Skip to main content

Advertisement

Log in

Circ_0067835 regulates allergic inflammatory response in type-2 innate lymphoid cells in allergic rhinitis (AR) via miR-155/GATA3

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Allergic rhinitis (AR) is a familiar respiratory allergic inflammatory disease with higher incidence. The pathogenesis of AR is particularly complex. Therefore, a lot of work is acquired to excavate deep mechanisms, thereby providing effective strategies for AR diagnose and treatment. AR mice model was induced by recombinant murine IL-33 (0.05 µg/µl) on days 1, 3, and 5. The lentiviral vectors carrying si-circ_0067835, miR-155 mimic, si-NC or miR-NC were injected into AR mice. Thus, mice were divided into control, AR, AR + si-NC, AR + si-circ_0067835, AR + si-circ_0067835 + miR-NC, and AR + si-circ_0067835 + miR-155 mimic groups. qRT-PCR experiment was used to measure the expression of circ_0067835 and miR-155. Behavioral test result was quantified to assess AR mice model. Hematoxylin and eosin (HE) staining was performed to analyze histopathological changes. Helper T cell 2 (Th2) cytokines (IL-4, IL-5, IL-9 and IL-13) and percentage of type-2 innate lymphoid cells (ILC2s) in nasal mucosa tissues in AR mice model were evaluated needing western blot, ELISA, and flow cytometry. Besides, the targeting relationship between circ_0067835 and miR-155, or between miR-155 and GATA3, was investigated via luciferase report assay. Circ_0067835 expression levels were raised in the nasal mucosa tissues of AR mice. Inhibiting circ_0067835 could reduce Type2 cytokines and ILC2s levels in AR mice model. Furthermore, circ_0067835 targeted and positively regulated miR-155 expression, and GATA3 was a downstream target of miR-155 and adjusted by circ_0067835/miR-155 axis. In addition, silencing circ_0067835 inhibited cytokines and ILC2s levels by down-regulating miR-155. Circ_0067835 effectively inhibited AR response in ILC2s through participation of miR-155/GATA3 axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hon KL, Fung CK, Leung AK, Lam HS, Lee SL. Recent patents of complementary and alternative medicine for allergic rhinitis. Recent Pat Inflam Allergy Drug Discov. 2015;9(2):107–19. https://doi.org/10.2174/1872213x10666151119144718.

    Article  CAS  Google Scholar 

  2. Alsamarai AM, Abdulsatar M, Ahmed Alobaidi AH. Evaluation of topical black seed oil in the treatment of allergic rhinitis. AntiInflam Antiallergy Agents Med Chem. 2014;13(1):75–82. https://doi.org/10.2174/18715230113129990014.

    Article  CAS  Google Scholar 

  3. Brożek JL, Bousquet J, Agache I, Agarwal A, Bachert C, Bosnic-Anticevich S, et al. Allergic rhinitis and its impact on asthma (ARIA) guidelines-2016 revision. J Allergy Clin Immunol. 2017;140(4):950–8. https://doi.org/10.1016/j.jaci.2017.03.050.

    Article  PubMed  Google Scholar 

  4. Seidman MD, Gurgel RK, Lin SY, Schwartz SR, Baroody FM, Bonner JR, et al. Clinical practice guideline: allergic rhinitis. J Am Acad Otolaryngol-Head Neck Surg. 2015;152(1 Suppl):1–43. https://doi.org/10.1177/0194599814561600.

    Article  Google Scholar 

  5. Nelson HS. Allergen immunotherapy now and in the future. Allergy Asthma Proc. 2016;37(4):268–72. https://doi.org/10.2500/aap.2016.37.3966.

    Article  CAS  PubMed  Google Scholar 

  6. Kim HY, Kim J, Jeong HJ, Kim HM. Potential anti-inflammatory effect of Madi-Ryuk and its active ingredient tannic acid on allergic rhinitis. Mol Immunol. 2019;114:362–8. https://doi.org/10.1016/j.molimm.2019.08.013.

    Article  CAS  PubMed  Google Scholar 

  7. Kouzegaran S, Zamani MA, Faridhosseini R, Rafatpanah H, Rezaee A, Yousefzadeh H, et al. Immunotherapy in allergic rhinitis: it’s effect on the immune system and clinical symptoms. Open Access Macedonian J Med Sci. 2018;6(7):1248–52. https://doi.org/10.3889/oamjms.2018.264.

    Article  Google Scholar 

  8. Sanders NL, Mishra A. Role of interleukin-18 in the pathophysiology of allergic diseases. Cytokine Growth Factor Rev. 2016;32:31–9. https://doi.org/10.1016/j.cytogfr.2016.07.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Beermann J, Piccoli MT, Viereck J, Thum T. Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches. Physiol Rev. 2016;96(4):1297–325. https://doi.org/10.1152/physrev.00041.2015.

    Article  CAS  PubMed  Google Scholar 

  10. Matsui M, Corey DR. Non-coding RNAs as drug targets. Nat Rev Drug Discov. 2017;16(3):167–79. https://doi.org/10.1038/nrd.2016.117.

    Article  CAS  PubMed  Google Scholar 

  11. Han X, Huang S. LncRNA PTPRE-AS1 modulates M2 macrophage activation and inflammatory diseases by epigenetic promotion of PTPRE. Sci Adv. 2019;5(12):9230. https://doi.org/10.1126/sciadv.aax9230.

    Article  CAS  Google Scholar 

  12. Dissanayake E, Inoue Y. MicroRNAs in allergic disease. Curr Allergy Asthma Rep. 2016;16(9):67. https://doi.org/10.1007/s11882-016-0648-z.

    Article  CAS  PubMed  Google Scholar 

  13. Wang T, Chen D, Wang P, Xu Z, Li Y. miR-375 prevents nasal mucosa cells from apoptosis and ameliorates allergic rhinitis via inhibiting JAK2/STAT3 pathway. Biomed Pharma Biomed. 2018;103:621–7. https://doi.org/10.1016/j.biopha.2018.04.050.

    Article  CAS  Google Scholar 

  14. Zhu X, Wang X, Wang Y, Zhao Y. The regulatory network among CircHIPK3, LncGAS5, and miR-495 promotes Th2 differentiation in allergic rhinitis. Cell Death Dis. 2020;11(4):216. https://doi.org/10.1038/s41419-020-2394-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhu YQ, Liao B, Liu YH, Wang Z, Zhu XH, Chen XB, et al. MicroRNA-155 plays critical effects on Type2 factors expression and allergic inflammatory response in type-2 innate lymphoid cells in allergic rhinitis. Eur Rev Med Pharmacol Sci. 2019;23(10):4097–109. https://doi.org/10.26355/eurrev_201905_17911.

    Article  PubMed  Google Scholar 

  16. Yanagida N, Minoura T, Kitaoka S. Erratum: butter tolerance in children allergic to cow’s milk. Allergy Asthma Immunol Res. 2016;8(2):178. https://doi.org/10.4168/aair.2016.8.2.178.

    Article  PubMed  Google Scholar 

  17. Fan D, Wang X, Wang M, Wang Y, Zhang L, Li Y, et al. Allergen-dependent differences in ILC2s frequencies in patients with allergic rhinitis. Allergy Asthma Immunol Res. 2016;8(3):216–22. https://doi.org/10.4168/aair.2016.8.3.216.

    Article  CAS  PubMed  Google Scholar 

  18. Diefenbach A, Colonna M, Koyasu S. Development, differentiation, and diversity of innate lymphoid cells. Immunity. 2014;41(3):354–65. https://doi.org/10.1016/j.immuni.2014.09.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu Z, Zhang XH, Callejas-Díaz B, Mullol J. MicroRNA in united airway diseases. Internat J Mole Sci. 2016;17(5):8. https://doi.org/10.3390/ijms17050716.

    Article  CAS  Google Scholar 

  20. Lu TX, Rothenberg ME. Diagnostic, functional, and therapeutic roles of microRNA in allergic diseases. J Allergy Clin Immunol. 2013;132(1):3–13. https://doi.org/10.1016/j.jaci.2013.04.039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang L, Yang X, Li W, Song X, Kang S. MiR-202-5p/MATN2 are associated with regulatory T-cells differentiation and function in allergic rhinitis. Hum Cell. 2019;32(4):411–7. https://doi.org/10.1007/s13577-019-00266-0.

    Article  CAS  PubMed  Google Scholar 

  22. Wang L, Liu X, Song X, Dong L, Liu D. MiR-202-5p promotes M2 polarization in allergic rhinitis by targeting MATN2. Int Arch Allergy Immunol. 2019;178(2):119–27. https://doi.org/10.1159/000493803.

    Article  CAS  PubMed  Google Scholar 

  23. Wang J, Cui Z, Liu L, Zhang S, Zhang Y, Zhang Y, et al. MiR-146a mimic attenuates murine allergic rhinitis by downregulating TLR4/TRAF6/NF-κB pathway. Immunotherapy. 2019;11(13):1095–105. https://doi.org/10.2217/imt-2019-0047.

    Article  CAS  PubMed  Google Scholar 

  24. Ruggiero T, Trabucchi M, De Santa F, Zupo S, Harfe BD, McManus MT, et al. LPS induces KH-type splicing regulatory protein-dependent processing of microRNA-155 precursors in macrophages. FASEB J Off Pub Feder Am Soc Exp Biol. 2009;23(9):2898–908. https://doi.org/10.1096/fj.09-131342.

    Article  CAS  Google Scholar 

  25. Zhu YQ, Liu YH. [A review on group 2 innate lymphoid cells and miR-155 in allergic rhinitis] Lin chuang er bi yan hou tou jing wai ke za zhi. J Clin Otorhinolaryngol Head Neck Surg. 2017;31(24):1940–3. https://doi.org/10.13201/j.issn.1001-1781.2017.24.019.

    Article  CAS  Google Scholar 

  26. Liu J, Cao Z. Protective effect of circular RNA (CircRNA) Ddx17 in ovalbumin (OVA)-induced allergic rhinitis (AR) mice. Med Sci Monitor Internat Med J Exp Clin Res. 2020;26:e919083. https://doi.org/10.12659/msm.919083.

    Article  CAS  Google Scholar 

  27. Feng W, Gong H, Wang Y, Zhu G, Xue T, Wang Y, et al. circIFT80 functions as a ceRNA of miR-1236-3p to promote colorectal cancer progression. Mole Therapy Nucleic Acids. 2019;18:375–87. https://doi.org/10.1016/j.omtn.2019.08.024.

    Article  CAS  Google Scholar 

  28. Zhang F, Zhang R, Zhang X, Wu Y, Li X, Zhang S, et al. Comprehensive analysis of circRNA expression pattern and circRNA-miRNA-mRNA network in the pathogenesis of atherosclerosis in rabbits. Aging. 2018;10(9):2266–83. https://doi.org/10.18632/aging.101541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fujiwara T. GATA transcription factors: basic principles and related human disorders. Tohoku J Exp Med. 2017;242(2):83–91. https://doi.org/10.1620/tjem.242.83.

    Article  CAS  PubMed  Google Scholar 

  30. Caramori G, Lim S, Ito K, Tomita K, Oates T, Jazrawi E, et al. Expression of GATA family of transcription factors in T-cells, monocytes and bronchial biopsies. Eur Respir J. 2001;18(3):466–73. https://doi.org/10.1183/09031936.01.00040701.

    Article  CAS  PubMed  Google Scholar 

  31. Jungraithmayr W, Ji L, Yang L, Weder W, Korom S, Hersberger M. Increased T-bet to GATA-3 ratio during acute allograft rejection in the rat lung. Transpl Proc. 2009;41(10):4316–20. https://doi.org/10.1016/j.transproceed.2009.08.057.

    Article  CAS  Google Scholar 

  32. Johansson K, Malmhäll C, Ramos-Ramírez P, Rådinger M. MicroRNA-155 is a critical regulator of type 2 innate lymphoid cells and IL-33 signaling in experimental models of allergic airway inflammation. J Allergy Clin Immunol. 2017;139(3):1007-16.e9. https://doi.org/10.1016/j.jaci.2016.06.035.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by National Natural Science Foundation of China (No.81760183), Jiangxi Provincial Natural Science Foundation (No. 20202ACBL206013), The Key Research and Development Program of Jiangxi Science and Technology Department (No. 20202BBGL73018) and the science and technology program of Jiangxi Provincial Education Department (GJJ200250).

Funding

This research was supported by National Natural Science Foundation of China (No.81760183), Jiangxi Provincial Natural Science Foundation (No. 20202ACBL206013), The Key Research and Development Program of Jiangxi Science and Technology Department (No. 20202BBGL73018) and the science and technology program of Jiangxi Provincial Education Department (GJJ200250).

Author information

Authors and Affiliations

Authors

Contributions

Guarantor of integrity of the entire study: CY. Study concepts: CY. Study design: definition of intellectual content: XJ. Literature research: JD. Clinical studies: HL. Experimental studies: TH. Data acquisition: KL. Data analysis: HZ. Statistical analysis: HZ. Manuscript preparation: XJ. Manuscript editing: XC. Manuscript review: CY.

Corresponding author

Correspondence to Chunping Yang.

Ethics declarations

Conflict of interest

Authors declare that there is no conflict of interests.

Ethics approval

The animal usage protocols were approved in advance by the Animal Care and Use Committees of the Second Affiliated Hospital of Nanchang University.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Huang, T., Liu, H. et al. Circ_0067835 regulates allergic inflammatory response in type-2 innate lymphoid cells in allergic rhinitis (AR) via miR-155/GATA3. Human Cell 34, 1130–1141 (2021). https://doi.org/10.1007/s13577-021-00533-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-021-00533-z

Keywords

Navigation