Skip to main content
Log in

RETRACTED ARTICLE: LINC00665/miR-9-5p/ATF1 is a novel axis involved in the progression of colorectal cancer

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

This article was retracted on 06 December 2022

This article has been updated

Abstract

Long noncoding RNAs (lncRNAs) are abnormally expressed in many malignant tumors and involved in regulating the malignant phenotypes of cancer cells. However, the role of LINC00665 in colorectal cancer (CRC) and its regulatory mechanism remain unclear. In this study, real-time polymerase chain reaction (RT-PCR) was used to detect the expressions of LINC00665, miR-9-5p and activating transcription factor 1 (ATF1) mRNA in CRC tissues. The expression of ATF1 in CRC tissues was also detected by immunohistochemistry and Western blot. CCK-8 and colony formation assays were employed to detect cell proliferation. Cell cycle and apoptosis were detected by flow cytometry analysis. Scratch healing assay and Transwell test were exploited to detect cell migration and invasion. The targeting relationships between LINC00665 and miR-9-5p, and miR-9-5p and ATF1 were validated by dual luciferase reporter assay. We found that LINC00665 was significantly overexpressed in CRC tissues, and it was also negatively correlated with the expression of miR-9-5p and positively associated with the expression of ATF1. Besides, LINC00665 promoted the proliferation, migration and invasion of CRC cells, and inhibited cell apoptosis by sponging miR-9-5p. ATF1 was proved to be the downstream target of miR-9-5p and was indirectly regulated by LINC00665. Collectively, it is concluded that LINC00665 contributes to the progression of CRC by regulating miR-9-5p/ATF1 axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

The data used to support the findings of this study are available from the corresponding author upon request.

Change history

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics. CA Cancer J Clin. 2019;69:7–34.

    Article  Google Scholar 

  2. Xiong Y, Wang Y, Tiruthani K. Tumor immune microenvironment and nano-immunotherapeutics in colorectal cancer. Nanomedicine. 2019;14:102034.

    Article  Google Scholar 

  3. Chen G, Gu Y, Han P, Li Z, Zhao JL, Gao MZ. Long noncoding RNA SBF2-AS1 promotes colorectal cancer proliferation and invasion by inhibiting miR-619-5p activity and facilitating HDAC3 expression. J Cell Physiol. 2019;234(10):18688–966.

    Article  CAS  Google Scholar 

  4. Rotte A. Combination of CTLA-4 and PD-1 blockers for treatment of cancer. J Exp Clin Cancer Res. 2019;38(1):255.

    Article  Google Scholar 

  5. Sheng J, Wang L, Han Y, Chen W, Liu H, Zhang M, Deng L, Liu YN. Dual roles of protein as a template and a sulfur provider: a general approach to metal sulfides for efficient photothermal therapy of cancer. Small. 2018;14:1702529.

    Article  Google Scholar 

  6. Mármol I, Quero J, Rodríguez-Yoldi MJ, Cerrada E. Gold as a possible alternative to platinum-based chemotherapy for colon cancer treatment. Cancers (Basel). 2019;11(6):780.

    Article  Google Scholar 

  7. Xu J, Zhang Y, Xu J, Wang M, Liu G, Wang J, Zhao X, Qi Y, Shi J, Cheng K, Li Y, Qi S, Nie G. Reversing tumor stemness via orally targeted nanoparticles achieves efficient colon cancer treatment. Biomaterials. 2019;216:119247.

    Article  CAS  Google Scholar 

  8. Yang C, Sun J, Liu W, Yang Y, Chu Z, Yang T, Gui Y, Wang D. Long noncoding RNA HCP5 contributes to epithelial-mesenchymal transition in colorectal cancer through ZEB1 activation and interacting with miR-139-5p. Am J Transl Res. 2019;11:953–63.

    CAS  Google Scholar 

  9. Bhan A, Soleimani M, Mandal SS. Long noncoding RNA and cancer: a new paradigm. Cancer Res. 2017;77:3965–81.

    Article  CAS  Google Scholar 

  10. Yu X, Zheng H, Tse G, Zhang L, Wu WKK. CASC2: an emerging tumour-suppressing long noncoding RNA in human cancers and melanoma. Cell Prolif. 2018;51(6):e12506.

    Article  Google Scholar 

  11. Tam C, Wong JH, Tsui SKW, Zuo T, Chan TF, Ng TB. LncRNAs with miRNAs in regulation of gastric, liver, and colorectalcancers: updates in recent years. Appl Microbiol Biotechnol. 2019;103(12):4649–77.

    Article  CAS  Google Scholar 

  12. Jothimani G, Sriramulu S, Chabria Y, Sun XF, Banerjee A, Pathak S. A review on theragnostic applications of micrornas and long non-coding RNAs in colorectal cancer. Curr Top Med Chem. 2018;18(30):2614–29.

    Article  CAS  Google Scholar 

  13. Lu CW, Zhou DD, Xie T, Hao JL, Pant OP, Lu CB, Liu XF. HOXA11 antisense long noncoding RNA (HOXA11-AS): a promising lncRNA in human cancers. Cancer Med. 2018;7(8):3792–9.

    Article  CAS  Google Scholar 

  14. Sha QK, Chen L, Xi JZ, Song H. Long non-coding RNA LINC00858 promotes cells proliferation, migration and invasion by acting as a ceRNA of miR-22-3p in colorectal cancer. Artif Cells Nanomed Biotechnol. 2019;47(1):1057–66.

    Article  Google Scholar 

  15. Lan Y, Xiao X, He Z, Luo Y, Wu C, Li L, Song X. Long non coding RNA OCC-1 suppresses cell growth through destabilizing HuR protein in colorectal cancer. Nucleic Acids Res. 2018;46(11):5809–21.

    Article  CAS  Google Scholar 

  16. Cong Z, Diao Y, Xu Y, Li X, Jiang Z, Shao C, Ji S, Shen Y, De W, Qiang Y. Long non-coding RNA linc00665 promotes lung adenocarcinoma progression and functions as ceRNA to regulate AKR1B10-ERK signaling by sponging miR-98. Cell Death Dis. 2019;10(2):84.

    Article  Google Scholar 

  17. Liu X, Lu X, Zhen F, Jin S, Yu T, Zhu Q, Wang W, Xu K, Yao J, Guo R. LINC00665 induces acquired resistance to Gefitinib through recruiting EZH2 and activating PI3K/AKT pathway in CRC. Mol Ther Nucleic Acids. 2019;7(16):155–61.

    Article  Google Scholar 

  18. Anvarnia A, Mohaddes-Gharamaleki F, Asadi M, Akbari M, Yousefi B, Shanehbandi D. Dysregulated microRNAs in colorectal carcinogenesis: New insight to cell survival and apoptosis regulation. J Cell Physiol. 2019;234(12):21683–93.

    Article  CAS  Google Scholar 

  19. Xu Y, Shen L, Li F, Yang J, Wan X, Ouyang M. microRNA-16-5p-containing exosomes derived from bone marrow-derived mesenchymal stem cells inhibit proliferation, migration, and invasion, while promoting apoptosis of colorectal cancer cells by downregulating ITGA2. J Cell Physiol. 2019;234(11):21380–94.

    Article  CAS  Google Scholar 

  20. Xiao Y, Li ZH, Bi YH. MicroRNA-889 promotes cell proliferation in colorectal cancer by targeting DAB2IP. Eur Rev Med Pharmacol Sci. 2019;23(8):3326–34.

    CAS  Google Scholar 

  21. Fan Y, Shi Y, Lin Z, Huang X, Li J, Huang W, Shen D, Zhuang G, Liu W. miR-9-5p suppresses malignant biological behaviors of human gastric cancer cells by negative regulation of TNFAIP8L3. Dig Dis Sci. 2019;64(10):2823–9.

    Article  CAS  Google Scholar 

  22. Wang J, Wang B, Ren H, Chen W. miR-9-5p inhibits pancreatic cancer cell proliferation, invasion and glutamine metabolism by targeting GOT1. Biochem Biophys Res Commun. 2019;509(1):241–8.

    Article  CAS  Google Scholar 

  23. Liang X, Zhou D, Wei C, Luo H, Liu J, Fu R, Cui S. MicroRNA-34c enhances murine male germ cell apoptosis through targeting ATF1. PLoS ONE. 2012;7(3):e33861.

    Article  CAS  Google Scholar 

  24. Hisaoka M, Ishida T, Kuo TT, Matsuyama A, Imamura T, Nishida K, Kuroda H, Inayama Y, Oshiro H, Kobayashi H, Nakajima T, Fukuda T, Ae K, Hashimoto H. Clear cell sarcoma of soft tissue: a clinicopathologic, immunohistochemical, and molecular analysis of 33 cases. Am J Surg Pathol. 2008;32(3):452–60.

    Article  Google Scholar 

  25. Huang GL, Guo HQ, Yang F, Liu OF, Li BB, Liu XY, Lu Y, He ZW. Activating transcription factor 1 is a prognostic marker of colorectal cancer. Asian Pac J Cancer Prev. 2012;13(3):1053–7.

    Article  Google Scholar 

  26. Tian J, Chang J, Gong J, Lou J, Fu M, Li J, Ke J, Zhu Y, Gong Y, Yang Y, Zou D, Peng X, Yang N, Mei S, Wang X, Zhong R, Cai K, Miao X. Systematic functional interrogation of genes in GWAS loci identified ATF1 as a key driver in colorectal cancer modulated by a promoter-enhancer interaction. Am J Hum Genet. 2019;105(1):29–47.

    Article  CAS  Google Scholar 

  27. Marcuello M, Vymetalkova V, Neves RPL, Duran-Sanchon S, Vedeld HM, Tham E, van Dalum G, Flügen G, Garcia-Barberan V, Fijneman RJ, Castells A, Vodicka P, Lind GE, Stoecklein NH, Heitzer E, Gironella M. Circulating biomarkers for early detection and clinical management of colorectal cancer. Mol Aspects Med. 2019;69:107–22.

    Article  CAS  Google Scholar 

  28. Oliveira AF, Bretes L, Furtado I. Review of PD-1/PD-L1 inhibitors in metastatic dMMR/MSI-H colorectal cancer. Front Oncol. 2019;14(9):396.

    Article  Google Scholar 

  29. Li M, Wang Q, Xue F, Wu Y. lncRNA-CYTOR works as an oncogene through the CYTOR/miR-3679-5p/MACC1 Axis in colorectal cancer. DNA Cell Biol. 2019;38(6):572–82.

    Article  CAS  Google Scholar 

  30. Zhao Y, Chu Y, Sun J, Song R, Li Y, Xu F. LncRNA GAS8-AS inhibits colorectal cancer (CRC) cell proliferation by downregulating lncRNA AFAP1-AS1. Gene. 2019;20(710):140–4.

    Article  Google Scholar 

  31. Wang YY, Yan L, Yang S, Xu HN, Chen TT, Dong ZY, Chen SL, Wang WR, Yang QL, Chen CJ. Long noncoding RNA AC0732844 suppresses epithelial-mesenchymal transition by sponging miR-18b-5p in paclitaxel-resistant breast cancer cells. J Cell Physiol. 2019;234(12):23202–15.

    Article  CAS  Google Scholar 

  32. Peng WX, Koirala P, Mo YY. LncRNA-mediated regulation of cell signaling in cancer. Oncogene. 2017;36(41):5661–7.

    Article  CAS  Google Scholar 

  33. Li QG, Xu XQ, Zhou DY, Jia ZB, Yu BF, Xu FG, Zhang L. Long non-coding RNA DILC as a potentially useful biomarker for the diagnosis and prognosis of colorectal cancer. Eur Rev Med Pharmacol Sci. 2019;23(8):3320–5.

    Google Scholar 

  34. Sun J, Hu J, Wang G, Yang Z, Zhao C, Zhang X, Wang J. LncRNA TUG1 promoted KIAA1199 expression via miR-600 to accelerate cell metastasis and epithelial-mesenchymal transition in colorectal cancer. J Exp Clin Cancer Res. 2018;37(1):106.

    Article  Google Scholar 

  35. Ji W, Diao Y-L, Qiu Y-R, Ge J, Cao X-C, Yue Yu. LINC00665 Promotes breast cancer progression through regulation of the miR-379-5p/LIN28B Axis. Cell Death Dis. 2020;11(1):16.

    Article  CAS  Google Scholar 

  36. Wei W, Dong Z, Gao H, Zhang YY, Shao LH, Jin LL, Lv YH, Zhao G, Shen YN, Jin SZ. MicroRNA-9 enhanced radiosensitivity and its mechanism of DNA methylation in non-small cell lung cancer. Gene. 2019;20(710):178–85.

    Article  Google Scholar 

  37. Chen L, Zhou H, Guan Z. CircRNA_000543 knockdown sensitizes nasopharyngeal carcinoma to irradiation by targeting miR-9/platelet-derived growth factor receptor B axis. Biochem Biophys Res Commun. 2019;512(4):786–92.

    Article  CAS  Google Scholar 

  38. Park YR, Lee ST, Kim SL, Zhu SM, Lee MR, Kim SH, Kim IH, Lee SO, Seo SY, Kim SW. Down-regulation of miR-9 promotes epithelial mesenchymal transition via regulating anoctamin-1 (ANO1) in CRC cells. Cancer Genet. 2019;231–232:22–31.

    Article  Google Scholar 

  39. Shang A, Lu WY, Yang M, Zhou C, Zhang H, Cai ZX, Wang WW, Wang WX, Wu GQ. miR-9 induces cell arrest and apoptosis of oral squamous cell carcinoma via CDK 4/6 pathway. Artif Cells Nanomed Biotechnol. 2018;46(8):1754–62.

    CAS  Google Scholar 

  40. Guo F, Hou X, Sun Q. MicroRNA-9-5p functions as a tumor suppressor in papillary thyroid cancer via targeting BRAF. Oncol Lett. 2018;16(5):6815–21.

    CAS  Google Scholar 

  41. Wang M, Gao Q, Chen Y, Li Z, Yue L, Cao Y. PAK4, a target of miR-9-5p, promotes cell proliferation and inhibits apoptosis in colorectal cancer. Cell Mol Biol Lett. 2019;8(24):58.

    Article  Google Scholar 

  42. Nishiuchi A, Hisamori S, Sakaguchi M, Fukuyama K, Hoshino N, Itatani Y, Honma S, Maekawa H, Nishigori T, Tsunoda S, Obama K, Miyoshi H, Shimono Y, Taketo MM, Sakai Y. MicroRNA-9-5p-CDX2 axis: a useful prognostic biomarker for patients with stage II/III colorectal cancer. Cancers (Basel). 2019;11(12):1891.

    Article  CAS  Google Scholar 

  43. Xie Q, Lin S, Zheng M, Cai Q, Tu Y. Long noncoding RNA NEAT1 promotes the growth of cervical cancer cells via sponging miR-9-5p. Biochem Cell Biol. 2019;97(2):100–8.

    Article  CAS  Google Scholar 

  44. Xie CH, Cao YM, Huang Y, Shi QW, Guo JH, Fan ZW, Li JG, Chen BW, Wu BY. Long non-coding RNA TUG1 contributes to tumorigenesis of human osteosarcoma by sponging miR-9-5p and regulating POU2F1 expression. Tumour Biol. 2016;37(11):15031–41.

    Article  CAS  Google Scholar 

  45. Hai T, Hartman MG. The molecular biology and nomenclature of the activating transcription factor/cAMP responsive element binding family of transcription factors: activating transcription factor proteins and homeostasis. Gene. 2001;273(1):1–11.

    Article  CAS  Google Scholar 

  46. Hsueh YP, Lai MZ. Overexpression of activation transcriptional factor 1 in lymphomas and in activated lymphocytes. J Immunol. 1995;154(11):5675–83.

    CAS  Google Scholar 

  47. Su B, Tang HL, Deng M, Liao QJ, Zeng X, Zhang WL, Xiang B, Wang L, Li XL, Li XY, Wu MH, Li GY. Stage-associated dynamic activity profile of transcription factors in nasopharyngeal carcinoma progression based on protein/DNA array analysis. OMICS. 2011;15(1–2):49–60.

    Article  CAS  Google Scholar 

  48. Huang GL, Liao D, Chen H, Lu Y, Chen L, Li H, Li B, Liu W, Ye C, Li T, Zhu Z, Wang J, Uchida T, Zou Y, Dong Z, He Z. The protein level and transcription activity of activating transcription factor 1 is regulated by prolylisomerase Pin1 in nasopharyngeal carcinoma progression. Cell Death Dis. 2016;7(12):e2571.

    Article  CAS  Google Scholar 

  49. Jean D, Harbison M, McConkey DJ, Ronai Z, Bar-Eli M. CREB and its associated proteins act as survival factors for human melanoma cells. J Biol Chem. 1998;273(38):24884–90.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by Shanghai Committee of Science and Technology (15DZ1941304).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi Li or Fenyong Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics statement

Our study was approved by the ethics review board of the Yangpu Hospital (approval ID: 201806108). This study was carried out in according to the Declaration of Helsinki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1236 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Weng, W., Long, Y. et al. RETRACTED ARTICLE: LINC00665/miR-9-5p/ATF1 is a novel axis involved in the progression of colorectal cancer. Human Cell 33, 1142–1154 (2020). https://doi.org/10.1007/s13577-020-00393-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-020-00393-z

Keywords

Navigation