Skip to main content
Log in

The physiological and biochemical responses to engineered green graphene/metal nanocomposites in Stevia rebaudiana

  • Original Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Stevia is a source of natural sweetener. Numerous researches showed that silver nanoparticles affected the yield and growth of agricultural crops. The effect of silver, graphene, and nanocomposite nanoparticles on a few biochemical and morphological parameters of the Stevia plant were studied. Synthesized Ag nanoparticles were confirmed by the absorption maxima and SEM micrograph. The use of nanocomposites at 40 mM, resulted in the higher chlorophyll content (25%) and increased accumulation of soluble sugars (27%), flavonoids (51%), total phenol (33%) and total protein (51%) as compared to the control plants. The plants treated with nanocomposite at a concentration of 60 mM, had more stevioside and rebaudioside content than plants treated with nanocomposite at a concentration of 40 mM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

AgNP:

Silver nanoparticle

BSA:

Bovine serum albumin

Chl:

Chlorophyll

IAA:

Indole-3-acetic acid

G:

Graphene

S. rebaudiana :

Stevia rebaudiana

CRD:

Completely randomized design

LSD:

Least significant difference

References

  • Allen MJ, Tung VC, Kaner RB (2009) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145

    Article  Google Scholar 

  • Arase F, Arase H, Nishitani M, Egusa N, Nishimoto S, Sakurai N, Sakamoto H, Kaminaka I (2012) AA8 involved in lateral root formation interacts with the TIR1 auxin receptor and ARF transcription factors in Arabidopsis. PLoS ONE 7:43–49

    Article  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Betavulgaris. Plant Physiol 24:1–15

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Bujak T, Nizioł-Łukaszewska Z, Gaweł-Bęben K, Seweryn A, Kucharek M, Rybczyńska-Tkaczyk KM (2015) The application of different Stevia rebaudiana leaf extracts in the green synthesi of AgNPs. Geen Chem Lett Rev 3:78–87

    Article  Google Scholar 

  • Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin LC (2011) Graphene and nanostructured MnO2 composite electrodes for supercapacitors. Carbon 49:2917–2925

    Article  CAS  Google Scholar 

  • Daayf F, Ongena M, Boulanger R, Hadrami IE, Belanger RR (2000) Induction of phenolic compounds in two cultivars of cucumber by treatment of healthy and powdery mildew-infected plants with extracts of Reynoutria sachalinensis. J Chem Ecol 26:1579–1593

    Article  CAS  Google Scholar 

  • El-Temsah YS, Joner EJ (2012) Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ Toxicol 27:42–49

    Article  CAS  Google Scholar 

  • Geuns JM (2003) Stevioside. Phytochemistry 64(5):913–921

    Article  CAS  Google Scholar 

  • Gomes SIL, Novais SC, Gravato C (2012) Effect of Cu-nanoparticles versus one Cu-salt: analysis of stress biomarkers response in Enchytraeus albidus. Nanotoxicol. 6:134–143

    Article  CAS  Google Scholar 

  • Jain SM, Spencer MM (2006) Biotechnology and mutagenesis in improving ornamental plants in floriculture and ornamental biotechnology. In: Teixeira da Silva JA (ed) Advances and tropical issues. Global Science Book LTD, London, pp 1749–2036

  • Kim JS, Kuk E, Yu KN (2007) AntimicrobiaL effects of silver nanoparticles. Nanomed 3:95–101

    Article  CAS  Google Scholar 

  • Kumar A, Nirmala V (2004) Gastric antiulcer activity of the leaves of Caesalpinia pulcherrima. Indian J Pharma Sci 66(5):676–678

    Google Scholar 

  • Larcher W (2010) Expression of ascorbic acid oxidase in zucchini squash (Cucurbita pepo L.). Plant Physiol 96:159–165

    Google Scholar 

  • Lemus-Mondaca R, Vega-Gálvez A, Zura-Bravo L (2012) Stevia rebaudiana Bertoni, source of a high-potency natural sweetener: a comprehensive review on the biochemical, nutritional and functional aspects. Food Chem 132:1121–1132

    Article  CAS  Google Scholar 

  • Li WR, Xie XB, Shi QS, Duan SS, Ouyang YS, Chen YB (2011) Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals 24:135–141

    Article  CAS  Google Scholar 

  • Majlesi Z, Ramezani M, Gerami M (2018) Investigation on some main glycosides content of stevia rebaudiana under different concentration of commercial and synthesized silver nanoparticle. P B R (1) :1–10

  • Mamta PR, Vijaylata P, Arvind G, Bikram S, Ravinder KB, Rupinder T (2010) Stimulatory effect of phosphate-solubilizing bacteria on plant growth, stevioside and rebaudioside—a contents of Stevia rebaudiana Bertoni. Appli Soil Ecol 46:222–229

    Article  Google Scholar 

  • Miralles P, Church TL, Harris AT (2012) Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environ Sci Technol 46:9224–9239

    Article  CAS  Google Scholar 

  • Mody VV, Siwale R, Singh A, Mody HR (2010) Introduction to metallic nanoparticles. J Pharm Bioallied Sci 2:281

    Article  Google Scholar 

  • Moteriya P, Chanda S (2014) Biosynthesis of silver nanoparticles using flower extract of Cassia roxburghii DC and its synergistic antibacterial efficacy. Sci Iran 21(6):2499–2507

    Google Scholar 

  • Muszynski R, Sager B, Kamat PV (2008) Decorating graphene sheets with gold nanoparticles. J Phys Chem. 112:5263–5266

    CAS  Google Scholar 

  • Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nano level. Science 311:622

    Article  CAS  Google Scholar 

  • Ramezani M, Rahmani F, Dehestani A (2017) The effect of potassium phosphite on PR genes expression and the phenylpropanoid pathway in cucumber (Cucumis sativus) plants inoculated with Pseudoperonospora cubensis. Sci Horti J 234:335–343

    Article  Google Scholar 

  • Rezvani N, Sorooshzadeh A, Farhadi N (2012) Effect of nano-silver on growth of saffron in flooding stress. Int J Biol Biomol Agric Food Biotechnol Eng 6:11–16

    Google Scholar 

  • Salunke BK, Sawant SS, Kim BS (2014) Potential of Kalopanax septemlobus leaf extract in synthesis of silver nanoparticles for selective inhibition of specific bacterial strain in mixed culture. Appl Biochem Biotechnol 174:587–601

    Article  CAS  Google Scholar 

  • Vecerova K, Vecera Z, Docekal B, Oravec M, Pompeinano A, Triska J (2016) Changes of primary and secondary metabolites in barley plants exposed to CdO nanoparticles. Enviro Pollut 2018:207–218

    Article  Google Scholar 

  • Yemm EW, Willis AJ (1954) The estimation of carbohydrates in plant extracts by anthrone. Biochemistry 57:508–514

    CAS  Google Scholar 

  • Zhao J, Cao X, Wang Z, Dai Y, Xing B (2017) Mechanistic Understanding toward the toxicity of graphene-family materials to freshwater algae. Water Res 111:18–27

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research has been fully supported by Sana Institute of Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Moazzameh Ramezani or Mahyar Gerami.

Ethics declarations

Conflict of interest

The authors declare that have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nokandeh, S., Ramezani, M. & Gerami, M. The physiological and biochemical responses to engineered green graphene/metal nanocomposites in Stevia rebaudiana. J. Plant Biochem. Biotechnol. 30, 579–585 (2021). https://doi.org/10.1007/s13562-020-00630-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-020-00630-4

Keywords

Navigation