Skip to main content
Log in

Current insight into the functions of microRNAs in common human hair loss disorders: a mini review

  • Review Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Alopecia areata (AA) and Androgenic alopecia (AGA) are the most common multifactorial hair loss disorders that have a serious psychological impact on the affected individuals, while frontal fibrosing alopecia (FFA) is comparatively less common. However, due to the unknown etiology and the effect of many adverse factors, the prognosis of these conditions is challenging to predict. Moreover, no approved therapy has been available to date to prevent or treat these disorders. MicroRNAs (miRNAs) are a group of evolutionary conserved small non-coding RNA molecules with significant roles in the posttranscriptional gene regulation either through mRNA degradation or translational repression. A number of biological processes are controlled by these molecules, including cell growth and differentiation, proliferation, inflammation, immune responses, and apoptosis. Recently, a handful of studies have demonstrated the impact of miRNAs on common hair loss-related disorders; however, the exhaustive molecular mechanisms are still unclear. In this review, we discussed the functional implications of miRNAs in common hair loss-related disorders and addressed their efficacy to be used for theranostic purposes shortly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AA:

Alopecia areata

AGA:

Androgenic alopecia

AGO2:

Argonaute 2

APP:

Amyloid-beta precursor protein

ASK1:

Apoptosis signal-regulating kinase 1

BAK1:

Brassinosteroid insensitive 1–associated kinase 1

BCL2L10:

B-cell lymphoma/leukemia 2-like protein 10

BNIP2:

B-cell lymphoma 2 interacting protein 2

CTLA4:

Cytotoxic T lymphocyte antigen 4

CXCL11:

C-X-C motif chemokine 11

DTH:

Delayed-type hypersensitivity

DYRK1A:

Dual‐specificity tyrosine phosphorylation‐regulated kinase 1A

FFA:

Frontal fibrosing alopecia

FOXO1:

Forkhead transcription factor 1

FPHL:

Female pattern hair loss

HF:

Hair follicle

HDPC:

Human dermal papilla cells

HS:

Hair shaft

ICOS:

Inducible co-stimulatory protein

IFNG:

Interferon-gamma

IL2RA:

Interleukin-2 receptor alpha

JAK/STAT:

Janus kinase/signal transducers and activators of transcription

MAPK:

Mitogen-activated protein kinase

miRNA:

MicroRNA

MPB:

Male pattern baldness

NFAT:

Nuclear factor of activated T cell

p27/kip1:

Cyclin-dependent kinase inhibitor 1B

p57/kip2:

Cyclin-dependent kinase inhibitor 1C

pre-miRNA:

Precursor microRNA

pri-miRNA:

Primary microRNA

RISC:

RNA-induced silencing complex

SCF/c-kit:

Stem cell factor/tyrosine-protein kinase KIT

SFRP1:

Secreted frizzled-related protein 1

STAT1:

Signal transducer and activator of transcription 1

STX17:

Syntaxin 17

TAP:

Transporter associated with antigen processing

TAP2:

Transporter associated with antigen processing 2

TGF:

Transforming growth factor

TNKS2:

Tankyrase-2

TNXB:

Tenascin XB

UTR:

Untranslated region

VDR:

Vitamin D receptor

XPO5:

Exportin 5

References

  1. Brunner MAT, Jagannathan V, Waluk DP, et al. Novel insights into the pathways regulating the canine hair cycle and their deregulation in alopecia X. PLoS ONE. 2017;12(10):e0186469. https://doi.org/10.1371/journal.pone.0186469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Purba TS, Brunken L, Hawkshaw NJ, Peake M, Hardman J, Paus R. A primer for studying cell cycle dynamics of the human hair follicle. ExpDermatol. 2016;25(9):663–8. https://doi.org/10.1111/exd.13046.

    Article  CAS  Google Scholar 

  3. Andl T, Botchkareva NV. MicroRNAs (miRNAs) in the control of HF development and cycling: the next frontiers in hair research. ExpDermatol. 2015;24(11):821–6. https://doi.org/10.1111/exd.12785.

    Article  Google Scholar 

  4. Alonso L, Fuchs E. The hair cycle. J Cell Sci. 2006;119(3):391–3. https://doi.org/10.1242/jcs.02793.

    Article  CAS  PubMed  Google Scholar 

  5. Vasserot AP, Geyfman M, Poloso NJ. Androgenetic alopecia: combing the hair follicle signaling pathways for new therapeutic targets and more effective treatment options. Expert OpinTher Targets. 2019;23(9):755–71. https://doi.org/10.1080/14728222.2019.1659779.

    Article  CAS  Google Scholar 

  6. Babalola O, Mamalis A, Lev-Tov H, Jagdeo J. The role of microRNAs in skin fibrosis. Arch Dermatol Res. 2013;305(9):763–76. https://doi.org/10.1007/s00403-013-1410-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhu L, Liu J, Cheng G. Role of microRNAs in schistosomes and schistosomiasis. Front Cell Infect Microbiol. 2014. https://doi.org/10.3389/fcimb.2014.00165.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Paul S, de la Fuente-Jiménez JL, Manriquez CG, Sharma A. Identification, characterization and expression analysis of passion fruit (Passiflora edulis) microRNAs. 3 Biotech. 2020;10(1):25. https://doi.org/10.1007/s13205-019-2000-5.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Paul S, Ruiz-Manriquez LM, Serrano-Cano FI, Estrada-Meza C, Solorio-Diaz KA, Srivastava A. Human microRNAs in host–parasite interaction: a review. 3 Biotech. 2020;10(12):510. https://doi.org/10.1007/s13205-020-02498-6.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Paul S, Bravo Vázquez LA, Pérez Uribe S, Roxana Reyes-Pérez P, Sharma A. Current status of microRNA-based therapeutic approaches in neurodegenerative disorders. Cells. 2020;9(7):1698. https://doi.org/10.3390/cells9071698.

    Article  CAS  PubMed Central  Google Scholar 

  11. Paul S, Reyes PR, Garza BS, Sharma A. MicroRNAs and child neuropsychiatric disorders: a brief review. Neurochem Res. 2020;45(2):232–40. https://doi.org/10.1007/s11064-019-02917-y.

    Article  CAS  PubMed  Google Scholar 

  12. Paul S, Ruiz-Manriquez LM, Ledesma-Pacheco SJ, et al. Roles of microRNAs in chronic pediatric diseases and their use as potential biomarkers: a review. Arch BiochemBiophys. 2021;699:108763. https://doi.org/10.1016/j.abb.2021.108763.

    Article  CAS  Google Scholar 

  13. de la Fuente Jiménez JL, Sharma A, Paul S. Characterization of miRNAs from sardine (Sardina pilchardusWalbaum, 1792) and their tissue-specific expression analysis in brain and liver. 3 Biotech. 2020;10(7):318. https://doi.org/10.1007/s13205-020-02298-y.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sharma A, Ruiz-Manriquez LM, Serrano-Cano FI, et al. Identification of microRNAs and their expression in leaf tissues of guava (Psidium guajava L) under salinity stress. Agronomy. 2020;10(12):1920. https://doi.org/10.3390/agronomy10121920.

    Article  CAS  Google Scholar 

  15. Wolska-Gawron K, Bartosińska J, Krasowska D. MicroRNA in localized scleroderma: a review of literature. Arch Dermatol Res. 2020;312(5):317–24. https://doi.org/10.1007/s00403-019-01991-0.

    Article  CAS  PubMed  Google Scholar 

  16. Witek Ł, Janikowski T, Gabriel I, et al. Analysis of microRNA regulating cell cycle-related tumor suppressor genes in endometrial cancer patients. Hum Cell. 2020. https://doi.org/10.1007/s13577-020-00451-6.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Masalha M, Sidi Y, Avni D. The contribution of feedback loops between miRNAs, cytokines and growth factors to the pathogenesis of psoriasis. ExpDermatol. 2018;27(6):603–10. https://doi.org/10.1111/exd.13520.

    Article  Google Scholar 

  18. Friedman RC, Farh KKH, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19(1):92–105. https://doi.org/10.1101/gr.082701.108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yang Y, Huang Q, Luo C, Wen Y, Liu R, Sun H, Tang L. MicroRNAs in acute pancreatitis: from pathogenesis to novel diagnosis and therapy. J Cell Physiol. 2020;235(3):1948–61. https://doi.org/10.1002/jcp.29212.

    Article  CAS  PubMed  Google Scholar 

  20. O’Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol. 2018. https://doi.org/10.3389/fendo.2018.00402.

    Article  Google Scholar 

  21. Macfarlane LA, Murphy PR. MicroRNA: biogenesis, function and role in cancer. Curr Genomics. 2010;11(7):537–61. https://doi.org/10.2174/138920210793175895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shivdasani RA. MicroRNAs: regulators of gene expression and cell differentiation. Blood. 2006;108(12):3646–53. https://doi.org/10.1182/blood-2006-01-030015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Song X, Ning W, Niu J, et al. CBX8 acts as an independent RNA-binding protein to regulate the maturation of miR-378a-3p in colon cancer cells. Hum Cell. 2021. https://doi.org/10.1007/s13577-020-00477-w.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kotyla PJ, Islam MA. MicroRNA (miRNA): a new dimension in the pathogenesis of antiphospholipid syndrome (APS). Int J Mol Sci. 2020;21(6):2076. https://doi.org/10.3390/ijms21062076.

    Article  CAS  PubMed Central  Google Scholar 

  25. Aksenenko M, Palkina N, Komina A, Ruksha T. MiR-92a-1-5p and miR-328-3p are up-regulated in skin of female pattern hair loss patients. Ann Dermatol. 2019;31(2):256–9. https://doi.org/10.5021/ad.2019.31.2.256.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Goodarzi HR, Abbasi A, Saffari M, Tabei MB, NooriDaloii MR. MicroRNAs take part in pathophysiology and pathogenesis of male pattern baldness. MolBiol Rep. 2010;37(6):2959–65. https://doi.org/10.1007/s11033-009-9862-2.

    Article  CAS  Google Scholar 

  27. Wang EHC, DeStefano GM, Patel AV, et al. Identification of differentially expressed miRNAs in alopecia areata that target immune-regulatory pathways. Genes Immun. 2017;18(2):100–4. https://doi.org/10.1038/gene.2017.4.

    Article  CAS  PubMed  Google Scholar 

  28. Bi Y, Liu G, Yang R. MicroRNAs: novel regulators during the immune response. J Cell Physiol. 2009;218(3):467–72. https://doi.org/10.1002/jcp.21639.

    Article  CAS  PubMed  Google Scholar 

  29. Engin B, Oba MÇ, Tüzün Y. Alopecia Areata. Hair Scalp Disorders. 2017. https://doi.org/10.5772/66594.

    Article  Google Scholar 

  30. Pratt CH, King LE Jr, Messenger AG, Christiano AM, Sundberg JP. Alopecia areata. Nat Rev Dis Primers. 2017;3:17011. https://doi.org/10.1038/nrdp.2017.11.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Harries MJ, Sun J, Paus R, King LE Jr. Management of alopecia areata. BMJ. 2010;341:c3671. https://doi.org/10.1136/bmj.c3671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gilhar A, Schrum AG, Etzioni A, Waldmann H, Paus R. Alopecia areata: Animal models illuminate autoimmune pathogenesis and novel immunotherapeutic strategies. Autoimmun Rev. 2016;15(7):726–35. https://doi.org/10.1016/j.autrev.2016.03.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pauley KM, Cha S, Chan EK. MicroRNA in autoimmunity and autoimmune diseases. J Autoimmun. 2009;32(3–4):189–94. https://doi.org/10.1016/j.jaut.2009.02.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang EHC, Yu M, Breitkopf T, et al. Identification of autoantigen epitopes in alopecia areata. J Invest Dermatol. 2016;136(8):1617–26. https://doi.org/10.1016/j.jid.2016.04.004.

    Article  CAS  PubMed  Google Scholar 

  35. Wang E, Chong K, Yu M, et al. Development of autoimmune hair loss disease alopecia areata is associated with cardiac dysfunction in C3H/HeJ mice. PLoS ONE. 2013;8(4):e62935. https://doi.org/10.1371/journal.pone.0062935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang L, Ke F, Liu Z, et al. MicroRNA-31 negatively regulates peripherally derived regulatory T-cell generation by repressing retinoic acid-inducible protein 3. Nat Commun. 2015;6(1):7639. https://doi.org/10.1038/ncomms8639.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sheng Y, Qi S, Hu R, et al. Identification of blood microRNA alterations in patients with severe active alopecia areata. J Cell Biochem. 2019;120(9):14421–30. https://doi.org/10.1002/jcb.28700.

    Article  CAS  PubMed  Google Scholar 

  38. Sánchez-Jiménez C, Carrascoso I, Barrero J, Izquierdo JM. Identification of a set of miRNAs differentially expressed in transiently TIA-depleted HeLa cells by genome-wide profiling. BMC MolBiol. 2013;14(1):4. https://doi.org/10.1186/1471-2199-14-4.

    Article  CAS  Google Scholar 

  39. Tafazzoli A, Forstner AJ, Broadley D, et al. Genome-wide MicroRNA analysis implicates miR-30b/d in the etiology of alopecia areata. J Invest Dermatol. 2018;138(3):549–56. https://doi.org/10.1016/j.jid.2017.09.046.

    Article  CAS  PubMed  Google Scholar 

  40. Gratz IK, Truong HA, Yang SH, et al. Cutting Edge: memory regulatory t cells require IL-7 and not IL-2 for their maintenance in peripheral tissues. J Immunol. 2013;190(9):4483–7. https://doi.org/10.4049/jimmunol.1300212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Erjavec S, Abdelaziz A, Patel A, Petukhova L, Christiano A. 827 Role of the autophagy protein, Syntaxin 17 (STX17), in melanogenesis and alopecia areata. J Invest Dermatol. 2018;138(5):S140. https://doi.org/10.1016/j.jid.2018.03.837.

    Article  Google Scholar 

  42. Petukhova L, Duvic M, Hordinsky M, et al. Genome-wide association study in alopecia areata implicates both innate and adaptive immunity. Nature. 2010;466(7302):113–7. https://doi.org/10.1038/nature09114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lee YH, Bae S-C, Choi SJ, Ji JD, Song GG. Genome-wide pathway analysis of genome-wide association studies on systemic lupus erythematosus and rheumatoid arthritis. MolBiol Rep. 2012;39(12):10627–35. https://doi.org/10.1007/s11033-012-1952-x.

    Article  CAS  Google Scholar 

  44. Gulati N, Løvendorf MB, Zibert JR, et al. Unique microRNAs appear at different times during the course of a delayed-type hypersensitivity reaction in human skin. ExpDermatol. 2015;24(12):953–7. https://doi.org/10.1111/exd.12813.

    Article  CAS  Google Scholar 

  45. Smith NL, Wissink EM, Grimson A, Rudd BD. miR-150 regulates differentiation and cytolytic effector function in CD8+ T cells. Sci Rep. 2015;5(1):16399. https://doi.org/10.1038/srep16399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Huang B, Zhao J, Lei Z, et al. miR-142-3p restricts cAMP production in CD4+CD25- T cells and CD4+CD25+ TREG cells by targeting AC9 mRNA. EMBO Rep. 2009;10(2):180–5. https://doi.org/10.1038/embor.2008.224.

    Article  CAS  PubMed  Google Scholar 

  47. Ding S, Liang Y, Zhao M, et al. Decreased microRNA-142-3p/5p expression causes CD4+ T cell activation and B cell hyperstimulation in systemic lupus erythematosus. Arthritis Rheum. 2012;64(9):2953–63. https://doi.org/10.1002/art.34505.

    Article  CAS  PubMed  Google Scholar 

  48. Heilmann-Heimbach S, Herold C, Hochfeld LM, et al. Meta-analysis identifies novel risk loci and yields systematic insights into the biology of male-pattern baldness. Nat Commun. 2017;8:14694. https://doi.org/10.1038/ncomms14694.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Mysore V, Parthasaradhi A, Kharkar RD, et al. Expert consensus on the management of androgenetic alopecia in India. Int J Trichology. 2019;11(3):101–6. https://doi.org/10.4103/ijt.ijt_24_19.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ning MS, Andl T. Control by a hair’s breadth: the role of microRNAs in the skin. Cell Mol Life Sci. 2013;70(7):1149–69. https://doi.org/10.1007/s00018-012-1117-z.

    Article  CAS  PubMed  Google Scholar 

  51. Deng W, Hu T, Han L, et al. miRNA microarray profiling in patients with androgenic alopecia and the effects of miR-133b on hair growth. ExpMolPathol. 2021;118:104589. https://doi.org/10.1016/j.yexmp.2020.104589.

    Article  CAS  Google Scholar 

  52. Mohammadi P, Nilforoushzadeh MA, Youssef KK, et al. Defining microRNA signatures of hair follicular stem and progenitor cells in healthy and androgenic alopecia patients. J DermatolSci. 2021;101(1):49–57. https://doi.org/10.1016/j.jdermsci.2020.11.002.

    Article  CAS  Google Scholar 

  53. Fabbrocini G, Cantelli M, Masarà A, Annunziata MC, Marasca C, Cacciapuoti S. Female pattern hair loss: a clinical, pathophysiologic, and therapeutic review. Int J WomensDermatol. 2018;4(4):203–11. https://doi.org/10.1016/j.ijwd.2018.05.001.

    Article  CAS  Google Scholar 

  54. Tziotzios C, Ainali C, Holmes S, et al. Tissue and Circulating MicroRNA Co-expression Analysis Shows Potential Involvement of miRNAs in the Pathobiology of Frontal Fibrosing Alopecia. J Invest Dermatol. 2017;137(11):2440–3. https://doi.org/10.1016/j.jid.2017.06.030.

    Article  CAS  PubMed  Google Scholar 

  55. Tziotzios C, Stefanato CM, Fenton DA, Simpson MA, McGrath JA. Frontal fibrosing alopecia: reflections and hypotheses on aetiology and pathogenesis. ExpDermatol. 2016;25(11):847–52. https://doi.org/10.1111/exd.13071.

    Article  Google Scholar 

  56. Ideozu JE, Zhang X, Rangaraj V, McColley S, Levy H. Microarray profiling identifies extracellular circulating miRNAs dysregulated in cystic fibrosis. Sci Rep. 2019;9(1):15483. https://doi.org/10.1038/s41598-019-51890-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ichihara A, Wang Z, Jinnin M, et al. Upregulation of miR-18a-5p contributes to epidermal necrolysis in severe drug eruptions. J Allergy ClinImmunol. 2014;133(4):1065–74. https://doi.org/10.1016/j.jaci.2013.09.019.

    Article  CAS  Google Scholar 

  58. Kim O-Y, Cha HJ, Ahn KJ, An I-S, An S, Bae S. Identification of microRNAs involved in growth arrest and cell death in hydrogen peroxide-treated human dermal papilla cells. Mol Med Rep. 2014;10(1):145–54. https://doi.org/10.3892/mmr.2014.2158.

    Article  CAS  PubMed  Google Scholar 

  59. Lu Y, Li Z, Xie B, Song Y, Ye X, Liu P. hsa-miR-20a-5p attenuates allergic inflammation in HMC-1 cells by targeting HDAC4. MolImmunol. 2019;107:84–90. https://doi.org/10.1016/j.molimm.2019.01.010.

    Article  CAS  Google Scholar 

  60. Jinnin M. Recent progress in studies of miRNA and skin diseases. J Dermatol. 2015;42(6):551–8. https://doi.org/10.1111/1346-8138.12904.

    Article  CAS  PubMed  Google Scholar 

  61. Gohary YM, Abdel Fattah DS. Detection of tumor necrosis factor-alpha in nonlesional tissues of alopecia areata patients: a prove for a systemic disease. Int J Trichology. 2017;9(4):154–9. https://doi.org/10.4103/ijt.ijt_47_17.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hassan AM, Neinaa YME-H, El-Bendary AS, Zakaria SS. MicroRNA-146a and Forkhead box protein 3 expressions in nonsegmental vitiligo: an insight into disease pathogenesis. J WomensDermatolSoc. 2019;16(2):105. https://doi.org/10.4103/JEWD.JEWD_19_19.

    Article  Google Scholar 

  63. Lu MC, Yu CL, Chen HC, Yu HC, Huang HB, Lai NS. Increased miR-223 expression in T cells from patients with rheumatoid arthritis leads to decreased insulin-like growth factor-1-mediated interleukin-10 production. ClinExpImmunol. 2014;177(3):641–51. https://doi.org/10.1111/cei.12374.

    Article  CAS  Google Scholar 

  64. Khor B, Gagnon JD, Goel G, et al. The kinase DYRK1A reciprocally regulates the differentiation of Th17 and regulatory T cells. Elife. 2015;4:e05920. https://doi.org/10.7554/eLife.05920.

    Article  PubMed Central  Google Scholar 

  65. Rehage N, Davydova E, Conrad C, et al. Binding of NUFIP2 to Roquin promotes recognition and regulation of ICOS mRNA. Nat Commun. 2018;9(1):299. https://doi.org/10.1038/s41467-017-02582-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sánchez-Díaz R, Blanco-Dominguez R, Lasarte S, et al. Thymus-derived regulatory T cell development is regulated by C-Type lectin-mediated BIC/MicroRNA 155 expression. Mol Cell Biol. 2017;37(9):e00341-e416. https://doi.org/10.1128/MCB.00341-16.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Yuan S, Li F, Meng Q, et al. Posttranscriptional regulation of keratinocyte progenitor cell expansion, differentiation and hair follicle regression by miR-22. PLoS Genet. 2015;11(5):e1005253. https://doi.org/10.1371/journal.pgen.1005253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Malik A, Pal R, Gupta SK. EGF-mediated reduced miR-92a-1-5p controls HTR-8/SVneo cell invasion through activation of MAPK8 and FAS which in turn increase MMP-2/-9 expression. Sci Rep. 2020;10(1):12274. https://doi.org/10.1038/s41598-020-68966-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Koga T, Ichinose K, Mizui M, Crispín JC, Tsokos GC. Calcium/calmodulin-dependent protein kinase IV suppresses IL-2 production and regulatory T cell activity in lupus. J Immunol. 2012;189(7):3490–6. https://doi.org/10.4049/jimmunol.1201785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujay Paul.

Ethics declarations

Conflicts of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 215 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, S., Licona-Vázquez, I., Serrano-Cano, F.I. et al. Current insight into the functions of microRNAs in common human hair loss disorders: a mini review. Human Cell 34, 1040–1050 (2021). https://doi.org/10.1007/s13577-021-00540-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-021-00540-0

Keywords

Navigation