific quality-of-life outcomes following vascularized lymph node transfer. Ann Surg Oncol. 2015;22:2424–30.

    Article  PubMed  Google Scholar 

  11. Miyazaki H, Atobe S, Suzuki T, Iga H, Terai K. Development of pyro-drive jet injector with controllable jet pressure. J Pharm Sci. 2019;108(7):2415–20. https://doi.org/10.1016/j.xphs.2019.02.021.

    Article  CAS  PubMed  Google Scholar 

  12. Chang C, Sun J, Hayashi H, Suzuki A, Sakaguchi Y, Miyazaki H, et al. Stable immune response induced by intradermal DNA Vaccination by a novel needleless pyro-drive jet injector. AAPS PharmSciTech. 2019;21(1):19. https://doi.org/10.1208/s12249-019-1564-z.

    Article  CAS  PubMed  Google Scholar 

  13. Serizawa F, Ito K, Matsubara M, Sato A, Shimokawa H, Satomi S. Extracorporeal shock wave therapy induces therapeutic lymphangiogenesis in a rat model of secondary lymphoedema. Eur J Vasc Endovasc Surg. 2011;42(2):254–60. https://doi.org/10.1016/j.ejvs.2011.02.029.

    Article  CAS  PubMed  Google Scholar 

  14. Desmoulière A, Chaponnier C, Gabbiani G. Tissue repair, contraction, and the myofibroblast. Wound Repair Regen. 2005;13(1):7–12.

    Article  PubMed  Google Scholar 

  15. Mescher AL, Junqueira LCU. Junqueira’s basic histology: text and atlas. Sixteenth. New York: McGraw-Hill; 2021.

    Google Scholar 

  16. Armulik A, Abramsson A, Betsholtz C. Endothelial/pericyte interactions. Circ Res. 2005;97(6):512–23.

    Article  CAS  PubMed  Google Scholar 

  17. Pak KH, Park KC, Cheong J-H. VEGF-C induced by TGF-β1 signaling in gastric cancer enhances tumor-induced lymphangiogenesis. BMC Cancer. 2019;19:1–9.

    Article  CAS  Google Scholar 

  18. Ihn H. Pathogenesis of fibrosis: role of TGF-β and CTGF. Curr Opin Rheumatol. 2002;14(6):681–5.

    Article  CAS  PubMed  Google Scholar 

  19. Leask A, Holmes A, Abraham DJ. Connective tissue growth factor: a new and important player in the pathogenesis of fibrosis. Curr Rheumatol Rep. 2002;4(2):136–42.

    Article  PubMed  Google Scholar 

  20. Shi-Wen X, Leask A, Abraham D. Regulation and function of connective tissue growth factor/CCN2 in tissue repair, scarring and fibrosis. Cytokine Growth Factor Rev. 2008;19(2):133–44.

    Article  PubMed  Google Scholar 

  21. Alitalo K, Tammela T, Petrova TV. Lymphangiogenesis in development and human disease. Nature. 2005;438(7070):946–53.

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Cueni LN, Detmar M. New insights into the molecular control of the lymphatic vascular system and its role in disease. J Investig Dermatol. 2006;126(10):2167–77.

    Article  CAS  PubMed  Google Scholar 

  23. Ramanujan S, Pluen A, McKee TD, Brown EB, Boucher Y, Jain RK. Diffusion and convection in collagen gels: implications for transport in the tumor interstitium. Biophys J. 2002;83(3):1650–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Goldman J, Conley KA, Raehl A, Bondy DM, Pytowski B, Swartz MA, et al. Regulation of lymphatic capillary regeneration by interstitial flow in skin. Am J Physiol Heart Circ Physiol. 2007;292(5):H2176–83. https://doi.org/10.1152/ajpheart.01011.2006.

    Article  CAS  PubMed  Google Scholar 

  25. Ongstad EL, Bouta EM, Roberts JE, Uzarski JS, Gibbs SE, Sabel MS, et al. Lymphangiogenesis-independent resolution of experimental edema. Am J Physiol Heart Circ Physiol. 2010;299(1):H46-54. https://doi.org/10.1152/ajpheart.00008.2010.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kim S, Chung M, Ahn J, Lee S, Jeon NL. Interstitial flow regulates the angiogenic response and phenotype of endothelial cells in a 3D culture model. Lab Chip. 2016;16(21):4189–99.

    Article  CAS  PubMed  Google Scholar 

  27. Swartz MA, Fleury ME. Interstitial flow and its effects in soft tissues. Annu Rev Biomed Eng. 2007;9:229–56.

    Article  CAS  PubMed  Google Scholar 

  28. Avraham T, Daluvoy S, Zampell J, Yan A, Haviv YS, Rockson SG, Mehrara BJ. Blockade of transforming growth factor-β1 accelerates lymphatic regeneration during wound repair. Am J Pathol. 2010;177(6):3202–14. https://doi.org/10.2353/ajpath.2010.100594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Clavin NW, Avraham T, Fernandez J, Daluvoy SV, Soares MA, Chaudhry A, Mehrara BJ. TGF-β1 is a negative regulator of lymphatic regeneration during wound repair. Am J Physiol-Heart Circ Physiol. 2008;295(5):H2113–27.

    Article  CAS  PubMed  Google Scholar 

  30. Kinashi H, Ito Y, Sun T, Katsuno T, Takei Y. Roles of the TGF-β–VEGF-C pathway in fibrosis-related lymphangiogenesis. Int J Mol Sci. 2018;19(9):2487.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Baik JE, Park HJ, Kataru RP, Savetsky IL, Ly CL, Shin J, et al. TGF-β1 mediates pathologic changes of secondary lymphedema by promoting fibrosis and inflammation. Clin Transl Med. 2022;12(6): e758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zimmermann A, Wozniewski M, Szklarska A, Lipowicz A, Szuba A. Efficacy of manual lymphatic drainage in preventing secondary lymphedema after breast cancer surgery. Lymphology. 2012;45(3):103–12.

    CAS  PubMed  Google Scholar 

  33. Finnane A, Janda M, Hayes SC. Review of the evidence of lymphedema treatment effect. Am J Phys Med Rehabil. 2015;94(6):483–98.

    Article  PubMed  Google Scholar 

  34. Uzkeser H, Karatay S, Erdemci B, Koc M, Senel K. Efficacy of manual lymphatic drainage and intermittent pneumatic compression pump use in the treatment of lymphedema after mastectomy: a randomized controlled trial. Breast Cancer. 2015;22:300–7.

    Article  PubMed  Google Scholar 

  35. Boccardo F, Casabona F, De Cian F, Friedman D, Villa G, Bogliolo S, et al. Lymphedema microsurgical preventive healing approach: a new technique for primary prevention of arm lymphedema after mastectomy. Ann Surg Oncol. 2009;16:703–8.

    Article  PubMed  Google Scholar 

  36. Campisi C, Bellini C, Campisi C, Accogli S, Bonioli E, Boccardo F. Microsurgery for lymphedema: clinical research and long-term results. Microsurgery. 2010;30(4):256–60.

    Article  PubMed  Google Scholar 

  37. Balzarini A, Pirovano C, Diazzi G, Olivieri R, Ferla F, Galperti G, et al. Ultrasound therapy of chronic arm lymphedema after surgical treatment of breast cancer. Lymphology. 1993;26(3):128–34.

    CAS  PubMed  Google Scholar 

  38. Brorson H. Liposuction in arm lymphedema treatment. Scand J Surg. 2003;92(4):287–95.

    Article  CAS  PubMed  Google Scholar 

  39. Brorson H. Liposuction in lymphedema treatment. J Reconstr Microsurg. 2016;32(01):056–65.

    Google Scholar 

  40. Brorson H, Svensson H. Liposuction combined with controlled compression therapy reduces arm lymphedema more effectively than controlled compression therapy alone. Plast Reconstr Surg. 1998;102(4):1058–67.

    Article  CAS  PubMed  Google Scholar 

  41. Schaverien MV, Munnoch DA, Brorson H. Liposuction Treatment of Lymphedema. Semin Plast Surg. 2018;32(1):42–7. https://doi.org/10.1055/s-0038-1635116.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Nishida, Y. Mine and S. Nishimura for excellent technical assistance. This work was supported by the Analytical Research Center for Experimental Sciences, Saga University.

Funding

This research was supported by Daicel Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigehisa Aoki.

Ethics declarations

Conflict of interest

Y. Sakaguchi and K. Yamashita are employees of Daicel Corporation.; S. Aoki received a research grant from Daicel Corporation. The sponsor had no control over the interpretation, writing, or publication of this work. Other authors have no competing interests to disclose. A patent application related to the content of this research has been filed in Japan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

13577_2023_1021_MOESM1_ESM.pdf

Supplementary file1 Characteristics when the proportion of liquid components was increased relative to the proportion of air components. A Gross appearance of rat skin tissue after PJI (30). In this experimental group, larger bulges (arrowheads) appear compared to the group injected with 10 µL of lactated Ringer's solution and 40 µL of gas. B Arrows indicate the formation of representative clefts between collagen fibers in the dermis associated with PJI (30). In this experimental group, the number of spherical clefs decreases compared to the group injected with 10 µL of lactated Ringer's solution and 40 µL of gas. C Representative macroscopic temporal images of experimental lymphedema. D Relative reduction rate of soft tissue. In this study, we observed no significant differences among the three groups. This graph compares the data among the Control group (n = 6), PJI3 group (n = 5), and PJI5 group (n = 5) (PDF 3659 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishiyama, M., Sakaguchi, Y., Morito, S. et al. A new lymphedema treatment using pyro-drive jet injection. Human Cell 37, 465–477 (2024). https://doi.org/10.1007/s13577-023-01021-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-023-01021-2

Keywords

Navigation