Skip to main content
Log in

PIAS1 impedes vascular endothelial injury and atherosclerotic plaque formation in diabetes by blocking the RUNX3/TSP-1 axis

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

The protein PIAS1 functions as a type of ubiquitin-protease, which is known to play an important regulatory role in various diseases, including cardiovascular diseases and cancers. Its mechanism of action primarily revolves around regulating the transcription, translation, and modification of target proteins. This study investigates role and mechanism of PIAS1 in the RUNX3/TSP-1 axis and confirms its therapeutic effects on diabetes-related complications in animal models. A diabetic vascular injury was induced in human umbilical vein endothelial cells (HUVECs) by stimulation with H2O2 and advanced glycation end product (AGE), and a streptozotocin (STZ)-induced mouse model of diabetes was constructed, followed by detection of endogenous PIAS1 expression and SUMOylation level of RUNX3. Effects of PIAS1 concerning RUNX3 and TSP-1 on the HUVEC apoptosis and inflammation were evaluated using the ectopic expression experiments. Down-regulated PIAS1 expression and SUMOylation level of RUNX3 were identified in the H2O2- and AGE-induced HUVEC model of diabetic vascular injury and STZ-induced mouse models of diabetes. PIAS1 promoted the SUMOylation of RUNX3 at the K148 site of RUNX3. PIAS1-mediated SUMOylation of RUNX3 reduced RUNX3 transactivation activity, weakened the binding of RUNX3 to the promoter region of TSP-1, and caused downregulation of TSP-1 expression. PIASI decreased the expression of TSP-1 by inhibiting H2O2- and AGE-induced RUNX3 de-SUMOylation, thereby arresting the inflammatory response and apoptosis of HUVECs. Besides, PIAS1 reduced vascular endothelial injury and atherosclerotic plaque formation in mouse models of diabetes by inhibiting the RUNX3/TSP-1 axis. Our study proved that PIAS1 suppressed vascular endothelial injury and atherosclerotic plaque formation in mouse models of diabetes via the RUNX3/TSP-1 axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. American DA. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2013;36(Suppl 1):S67-74. https://doi.org/10.2337/dc13-S067.

    Article  Google Scholar 

  2. Cloete L. Diabetes mellitus: an overview of the types, symptoms, complications and management. Nurs Stand. 2022;37:61–6. https://doi.org/10.7748/ns.2021.e11709.

    Article  PubMed  Google Scholar 

  3. Lind M, Svensson AM, Kosiborod M, et al. Glycemic control and excess mortality in type 1 diabetes. N Engl J Med. 2014;371:1972–82. https://doi.org/10.1056/NEJMoa1408214.

    Article  CAS  PubMed  Google Scholar 

  4. Wang R, Wang M, Ye J, Sun G, Sun X. Mechanism overview and target mining of atherosclerosis: endothelial cell injury in atherosclerosis is regulated by glycolysis. Int J Mol Med. 2021;47:65–76. https://doi.org/10.3892/ijmm.2020.4798. (Review).

    Article  CAS  PubMed  Google Scholar 

  5. Wen T, Hong Y, Cui Y, et al. Downregulation of miR-210–3p attenuates high glucose-induced angiogenesis of vascular endothelial cells via targeting FGFRL1. Ophthalmic Res. 2023. https://doi.org/10.1159/000530160.

    Article  PubMed  Google Scholar 

  6. Sardu C, Trotta MC, Sasso FC, et al. SGLT2-inhibitors effects on the coronary fibrous cap thickness and MACEs in diabetic patients with inducible myocardial ischemia and multi vessels non-obstructive coronary artery stenosis. Cardiovasc Diabetol. 2023;22:80. https://doi.org/10.1186/s12933-023-01814-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Constanzo JD, Deng M, Rindhe S, et al. Pias1 is essential for erythroid and vascular development in the mouse embryo. Dev Biol. 2016;415:98–110. https://doi.org/10.1016/j.ydbio.2016.04.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu Y, Ge X, Dou X, et al. Protein inhibitor of activated STAT 1 (PIAS1) protects against obesity-induced insulin resistance by inhibiting inflammation cascade in adipose tissue. Diabetes. 2015;64:4061–74. https://doi.org/10.2337/db15-0278.

    Article  CAS  PubMed  Google Scholar 

  9. Leng C, Sun J, Xin K, et al. High expression of miR-483-5p aggravates sepsis-induced acute lung injury. J Toxicol Sci. 2020;45:77–86. https://doi.org/10.2131/jts.45.77.

    Article  CAS  PubMed  Google Scholar 

  10. Schutz E, Gogiraju R, Pavlaki M, et al. Age-dependent and -independent effects of perivascular adipose tissue and its paracrine activities during neointima formation. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms21010282.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kim JH, Jang JW, Lee YS, et al. RUNX family members are covalently modified and regulated by PIAS1-mediated sumoylation. Oncogenesis. 2014;3:e101. https://doi.org/10.1038/oncsis.2014.15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Menezes AC, Dixon C, Scholz A, et al. RUNX3 overexpression inhibits normal human erythroid development. Sci Rep. 2022;12:1243. https://doi.org/10.1038/s41598-022-05371-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Meng S, Cao J, Zhang X, et al. Downregulation of microRNA-130a contributes to endothelial progenitor cell dysfunction in diabetic patients via its target Runx3. PLoS ONE. 2013;8:e68611. https://doi.org/10.1371/journal.pone.0068611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shi X, Deepak V, Wang L, et al. Thrombospondin-1 is a putative target gene of Runx2 and Runx3. Int J Mol Sci. 2013;14:14321–32. https://doi.org/10.3390/ijms140714321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Roberts DD, Isenberg JS. CD47 and thrombospondin-1 regulation of mitochondria, metabolism, and diabetes. Am J Physiol Cell Physiol. 2021;321:C201–13. https://doi.org/10.1152/ajpcell.00175.2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kong P, Cavalera M, Frangogiannis NG. The role of thrombospondin (TSP)-1 in obesity and diabetes. Adipocyte. 2014;3:81–4. https://doi.org/10.4161/adip.26990.

    Article  CAS  PubMed  Google Scholar 

  17. Hu H, Wang B, Jiang C, Li R, Zhao J. Endothelial progenitor cell-derived exosomes facilitate vascular endothelial cell repair through shuttling miR-21-5p to modulate Thrombospondin-1 expression. Clin Sci (Lond). 2019;133:1629–44. https://doi.org/10.1042/CS20190188.

    Article  CAS  PubMed  Google Scholar 

  18. Ganguly R, Khanal S, Mathias A, et al. TSP-1 (thrombospondin-1) deficiency protects ApoE(−/−) mice against leptin-induced atherosclerosis. Arterioscler Thromb Vasc Biol. 2021;41:e112–27. https://doi.org/10.1161/ATVBAHA.120.314962.

    Article  CAS  PubMed  Google Scholar 

  19. Wang F, Ge J, Huang S, et al. KLF5/LINC00346/miR-148a-3p axis regulates inflammation and endothelial cell injury in atherosclerosis. Int J Mol Med. 2021. https://doi.org/10.3892/ijmm.2021.4985.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kocherova I, Bryja A, Mozdziak P, et al. Human umbilical vein endothelial cells (HUVECs) co-culture with osteogenic cells: from molecular communication to engineering prevascularised bone grafts. J Clin Med. 2019. https://doi.org/10.3390/jcm8101602.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lan D, Shen X, Yuan W, Zhou Y, Huang Q. Sumoylation of PPARgamma contributes to vascular endothelium insulin resistance through stabilizing the PPARgamma-NcoR complex. J Cell Physiol. 2019;234:19663–74. https://doi.org/10.1002/jcp.28567.

    Article  CAS  PubMed  Google Scholar 

  22. Li P, Chen D, Cui Y, et al. Src plays an important role in AGE-induced endothelial cell proliferation, migration, and tubulogenesis. Front Physiol. 2018;9:765. https://doi.org/10.3389/fphys.2018.00765.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ganguly R, Sahu S, Ohanyan V, et al. Oral chromium picolinate impedes hyperglycemia-induced atherosclerosis and inhibits proatherogenic protein TSP-1 expression in STZ-induced type 1 diabetic ApoE(−/−) mice. Sci Rep. 2017;7:45279. https://doi.org/10.1038/srep45279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. He Y, Lu J, Ye Z, et al. Androgen receptor splice variants bind to constitutively open chromatin and promote abiraterone-resistant growth of prostate cancer. Nucleic Acids Res. 2018;46:1895–911. https://doi.org/10.1093/nar/gkx1306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zong P, Feng J, Yue Z, et al. TRPM2 deficiency in mice protects against atherosclerosis by inhibiting TRPM2-CD36 inflammatory axis in macrophages. Nat Cardiovasc Res. 2022;1:344–60. https://doi.org/10.1038/s44161-022-00027-7.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Dou M, Chen Y, Hu J, Ma D, Xing Y. Recent advancements in CD47 signal transduction pathways involved in vascular diseases. Biomed Res Int. 2020;2020:4749135. https://doi.org/10.1155/2020/4749135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hou Z, Chen J, Yang H, Hu X, Yang F. PIAS1 alleviates diabetic peripheral neuropathy through SUMOlation of PPAR-gamma and miR-124-induced downregulation of EZH2/STAT3. Cell Death Discov. 2021;7:372. https://doi.org/10.1038/s41420-021-00765-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hou G, Zhao X, Li L, et al. SUMOylation of YTHDF2 promotes mRNA degradation and cancer progression by increasing its binding affinity with m6A-modified mRNAs. Nucleic Acids Res. 2021;49:2859–77. https://doi.org/10.1093/nar/gkab065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bettermann K, Benesch M, Weis S, Haybaeck J. SUMOylation in carcinogenesis. Cancer Lett. 2012;316:113–25. https://doi.org/10.1016/j.canlet.2011.10.036.

    Article  CAS  PubMed  Google Scholar 

  30. Sireesh D, Bhakkiyalakshmi E, Ramkumar KM, et al. Targeting SUMOylation cascade for diabetes management. Curr Drug Targets. 2014;15:1094–106. https://doi.org/10.2174/1389450115666140915124747.

    Article  CAS  PubMed  Google Scholar 

  31. Shishido T, Woo CH, Ding B, et al. Effects of MEK5/ERK5 association on small ubiquitin-related modification of ERK5: implications for diabetic ventricular dysfunction after myocardial infarction. Circ Res. 2008;102:1416–25. https://doi.org/10.1161/CIRCRESAHA.107.168138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Woo CH, Shishido T, McClain C, et al. Extracellular signal-regulated kinase 5 SUMOylation antagonizes shear stress-induced antiinflammatory response and endothelial nitric oxide synthase expression in endothelial cells. Circ Res. 2008;102:538–45. https://doi.org/10.1161/CIRCRESAHA.107.156877.

    Article  CAS  PubMed  Google Scholar 

  33. Li CL, Liu XH, Qiao Y, et al. Allicin alleviates inflammation of diabetic macroangiopathy via the Nrf2 and NF-kB pathway. Eur J Pharmacol. 2020;876:173052. https://doi.org/10.1016/j.ejphar.2020.173052.

    Article  CAS  PubMed  Google Scholar 

  34. Nikhil K, Sharan S, Wishard R, et al. Pterostilbene carboxaldehyde thiosemicarbazone, a resveratrol derivative inhibits 17beta-Estradiol induced cell migration and proliferation in HUVECs. Steroids. 2016;108:17–30. https://doi.org/10.1016/j.steroids.2016.01.020.

    Article  CAS  PubMed  Google Scholar 

  35. Wang XH, Xu B, Liu JT, Cui JR. Effect of beta-escin sodium on endothelial cells proliferation, migration and apoptosis. Vascul Pharmacol. 2008;49:158–65. https://doi.org/10.1016/j.vph.2008.07.005.

    Article  CAS  PubMed  Google Scholar 

  36. Xing C, Lee S, Kim WJ, et al. Neurovascular effects of CD47 signaling: promotion of cell death, inflammation, and suppression of angiogenesis in brain endothelial cells in vitro. J Neurosci Res. 2009;87:2571–7. https://doi.org/10.1002/jnr.22076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jin Q, Lin L, Zhao T, et al. Overexpression of E3 ubiquitin ligase Cbl attenuates endothelial dysfunction in diabetes mellitus by inhibiting the JAK2/STAT4 signaling and Runx3-mediated H3K4me3. J Transl Med. 2021;19:469. https://doi.org/10.1186/s12967-021-03069-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hu R, Wang MQ, Ni SH, et al. Salidroside ameliorates endothelial inflammation and oxidative stress by regulating the AMPK/NF-kappaB/NLRP3 signaling pathway in AGEs-induced HUVECs. Eur J Pharmacol. 2020;867:172797. https://doi.org/10.1016/j.ejphar.2019.172797.

    Article  CAS  PubMed  Google Scholar 

  39. Zhao LY, Li J, Yuan F, et al. Xyloketal B attenuates atherosclerotic plaque formation and endothelial dysfunction in apolipoprotein e deficient mice. Mar Drugs. 2015;13:2306–26. https://doi.org/10.3390/md13042306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pirillo A, Norata GD, Catapano AL. LOX-1, OxLDL, and atherosclerosis. Mediators Inflamm. 2013;2013:152786. https://doi.org/10.1155/2013/152786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge and appreciate our colleagues’ valuable efforts and comments on this paper.

Funding

This study is supported by the National Natural Science Foundation of China (No. 81273200).

Author information

Authors and Affiliations

Authors

Contributions

QJ, TZ, and LL wrote the paper and conceived and designed the experiments. XY, YT, and DZ analyzed the data. YJ and MY collected and provided the sample for this study. All authors have read and approved the final submitted manuscript.

Corresponding authors

Correspondence to Yongjun Jin or Meizi Yang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

The animal study was approved by the Institutional Animal Care and Use Committee (IACUC) of Yantai Affiliated Hospital of Binzhou Medical College (IRB2022-0043). Animal experiments were strictly designed and implemented according to the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health.

Informed consent

Consent for publication was obtained from the participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Fig. S1 The SUMOylation site information of RUNX3 (EPS 687 KB)

13577_2023_952_MOESM2_ESM.eps

Supplementary Fig. S2 TUNEL staining test for apoptosis of cells in each group after stimulation by H2O2 or AGE. A: TUNEL staining test for apoptosis of cells in each group after H2O2 stimulation (400×); B: TUNEL staining test for apoptosis of cells in each group after AGE stimulation (400×). The experiment was repeated three times (EPS 2628 KB)

Supplementary file3 (DOCX 13 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Q., Zhao, T., Lin, L. et al. PIAS1 impedes vascular endothelial injury and atherosclerotic plaque formation in diabetes by blocking the RUNX3/TSP-1 axis. Human Cell 36, 1915–1927 (2023). https://doi.org/10.1007/s13577-023-00952-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-023-00952-0

Keywords

Navigation