Skip to main content
Log in

Hyperkaliémie sévère ou menaçante : le diable est dans les détails

Acute and severe hyperkalemia: Pathophysiological approach

  • Mise au Point / Update
  • Published:
Réanimation

Résumé

Une hyperkaliémie aiguë avec des signes électrocardiographiques (ECG) peut mettre en jeu le pronostic vital. Malgré une littérature importante, les différents mécanismes physiopathologiques menant à l’hyperkaliémie restent complexes et n’ont pas encore été complètement élucidés. Dans cette revue de la littérature, nous avons intégré de nombreux articles permettant de comprendre l’impact de l’hyperkaliémie sur les cellules musculaires, cardiaques et squelettiques. L’intégration physiopathologique par le clinicien des modifications engendrées par l’hyperkaliémie est indispensable à la bonne compréhension de ses manifestations cliniques, notamment ECG. Nous discutons aussi des traitements spécifiques de l’hyperkaliémie, en insistant sur l’utilisation du sodium. Nous espérons aussi que le lecteur sera en mesure de discuter, d’un point de vue physiopathologique, l’importance du contexte clinique face à une hyperkaliémie biologique. Cette approche est discutée notamment chez le patient insuffisant rénal chronique. Les situations cliniques d’hyperkaliémie, chez les patients porteurs d’un stimulateur cardiaque ou dans un contexte préopératoire, sont aussi détaillées.

Abstract

Acute hyperkalemia with electrocardiogram (EKG) changes can be a life-threatening situation. Despite a large body of literature, the complex pathophysiology of hyperkalemia is not fully described or even explained at the molecular level in many textbooks. In this review, we specifically integrated a large body of clinical and experimental works describing how hyperkalemia impacts differently the cellular membrane potential in heart and muscle tissues. Integrating this knowledge appears relevant to the understanding of peculiar hyperkalemia-induced EKG changes that clinicians should be aware of. We discuss how some specific therapeutics (sodium salt infusion, in particular) might be reappraised in today’s practice. We also challenge the clinical relevance of isolated biological hyperkalemia. From a pathophysiological standpoint, we believe that hyperkalemia should be treated in regard to a specific clinical context more than based on potassium levels alone. This approach should be debated, especially in chronic renal failure patients. Clinical situations such as hyperkalemia occurring in patients with pacemaker devices, and hyperkalemia in preoperative settings are also discussed here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Blake J (1839) Observations on the physiological effects of various agents introduced into the circulation, as indicated by the haemadynamometer. Edinb Med Surg J 51:330–45

    Google Scholar 

  2. Halperin ML, Kamel KS (1998) Potassium. Lancet 352:135–40

    Article  CAS  PubMed  Google Scholar 

  3. Sheng H (2000) Sodium, chloride and potassium. Biochemical and physiological aspects of human nutrition Philadelphia. WB Saunders Company, pp. 686–710

    Google Scholar 

  4. Peterson LN (1997) Potassium in nutrition. O’Dell BL, Sunde RA (eds) Handbook of nutritionally essential minerals New York. Marcel Dekker, Inc., pp. 153–83

    Google Scholar 

  5. De Weer P (1985) Cellular sodium-potassium transport. The kidney: physiology and pathophysiology, vol. 1, pp. 31–42

    Google Scholar 

  6. Medbø J, Sejersted O (1990) Plasma potassium changes with high intensity exercise. J Physiol 421:105–22

    Article  PubMed Central  PubMed  Google Scholar 

  7. Paterson DJ, Rogers J, Powell T, et al (1993) Effect of catecholamines on the ventricular myocyte action potential in raised extracellular potassium. Acta Physiol Scand 148:177–86

    Article  CAS  PubMed  Google Scholar 

  8. Moore M, Bailey R (1989) Hyperkalaemia in patients in hospital. N Z Med J 102:557–8

    CAS  PubMed  Google Scholar 

  9. Paice B, Gray JM, McBride D, et al (1983) Hyperkalaemia in patients in hospital. Br Med J (Clin Res Ed) 286:1189–92

    Article  CAS  Google Scholar 

  10. Borra S, Shaker R, Kleinfeld M (1988) Hyperkalemia in an adult hospitalized population. Mt Sinai J Med 55:226–9

    CAS  PubMed  Google Scholar 

  11. Khanagavi J, Gupta T, Aronow WS, et al (2014) Hyperkalemia among hospitalized patients and association between duration of hyperkalemia and outcomes. Arch Med Sci 10:251–7

    Article  PubMed Central  PubMed  Google Scholar 

  12. Einhorn LM, Zhan M, Hsu VD, et al (2009) The frequency of hyperkalemia and its significance in chronic kidney disease. Arch Intern Med 169:1156–62

    Article  PubMed Central  PubMed  Google Scholar 

  13. Uijtendaal EV, Zwart-van Rijkom JE, van Solinge WW, et al (2011) Frequency of laboratory measurement and hyperkalaemia in hospitalised patients using serum potassium concentration increasing drugs. Eur J Clin Pharmacol 67:933–40

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. An JN, Lee JP, Jeon HJ, et al (2012) Severe hyperkalemia requiring hospitalization: predictors of mortality. Crit Care 16:R225

    Article  PubMed Central  PubMed  Google Scholar 

  15. Henz S, Maeder MT, Huber S, et al (2008) Influence of drugs and comorbidity on serum potassium in 15,000 consecutive hospital admissions. Nephrol Dial Transplant 23:3939–45

    Article  PubMed  Google Scholar 

  16. Bers DM (2002) Calcium and cardiac rhythms physiological and pathophysiological. Circ Res 90:14–7

    CAS  PubMed  Google Scholar 

  17. Barry DM, Nerbonne JM (1996) Myocardial potassium channels: electrophysiological and molecular diversity. Annu Rev Physiol 58:363–94

    Article  CAS  PubMed  Google Scholar 

  18. Akar FG, Wu RC, Deschenes I, et al (2004) Phenotypic differences in transient outward K+ current of human and canine ventricular myocytes: insights into molecular composition of ventricular Ito. Am J Physiol Heart Circ Physiol 286:H602–9

    Article  CAS  PubMed  Google Scholar 

  19. Einthoven W (1903) Die galvanometrische Registrirung des menschlichen Elektrokardiogramms, zugleich eine Beurtheilung der Anwendung des Capillar-Elektrometers in der Physiologie. Pflügers Archiv European J Physiol 99:472–80

    Article  Google Scholar 

  20. Weidmann S (1956) Shortening of the cardiac action potential due to a brief injection of KCl following the onset of activity. J Physiol 132:157–63

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Keith A, Flack M (1907) The form and nature of the muscular connections between the primary divisions of the vertebrate heart. J Anat Physiol 41:172

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Singer DH, Ten Eick RE (1971) Aberrancy: electrophysiologic aspects. Am J Cardiol 28:381–401

    Article  CAS  PubMed  Google Scholar 

  23. Surawicz B (1967) Relationship between electrocardiogram and electrolytes. Am Heart J 73:814–34

    Article  CAS  PubMed  Google Scholar 

  24. Ettinger PO, Regan TJ, Oldewurtel HA (1974) Hyperkalemia, cardiac conduction, and the electrocardiogram: a review. Am Heart J 88:360–71

    Article  CAS  PubMed  Google Scholar 

  25. Wrenn KD, Slovis CM, Slovis BS (1991) The ability of physicians to predict hyperkalemia from the ECG. Ann Emerg Med 20:1229–32

    Article  CAS  PubMed  Google Scholar 

  26. Dreifus LS, Pick A (1956) A clinical correlative study of the electrocardiogram in electrolyte imbalance. Circulation 14:815–25

    Article  CAS  PubMed  Google Scholar 

  27. Herndon RF, Meroney WH, Pearson CM (1955) The electrocardiographic effects of alterations in concentration of plasma chemicals. Am Heart J 50:188–202

    Article  CAS  PubMed  Google Scholar 

  28. Thomson WA(1939) The effect of potassium on the heart in man. Br Heart J 1:269

  29. Martinez-Vea A, Bardají A, Garcia C, et al (1999) Severe hyperkalemia with minimal electrocardiographic manifestations: a report of seven cases. J Electrocardiol 32:45–9

    Article  CAS  PubMed  Google Scholar 

  30. Szerlip HM, Weiss J, Singer I (1986) Profound hyperkalemia without electrocardiographic manifestations. Am J Kidney Dis 7:461–5

    Article  CAS  PubMed  Google Scholar 

  31. Currens JH, Crawford JD (1950) The electrocardiogram and disturbance of potassium metabolism. N Engl J Med 243:843–50

    Article  CAS  PubMed  Google Scholar 

  32. Tarail R (1948) Relation of abnormalities in concentration of serum potassium to electrocardiographic disturbances. Am J Med 5:828–37

    Article  CAS  PubMed  Google Scholar 

  33. Elkinton JR, Tarail R, Peters JP (1949) Transfers of potassium in renal insufficiency. J Clin Invest 28:378

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Surawicz B, Chlebus H, Mazzoleni A (1967) Hemodynamic and electrocardiographic effects of hyperpotassemia. Differences in response to slow and rapid increases in concentration of plasma K. Am Heart J 73:647–64

    Article  CAS  PubMed  Google Scholar 

  35. Hering HE (1907) Demonstration der aufhebung des flimmerns durch injektion von KC1 losungen. Dtsch med Wchnschr 33:1567

    Article  Google Scholar 

  36. Vassalle M, Hoffman BF (1965) The spread of sinus activation during potassium administration. Circ Res 17:285–95

    Article  CAS  PubMed  Google Scholar 

  37. de Mello WC, Hoffman BF (1960) Potassium ions and electrical activity of specialized cardiac fibers. Am J Physiol 199: 1125–30

    PubMed  Google Scholar 

  38. de Mello WC (1961) Some aspects of the interrelationship between ions and electrical activity in specialized tissue of the heart. The specialized tissues of the heart: 95–107

    Google Scholar 

  39. Levine HD, Vazifdar JP, Lown B, et al (1952) “Tent-shaped” T waves of normal amplitude in potassium intoxication. Am Heart J 43:437–50

    Article  CAS  PubMed  Google Scholar 

  40. Winkler AW, Hoff HE, Smith PK (1938) Electrocardiographic changes and concentration of potassium in serum following intravenous injection of potassium chloride. Am J Physiol 124:478–83

    CAS  Google Scholar 

  41. Somers MP, Brady WJ, Perron AD, et al (2002) The prominant T wave: electrocardiographic differential diagnosis. Am J Emerg Med 20:243–51

    Article  PubMed  Google Scholar 

  42. Thomson WAR (1939) Potassium and the T wave of the electrocardiogram. Lancet 233:808–12

    Article  Google Scholar 

  43. Finch CA, Sawyer CG, Flynn JM (1946) Clinical syndrome of potassium intoxication. Am J Med 1:337–52

    Article  CAS  PubMed  Google Scholar 

  44. Montague BT, Ouellette JR, Buller GK (2008) Retrospective review of the frequency of ECG changes in hyperkalemia. Clin J Am Soc Nephrol 3:324–30

    Article  PubMed Central  PubMed  Google Scholar 

  45. Alan SL, Chir B (1996) Atypical electrocardiographic changes in severe hyperkalemia. The American journal of cardiology 77:906–8

    Article  Google Scholar 

  46. Dodge HT, Grant RP, Seavey PW (1953) The effect of induced hyperkalemia on the normal and abnormal electrocardiogram. Am Heart J 45:725–40

    Article  CAS  PubMed  Google Scholar 

  47. Boyadjian N, Dechamps G, Van Dooren F (1958) Effect of massive ingestion of potassium for the diagnosis of negative Twaves. Acta cardiol 13:607

    Google Scholar 

  48. Wasserburger RH, Corliss RJ (1962) Value of oral potassium salts in differentiation of functional and organic T wave changes. Am J Cardiol 10:673–87

    Article  CAS  PubMed  Google Scholar 

  49. Winkler AW, Hoff HE, Smith PK (1939) Factors affecting the toxicity of potassium. Am J Physiol 127:430–6

    CAS  Google Scholar 

  50. Nicholson WM, Soffer LJ(1935) Cardiac arrhythmia in experimental suprarenal insufficiency in dogs. Bull Johns Hopkins Hosp 56:236–243

    Google Scholar 

  51. Chamberlain F, Scudder J, Zwemer R (1939) Electrocardiographic changes associated with experimental alterations in blood potassium in cats. Am Heart J 18:458–70

    Article  CAS  Google Scholar 

  52. Winkler AW, Hoff HE, Smith PK (1941) The toxicity of orally administered potassium salts in renal insufficiency. J Clin Invest 20:119

  53. Levine HD, Merrill JP, Somerville W (1951) Advanced disturbances of the cardiac mechanism in potassium intoxication in man. Circulation 3:889–905

    Article  CAS  PubMed  Google Scholar 

  54. Vassalle M, Greenspan K, Jomain S, et al (1964) Effects of potassium on automaticity and conduction of canine hearts. Am J Physiol 207:334–40

    CAS  PubMed  Google Scholar 

  55. Hoffman BF (1964) The pathophysiology of failure of impulse transmission to the ventriclesSudden Cardiac Death. Grune and Stratton New York, pp 78–89

    Google Scholar 

  56. Bellet S, Jedlicka J (1969) Sinoventricular conduction and its relation to sinoatrial conduction. Am J Cardiol 24:831–5

    Article  CAS  PubMed  Google Scholar 

  57. Gettes L, Surawicz B (1968) Effects of low and high concentrations of potassium on the simultaneously recorded Purkinje and ventricular action potentials of the perfused pig moderator band. Circ Res 23:717–29

    Article  CAS  PubMed  Google Scholar 

  58. Lemery R, Guiraudon G, Veinot JP (2003) Anatomic description of Bachmann’s bundle and its relation to the atrial septum. Am J Cardiol 91:1482–5, A1488

    Article  PubMed  Google Scholar 

  59. Condorelli L (1930) Ricerche sperimentali sulla conduzione sinonodale. Cuore 14:221

    Google Scholar 

  60. Lepeschkin E, Surawicz B, Herrlich H (1960) Differences in the effect of electrolytes on the atrial and ventricular action potentials of isolated, perfused rabbit hearts. In: Editor (ed) (eds) Book Differences in the effect of electrolytes on the atrial and ventricular action potentials of isolated, perfused rabbit hearts. Federation Amer Soc Exp Biol 9650 Rockville Pike, Bethesda, MD20814-3998, City, pp. 112

    Google Scholar 

  61. Sano T, Iida Y, Yamagishi S (1967) Changes in the spread of excitation from the sinus node induced by alterations in extracellular potassium. Electrophysiol Ultrastructure Heart: 127

    Google Scholar 

  62. de Carvalho AP, Langan WB (1963) Influence of extracellular potassium levels on atrioventricular transmission. Am J Physiol 205:375–81

    Google Scholar 

  63. Fisch C, Knoebel SB, Feigenbaum H, et al (1966) Potassium and the monophasic action potential, electrocardiogram, conduction and arrhythmias. Prog Cardiovas Dis 8:387–418

    Article  CAS  Google Scholar 

  64. Ettinger PO, Regan TJ, Oldewurtel HA, et al (1974) Ventricular conduction delay and asystole during systemic hyperkalemia. American J Cardiol 33:876–886

    Article  CAS  Google Scholar 

  65. Fisch C, Feigenbaum H, Bowers JA (1963) The effect of potassium on atrioventricular conduction of normal dogs. Am J Cardiol 11:487–92

    Article  CAS  PubMed  Google Scholar 

  66. Pick A, Langendorf R, Katz LN (1961) AV nodal tachycardia with block. Circulation 24:12–22

    Article  CAS  PubMed  Google Scholar 

  67. Pick A (1966) Arrhythmias and potassium in man. American Heart J 72:295–306

    Article  CAS  Google Scholar 

  68. Vassalle M, Greenspan K, Jomain S, et al (1964) Effects of potassium on automaticity and conduction of canine hearts. Am J Physiol 207:334–40

    CAS  PubMed  Google Scholar 

  69. Kim N, Oh S, Jeong J (2005) Hyperkalaemia induced complete atrioventricular block with a narrow QRS complex. Heart 91:e5

    Article  PubMed Central  PubMed  Google Scholar 

  70. Kim YK, Kim NH, Park EM, et al (2005) A case of hyperkalemiainduced complete atrioventricular block with a narrow QRS complex. Korean J Med 68:562–5

    Article  Google Scholar 

  71. Fisch C, Feigenbaum H, Bowers JA (1964) Nonparoxysmal AV nodal tachycardia due to potassium. Am J Cardiol 14:357–61

    Article  CAS  PubMed  Google Scholar 

  72. Bashour T, Hsu I, Gorfinkel HJ, et al (1975) Atrioventricular and intraventricular conduction in hyperkalemia. Am J Cardiol 35:199–203

    Article  CAS  PubMed  Google Scholar 

  73. Petrov DB (2012) An electrocardiographic sine wave in hyperkalemia. N Engl J Med 366:1824–4

    Article  CAS  PubMed  Google Scholar 

  74. Pluijmen MJ, Hersbach FM (2007) Images in cardiovascular medicine. Sine-wave pattern arrhythmia and sudden paralysis that result from severe hyperkalemia. Circulation 116:e2–4

    Article  PubMed  Google Scholar 

  75. Scarabeo V, Baccillieri MS, Di Marco A, et al (2007) Sine-wave pattern on the electrocardiogram and hyperkalaemia. J Cardiovasc Med (Hagerstown) 8:729–31

    Article  Google Scholar 

  76. Surawicz B, Lepeschkin E (1961) The electrocardiogram in hyperpotassemia. Heart Bull 10:66

    Google Scholar 

  77. Mendez C, Mueller WJ, Urguiaga X (1970) Propagation of impulses across the Purkinje fiber-muscle junctions in the dog heart. Circ Res 26:135–50

    Article  CAS  PubMed  Google Scholar 

  78. Chaithiraphan S, Sahasakul Y (1977) Electrocardiographic changes of hyperkalemia simulating acute myocardial infarction. A report of two cases. J Med Assoc Thai 60:389

    CAS  PubMed  Google Scholar 

  79. Sweterlitsch EM, Murphy GW (1996) Acute electrocardiographic pseudoinfarction pattern in the setting of diabetic ketoacidosis and severe hyperkalemia. Am Heart J 132:1086–9

    Article  CAS  PubMed  Google Scholar 

  80. Burris A, Chung E (1980) Pseudomyocardial infarction associated with acute bifascicular block due to hyperkalemia. Cardiology 65:115–20

    Article  CAS  PubMed  Google Scholar 

  81. Arnsdorf MF (1976) Electrocardiogram in hyperkalemia: electrocardiographic pattern of anteroseptal myocardial infarction mimicked by hyperkalemia-induced disturbance of impulse conduction. Arch Intern Med 136:1161–3

    Article  CAS  PubMed  Google Scholar 

  82. Gelzayd EA, Holzman D (1967) Electrocardiographic changes of hyperkalemia simulating acute myocardial infarction: Report of a case. Chest J 51:211–2

    Article  CAS  Google Scholar 

  83. Levine HD, Wanzer SH, Merrill JP (1956) Dialyzable currents of injury in potassium intoxication resembling acute myocardial infarction or pericarditis. Circ 13:29–36

    Article  CAS  Google Scholar 

  84. Chawla KK, Cruz J, Kramer NE, et al (1978) Electrocardiographic changes simulating acute myocardial infarction caused by hyperkalemia: report of a patient with normal coronary arteriograms. Am Heart J 95:637–40

    Article  CAS  PubMed  Google Scholar 

  85. Sims DB, Sperling LS (2005) ST-segment elevation resulting from hyperkalemia. Circulation 111:e295–e6

    Article  PubMed  Google Scholar 

  86. Jayawardena S, Burzyantseva O, Shetty S, et al (2008) Hyperkalaemic paralysis presenting as ST-elevation myocardial infarction: a case report. Cases J 1:232

    Article  PubMed Central  PubMed  Google Scholar 

  87. DePasquale NP, Burch GE, Phillips JH (1964) Electrocardiographic alterations associated with electrically “silent” areas of myocardium. American Heart J 68:697–709

    Article  CAS  Google Scholar 

  88. Bellazzini MA, Meyer T (2010) Pseudo-myocardial infarction in diabetic ketoacidosis with hyperkalemia. J EmergMed 39:e139–41

    Article  Google Scholar 

  89. Barold SS, Herweg B (2014) The effect of hyperkalaemia on cardiac rhythm devices. Europace 16:467–76

    Article  PubMed  Google Scholar 

  90. Barold SS, Leonelli F, Herweg B (2007) Hyperkalemia during cardiac pacing. Pacing Clin Electrophysiol 30:1–3

    PubMed  Google Scholar 

  91. Khoo C, Bennett M, Chakrabarti S, et al (2013) Using leftventricular-only pacing to eliminate T-wave oversensing in a biventricular implantable cardiac defibrillator. Can J Cardiol 29:254.e255–e7

    Article  Google Scholar 

  92. Arthur W, Kaye GC (2001) Hyperkalemia diagnosed by implantable cardioverter defibrillator T wave sensing. Pacing Clin Electrophysiol 24:908–909

    Article  CAS  PubMed  Google Scholar 

  93. Kahloon MU, Aslam AK, Aslam AF, et al (2005) Hyperkalemia induced failure of atrial and ventricular pacemaker capture. Int J Cardiol 105:224–6

    Article  PubMed  Google Scholar 

  94. Barold SS, Falkoff MD, Ong LS, et al (1987) Hyperkalemiainduced failure of atrial capture during dual-chamber cardiac pacing. J Am Coll Cardiol 10:467–9

    Article  CAS  PubMed  Google Scholar 

  95. N’Guetta R, Mansencal N, Digne F, et al (2011) Acute hyperkalemia and failure of pacemaker stimulus. Int J Cardiol 150: e32–3

  96. Ortega-Carnicer J, Benezet J, Benezet-Mazuecos J (2004) Hyperkalaemia causing loss of atrial capture and extremely wide QRS complex during DDD pacing. Resuscitation 62:119–20

    Article  PubMed  Google Scholar 

  97. O’Reilly MV, Murnaghan DP, Williams MB (1974) Transvenous pacemaker failure induced by hyperkalemia. JAMA 228:336–7

    Article  PubMed  Google Scholar 

  98. Schiraldi F, Guiotto G, Paladino F (2008) Hyperkalemia induced failure of pacemaker capture and sensing. Resuscitation 79:161–4

    Article  CAS  PubMed  Google Scholar 

  99. Surawicz B (1964) Methods of production of ventricular fibrillation. Sudden cardiac death. Grune & Stratton, New York

    Google Scholar 

  100. Mahoney BA, Smith WA, Lo DS, et al (2005) Emergency interventions for hyperkalaemia. Cochrane Database Syst Rev CD003235

    Book  Google Scholar 

  101. Podrid PJ (1990) Potassium and ventricular arrhythmias. Am J Cardiol 65:33E–44E; discussion 52E

    Article  CAS  PubMed  Google Scholar 

  102. Watanabe Y, Toda H, Uchida H (1987) Electrophysiological mechanisms for the initiation and maintenance of ventricular fibrillation in nonischemic rabbit hearts. Heart Vessels Suppl 2:69–87

    CAS  PubMed  Google Scholar 

  103. Coronel R, Fiolet JW, Wilms-Schopman FJ, et al (1988) Distribution of extracellular potassium and its relation to electrophysiologic changes during acute myocardial ischemia in the isolated perfused porcine heart. Circulation 77:1125–38

    Article  CAS  PubMed  Google Scholar 

  104. Surawicz B (1971) Ventricular fibrillation. Am J Cardiol 28:268–87

    Article  CAS  PubMed  Google Scholar 

  105. Jin PY, Zhang HS, Guo XY, et al (2014) Glucose-insulinpotassium therapy in patients with acute coronary syndrome: a meta-analysis of randomized controlled trials. BMC Cardiovasc Disord 14:169

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  106. Peng Y, Huang FY, Liu W, et al (2015) Relation between admission serum potassium levels and long-term mortality in acute coronary syndrome. Intern Emerg Med 10:1–15

    Article  Google Scholar 

  107. Freeman SJ, Fale AD (1993) Muscular paralysis and ventilatory failure caused by hyperkalaemia. Br J Anaesth 70:226–7

    Article  CAS  PubMed  Google Scholar 

  108. Marchand JF, Finch CA (1944) Fatal spontaneous potassium intoxication in patients with uremia. Arch Intern Med 73:384–90

    Article  CAS  Google Scholar 

  109. Livingstone IR, Cumming WJ (1979) Hyperkalaemic paralysis resembling Guillain-Barré syndrome. Lancet 2:963–4

    Article  CAS  PubMed  Google Scholar 

  110. Naumann M, Reiners K, Schalke B, et al (1994) Hyperkalaemia mimicking acute Guillain-Barré syndrome. J Neurol Neurosurg Psychiatry 57:1436–7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. Walter E, Gibbins N, Vandersteen A, et al (2004) Hyperkalaemic ascending paralysis. J R Soc Med 97:330–1

    Article  PubMed Central  PubMed  Google Scholar 

  112. Kimmons LA, Usery JB(2014) Acute ascending muscle weakness secondary to medication-induced hyperkalemia. Case Rep Med 789529

    Google Scholar 

  113. Kolff W (1950) Serum potassium in uremia; report of sixteen cases, some with paralysis. J Lab Clin Med 36:719

    CAS  PubMed  Google Scholar 

  114. Merrill JP, Levine HD, Somerville W, et al (1950) Clinical recognition and treatment of acute potassium intoxication. Ann Intern Med 33:797–830

    Article  CAS  PubMed  Google Scholar 

  115. Oliver J, Macdowell M, Tracy A (1951) The pathogenesis of acute renal failure associated with traumatic and toxic injury; renal ischemia, nephrotoxic damage and the ischemic episode. J Clin Invest 30:1307–439

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  116. Díez JJ, Sastre J, Iglesias P (1993) Hyperpotassemic paralysis: a rare complication of Addison’s disease. Med Clin (Barc) 101:759

    Google Scholar 

  117. Gledhill RF(1998) Secondary hyperkalaemic paralysis. J Neurol Neurosurg Psychiatry 65:614

  118. Maury E, Lemant J, Dussaule JC, et al (2002) A reversible paralysis. Lancet 360:1660

    Article  PubMed  Google Scholar 

  119. Garg SK, Saxena S, Juneja D, et al (2014) Hyperkalemia: a rare cause of acute flaccid quadriparesis. Indian J Crit Care Med 18:46–8

    Article  PubMed Central  PubMed  Google Scholar 

  120. Cumberbatch GL, Hampton TJ (1999) Hyperkalaemic paralysis- -a bizarre presentation of renal failure. J Accid Emerg Med 16:230–2

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  121. Braun CT, Srivastava DS, Engelhardt BM, et al (2014) Lazy lips: hyperkalemia and acute tetraparesis-a case report from an urban emergency department. Case Rep Emerg Med 2014:160396

    PubMed Central  PubMed  Google Scholar 

  122. Sowden JM, Borsey DQ(1989) Hyperkalaemic periodic paralysis: a rare presentation of Addison’s disease. Postgrad Med J 65:238–40

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  123. Agrawal P, Chopra D, Patra SK, et al (2014) Periodic paralysis: an unusual presentation of drug-induced hyperkalemia. J Pharmacol Pharmacother 5:63–6

    Article  PubMed Central  PubMed  Google Scholar 

  124. Arden F (1934) Experimental observations upon thirst and on potassium overdosage. Australian J Exper Biol & M Sc 12:121–2

    Article  CAS  Google Scholar 

  125. Bull GM, Carter AB, Lowe KG (1953) Hyperpotassaemic paralysis. Lancet 265:60–3

    Article  CAS  PubMed  Google Scholar 

  126. Naik KR, Saroja AO, Khanpet MS (2012) Reversible electrophysiological abnormalities in acute secondary hyperkalemic paralysis. Ann Indian Acad Neurol 15:339–43

    Article  PubMed Central  PubMed  Google Scholar 

  127. Panichpisal K, Gandhi S, Nugent K, et al (2010) Acute quadriplegia from hyperkalemia: a case report and literature review. Neurologist 16:390–3

    Article  PubMed  Google Scholar 

  128. Portzehl H, Caldwell P, Ru JC (1964) The dependence of contraction and relaxation of muscle fibres from the crab Maia squinado on the internal concentration of free calcium ions. Biochim Biophys Acta 79:581–91

    CAS  PubMed  Google Scholar 

  129. Bloomquist JR (1996) Ion channels as targets for insecticides. Annu Rev Entomol 41:163–90

    Article  CAS  PubMed  Google Scholar 

  130. ter Keurs HE (2012) The interaction of Ca2+ with sarcomeric proteins: role in function and dysfunction of the heart. Am J Physiol Heart Circ Physiol 302:H38–50

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  131. Lee KS, Ladinsky H, Choi SJ, et al (1966) Studies on the in vitro interaction of electrical stimulation and Ca++ movement in sarcoplasmic reticulum. J Gen Physiol 49:689–715

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  132. Lee KS (1965) Effect of electrical stimulation on uptake and release of calcium by the endoplasmic reticulum. Nature 207:85–6

    Article  CAS  Google Scholar 

  133. Govan CD, Weiseth WM (1946) Potassium intoxication: report of an infant surviving a serum potassiumlevel of 12.27 millimoles per liter. J Pediatr 28:550–3

    Article  PubMed  Google Scholar 

  134. Meroney WH, Herndon RF (1954) The management of acute renal insufficiency. J Am Med Assoc 155:877–83

    Article  CAS  PubMed  Google Scholar 

  135. Chamberlain MJ (1964) Emergency treatment of hyperkalaemia. Lancet 283:464–7

    Article  Google Scholar 

  136. Capel RA, Terrar DA (2015) The importance of Ca2+- dependent mechanisms for the initiation of the heartbeat. Front Physiol 6:80

    PubMed Central  PubMed  Google Scholar 

  137. Hoffman BF, Suckling EE (1956) Effect of several cations on transmembrane potentials of cardiac muscle. Am J Physiol 186:317–24

    CAS  PubMed  Google Scholar 

  138. Tan HL, Kupershmidt S, Zhang R, et al (2002) A calcium sensor in the sodium channel modulates cardiac excitability. Nature 415:442–7

    Article  CAS  PubMed  Google Scholar 

  139. Wagner S, Dybkova N, Rasenack EC, et al (2006) Ca2+/calmodulin-dependent protein kinase II regulates cardiac Na+ channels. J Clin Invest 116:3127–38

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  140. Ashpole NM, Herren AW, Ginsburg KS, et al (2012) Ca2+/calmodulin-dependent protein kinase II (CaMKII) regulates cardiac sodium channel NaV1.5 gating by multiple phosphorylation sites. J Biol Chem 287:19856–69

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  141. Aiba T, Hesketh GG, Liu T, et al (2010) Na+ channel regulation by Ca2+/calmodulin and Ca2+/calmodulin-dependent protein kinase II in guinea-pig ventricular myocytes. Cardiovasc Res 85:454–63

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  142. Windisch H, Tritthart HA (1981) Calcium ion effects on the rising phases of action potentials obtained from guinea-pig papillary muscles at different potassium concentrations. J Mol Cell Cardiol 13:457–69

    Article  CAS  PubMed  Google Scholar 

  143. Goldminz D, Barnhill R, McGuire J, et al (1988) Calcinosis cutis following extravasation of calcium chloride. Arch Dermatol 124:922–5

    Article  CAS  PubMed  Google Scholar 

  144. Bower JO, Mengle HK (1936) The additive effect of calcium and digitalis: a warning, with a report of two deaths. J Am Medl Assoc 106:1151–3

    Article  Google Scholar 

  145. Smith PK, Winkler AW, Hoff HE (1939) Calcium and digitalis synergism: the toxicity of calcium salts injected intravenously into digitalized animals. Arch Intern Med 64:322–9

    Article  CAS  Google Scholar 

  146. Lown B, Black H, Moore FD (1960) Digitalis, electrolytes and the surgical patient. Am J Cardiol 6:309–37

    Article  CAS  PubMed  Google Scholar 

  147. Levine M, Nikkanen H, Pallin DJ (2011) The effects of intravenous calcium in patients with digoxin toxicity. J Emerg Med 40:41–6

    Article  PubMed  Google Scholar 

  148. Bismuth C, Gaultier M, Conso F, et al (1973) Hyperkalemia in acute digitalis poisoning: prognostic significance and therapeutic implications. Clin Toxicol 6:153–62

    Article  CAS  PubMed  Google Scholar 

  149. Reza MJ, Kovick RB, Shine KI, et al (1974) Massive intravenous digoxin overdosage. N Engl J Med 291:777–78

    Article  CAS  PubMed  Google Scholar 

  150. Ochs HR, Smith TW (1977) Reversal of advanced digitoxin toxicity and modification of pharmacokinetics by specific antibodies and Fab fragments. J Clin Invest 60:1303–13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  151. Butler VP, Schmidt DH, Smith TW, et al (1977) Effects of sheep digoxin-specific antibodies and their Fab fragments on digoxin pharmacokinetics in dogs. J Clin Invest 59:345–59

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  152. Hauptman PJ, Kelly RA (1999) Digitalis. Circulation 99:1265–70

    Article  CAS  PubMed  Google Scholar 

  153. Fenton F, Smally AJ, Laut J (1996) Hyperkalemia and digoxin toxicity in a patient with kidney failure. Ann Emerg Med 28:440–1

    Article  CAS  PubMed  Google Scholar 

  154. Van Deusen SK, Birkhahn RH, Gaeta TJ (2003) Treatment of hyperkalemia in a patient with unrecognized digitalis toxicity. J Toxicol Clin Toxicol 41:373–6

    Article  PubMed  Google Scholar 

  155. Kraft LF, Katholi RE, Woods WT, et al (1980) Attenuation by magnesium of the electrophysiologic effects of hyperkalemia on human and canine heart cells. Am J Cardiol 45:1189–1195

    Article  CAS  PubMed  Google Scholar 

  156. Diercks DB, Shumaik GM, Harrigan RA, et al (2004) Electrocardiographic manifestations: electrolyte abnormalities. J Emerg Med 27:153–60

    Article  PubMed  Google Scholar 

  157. Pritchard JA (1955) The use of the magnesium ion in the management of eclamptogenic toxemias. Surg Gynecol Obstet 100:131–40

    CAS  PubMed  Google Scholar 

  158. Flink EB (1969) Therapy of magnesium deficiency*. An N Y Acad Sci 162:901–5

    Article  CAS  Google Scholar 

  159. Szekely P (1946) The action of magnesium on the heart. Br Heart J 8:115

    Article  PubMed Central  CAS  Google Scholar 

  160. Szekely P, Wynne N (1950) The effects of magnesium on cardiac arrhythmias caused by digitalis. Clin Sci 10:241–53

    Google Scholar 

  161. Neff MS, Mendelssohn S, Kim KE, et al (1972) Magnesium sulfate in digitalis toxicity. Am J Cardiol 29:377–82

    Article  CAS  PubMed  Google Scholar 

  162. Kiyosue T, Arita M (1982) Magnesium restores high K-induced inactivation of the fast Na channel in guinea pig ventricular muscle. Pflugers Arch 395:78–80

    Article  CAS  PubMed  Google Scholar 

  163. McLean RM (1994) Magnesium and its therapeutic uses: a review. Am J Med 96:63–76

    Article  CAS  PubMed  Google Scholar 

  164. Baehromejew IR(1933) Über den Komplex: innensekretion- Nerven-Ionen. Pflügers Arch Eur J Physiol 231:426–41

  165. D’Silva JL(1934) The action of adrenaline on serum potassium. J Physiol 82:393–8

  166. Epstein FH, Rosa RM (1983) Adrenergic control of serum potassium. N Engl J Med 309:1450–1

    Article  CAS  PubMed  Google Scholar 

  167. 1983) Adrenaline and potassium: everything in flux. Lancet 2:1401–3

  168. Moratinos J, Reverte M (1993) Effects of catecholamines on plasma potassium: the role of alpha- and beta-adrenoceptors. Fundam Clin Pharmacol 7:143–53

    Article  CAS  PubMed  Google Scholar 

  169. Rosa RM, Silva P, Young JB, et al (1980) Adrenergic modulation of extrarenal potassium disposal. N Engl J Med 302:431–4

    Article  CAS  PubMed  Google Scholar 

  170. Clausen T, Flatman JA (1980) Beta 2-adrenoceptors mediate the stimulating effect of adrenaline on active electrogenic Na- K-transport in rat soleus muscle. Br J Pharmacol 68:749–55

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  171. Brown MJ, Brown DC, Murphy MB (1983) Hypokalemia from beta2-receptor stimulation by circulating epinephrine. N Engl J Med 309:1414–9

    Article  CAS  PubMed  Google Scholar 

  172. Struthers AD, Reid JL, Whitesmith R, et al (1983) The effects of cardioselective and non-selective beta-adrenoceptor blockade on the hypokalaemic and cardiovascular responses to adrenomedullary hormones in man. Clin Sci (Lond) 65:143–7

    Article  CAS  Google Scholar 

  173. Struthers AD, Reid JL, Whitesmith R, et al (1983) Effect of intravenous adrenaline on electrocardiogram, blood pressure, and serum potassium. Br Heart J 49:90–3

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  174. Wang P, Clausen T (1976) Treatment of attacks in hyperkalaemic familial periodic paralysis by inhalation of salbutamol. Lancet 1:221–3

    Article  CAS  PubMed  Google Scholar 

  175. 1984) Hypokalemia from beta-receptor stimulation by epinephrine. N Engl J Med 310:1329–31

  176. Haalboom JR, Deenstra M, Struyvenberg A (1985) Hypokalaemia induced by inhalation of fenoterol. Lancet 1:1125–7

    Article  CAS  PubMed  Google Scholar 

  177. Martinez Vea A, Montoliu J, Andreu L, et al (1983) Beta adrenergic modulation of extrarenal potassium disposal in terminal uraemia. Proc Eur Dial Transplant Assoc 19:756–760

    Google Scholar 

  178. Montoliu J, Lens XM, Revert L (1987) Potassium-lowering effect of albuterol for hyperkalemia in renal failure. Arch Intern Med 147:713–7

    Article  CAS  PubMed  Google Scholar 

  179. Allon M, Dunlay R, Copkney C (1989) Nebulized albuterol for acute hyperkalemia in patients on hemodialysis. Ann Intern Med 110:426–9

    Article  CAS  PubMed  Google Scholar 

  180. Liou HH, Chiang SS, Wu SC, et al (1994) Hypokalemic effects of intravenous infusion or nebulization of salbutamol in patients with chronic renal failure: comparative study. Am J Kidney Dis 23:266–71

    Article  CAS  PubMed  Google Scholar 

  181. Murdoch IA,Dos Anjos R, Haycock GB(1991) Treatment of hyperkalaemia with intravenous salbutamol. Arch Dis Child 66:527–8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  182. McClure RJ, Prasad VK, Brocklebank JT (1994) Treatment of hyperkalaemia using intravenous and nebulised salbutamol. Arch Dis Child 70:126–8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  183. Allon M (1995) Hyperkalemia in end-stage renal disease: mechanisms and management. J Am Soc Nephrol 6:1134–42

    CAS  PubMed  Google Scholar 

  184. Green SA, Turki J, Innis M, et al (1994) Amino-terminal polymorphisms of the human beta 2-adrenergic receptor impart distinct agonist-promoted regulatory properties. Biochemistry 33:9414–9

    Article  CAS  PubMed  Google Scholar 

  185. Allon M, Shanklin N (1991) Adrenergic modulation of extrarenal potassium disposal in men with end-stage renal disease. Kidney Int 40:1103–9

    Article  CAS  PubMed  Google Scholar 

  186. Allon M (1993) Treatment and prevention of hyperkalemia in end-stage renal disease. Kidney Int 43:1197–209

    Article  CAS  PubMed  Google Scholar 

  187. Yang W, Huang T, Ho L, et al (1985) Beta-adrenergic-mediated extrarenal potassium disposal in patients with end-stage renal disease: effect of propranolol. Miner Electrolyte metab 12:186–93

    Google Scholar 

  188. Allon M, Copkney C (1990) Albuterol and insulin for treatment of hyperkalemia in hemodialysis patients. Kidney Int 38:869–72

    Article  CAS  PubMed  Google Scholar 

  189. Allon M, Takeshian A, Shanklin N (1993) Effect of insulinplus- glucose infusion with or without epinephrine on fasting hyperkalemia. Kidney Int 43:212–7

    Article  CAS  PubMed  Google Scholar 

  190. Fenn WO (1939) The deposition of potassium and phosphate with glycogen in rat livers. J Biological Chem 128:297–308

    CAS  Google Scholar 

  191. Darrow DC (1950) Body-fluid physiology: the role of potassium in clinical disturbances of body water and electrolyte. N Engl J Med 242:1014–8

    Article  CAS  PubMed  Google Scholar 

  192. Bywaters EGL, Joekes AM (1948) The artificial kidney: its clinical application in the treatment of traumatic anuria. Proc R Soc Med 41:420–6

    PubMed Central  CAS  PubMed  Google Scholar 

  193. Gatenby PBB, Edwards GE (1959) The control of potassium intoxication. Ir J Med Sci 34:279–83

    Article  Google Scholar 

  194. Alvestrand A, Wahren J, Smith D, et al (1984) Insulin-mediated potassium uptake is normal in uremic and healthy subjects. Am J Physiol 246:E174–80

    CAS  PubMed  Google Scholar 

  195. Ahee P, Crowe AV (2000) The management of hyperkalaemia in the emergency department. J Accid Emerg Med 17:188–91

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  196. Tzamaloukas AH, Ing TS, Elisaf MS, et al (2011) Abnormalities of serum potassium concentration in dialysis-associated hyperglycemia and their correction with insulin: review of published reports. Int Urol Nephrol 43:451–9

    Article  CAS  PubMed  Google Scholar 

  197. Gifford JD, Rutsky EA, Kirk KA, et al (1989) Control of serum potassium during fasting in patients with end-stage renal disease. Kidney Int 35:90–4

    Article  CAS  PubMed  Google Scholar 

  198. Clutter WE, Bier DM, Shah SD, et al (1980) Epinephrine plasma metabolic clearance rates and physiologic thresholds for metabolic and hemodynamic actions in man. J Clin Invest 66:94–101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  199. Mikhailidis DP, Dandona P (1984) Adrenaline and potassium. Lancet 1:170–1

    Article  CAS  PubMed  Google Scholar 

  200. Flatman JA, Clausen T (1979) Combined effects of adrenaline and insulin on active electrogenic Na+-K+ transport in rat soleus muscle. Nature 281:580–1

    Article  CAS  PubMed  Google Scholar 

  201. Association AH (2005) Part 10.1:Life-threatening electrolyte abnormalities. Circulation 112:112–21

    Google Scholar 

  202. Blumberg A, Weidmann P, Shaw S, et al (1988) Effect of various therapeutic approaches on plasma potassium and major regulating factors in terminal renal failure. Am J Med 85:507–12

    Article  CAS  PubMed  Google Scholar 

  203. García-Palmieri MR (1962) Reversal of hyperkalemic cardiotoxicity with hypertonic saline. Am Heart J 64:483–8

    Article  PubMed  Google Scholar 

  204. Somerville W (1951) The effect of potassium and calcium on the electrocardiogram. Postgrad Med J 27:296

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  205. Hodgkin AL, Katz B (1949) The effect of sodium ions on the electrical activity of giant axon of the squid. J Physiol 108:37–77

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  206. Bellet S, Wasserman F, Brody JI (1955) Treatment of Cardiac Arrest and Slow Ventricular Rates in Complete AV Heart Block Use of Molar and Half Molar Sodium Lactate: a clinical study. Circulation 11:685–701

    Article  CAS  PubMed  Google Scholar 

  207. Ballantyne F, Davis LD, Reynolds EW (1975) Cellular basis for reversal of hyperkalemic electrocardiographic changes by sodium. Am J Physiol 229:935–40

    CAS  PubMed  Google Scholar 

  208. Fitzhugh FW, Doyle JT (1953) Effects of acute elevation of serum potassium and sodium concentrations on the canine electrocardiogram. Am J Med 14:504

    Article  Google Scholar 

  209. Kaplan JL, Eynon CA, Dalsey WC, et al (2000) Hypertonic saline treatment of severe hyperkalemia in nonnephrectomized dogs. Acad Emerg Med 7:965–73

    Article  CAS  PubMed  Google Scholar 

  210. Mines GR (1913) On functional analysis by the action of electrolytes. J Physiol 46:188–235

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  211. Bellet S, Wasserman F (1957) Indications and contraindications for the use of molar sodium lactate. Circulation 15:591–602

    Article  CAS  PubMed  Google Scholar 

  212. Bellet S, Wasserman F (1957) The effects of molar sodium lactate in reversing the cardiotoxic effect of hyperpotassemia. AMA Arch Intern Med 100:565–81

    Article  CAS  PubMed  Google Scholar 

  213. Burnell JM, Villamil MF, Uyeno BT, et al (1956) The effect in humans of extracellular pH change on the relationship between serum potassium concentration and intracellular potassium. J Clin Invest 35:935

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  214. Magner P, Robinson L, Halperin R, et al (1988) The plasma potassium concentration in metabolic acidosis: a re-evaluation. Am J Kidney Dis 11:220–4

    Article  CAS  PubMed  Google Scholar 

  215. Tobin RB (1958) Varying role of extracellular electrolytes in metabolic acidosis and alkalosis. Am J Physiol 195:685–92

    CAS  PubMed  Google Scholar 

  216. Swan RC, Pitts RF, Madisso H (1955) Neutralization of infused acid by nephrectomized dogs. J Clin Invest 34:205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  217. Keating R, Weichselbaum T, Alanis M, et al (1953) The movement of potassium during experimental acidosis and alkalosis in the nephrectomized dog. Surg Gynecol Obstet 96:323–30

    CAS  PubMed  Google Scholar 

  218. Oster J, Perez G, Castro A, et al (1980) Plasma potassium response to acute metabolic-acidosis induced by mineral and nonmineral acids. Miner Electrolyte Metab 4:28–36

    CAS  Google Scholar 

  219. Fulop M (1979) Serum potassium in lactic acidosis and ketoacidosis. New Engl J Med 300:1087

    Article  CAS  PubMed  Google Scholar 

  220. Adrogue HJ, Chap Z, Ishida T, et al (1985) Role of the endocrine pancreas in the kalemic response to acute metabolic acidosis in conscious dogs. J Clin Invest 75: 798–808

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  221. Adrogué HJ, Madias NE (1981) Changes in plasma potassium concentration during acute acid-base disturbances. Am J Med 71:456–67

    Article  PubMed  Google Scholar 

  222. Fraley DS, Adler S (1977) Correction of hyperkalemia by bicarbonate despite constant blood pH. Kidney Int 12:354–60

    Article  CAS  PubMed  Google Scholar 

  223. Schwarz KC, Cohen BD, Lubash GD, et al (1959) Severe acidosis and hyperpotassemia treated with sodium bicarbonate infusion. Circulation 19:215–20

    Article  CAS  PubMed  Google Scholar 

  224. Blumberg A, Weidmann P, Shaw S, et al (1988) Effect of various therapeutic approaches on plasma potassium and major regulating factors in terminal renal failure. Am J Med 85:507–12

    Article  CAS  PubMed  Google Scholar 

  225. Blumberg A, Weidmann P, Ferrari P (1992) Effect of prolonged bicarbonate administration on plasma potassium in terminal renal failure. Kidney Int 41:369–74

    Article  CAS  PubMed  Google Scholar 

  226. Greenstein S, Goldburgh WP, Guzman SV, et al (1960) A comparative analysis of molar sodium lactate and other agents in the treatment of induced hyperkalemia in nephrectomized dogs. Circ Res 8:223–33

    Article  CAS  PubMed  Google Scholar 

  227. Elkinton JR, Singer RB, Barker ES, et al (1955) Effects in man of acute experimental respiratory alkalosis and acidosis on ionic transfers in the total body fluids. J Clin Invest 34:1671–90

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  228. Leibman J, Edelman IS (1959) Interrelations of plasma potassium concentration, plasma sodium concentration, arterial pH and total exchangeable potassium. J Clin Invest 38:2176–88

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  229. Allon M, Shanklin N (1996) Effect of bicarbonate administration on plasma potassium in dialysis patients: interactions with insulin and albuterol. Am J Kidney Dis 28:508–14

    Article  CAS  PubMed  Google Scholar 

  230. Singer RB, Clark JK, Barker ES, et al (1955) The acute effects in man of rapid intravenous infusion of hypertonic sodium bicarbonate solution. I. Changes in acid-base balance and distribution of the excess buffer base. Medicine (Baltimore) 34:51–95

    Article  CAS  Google Scholar 

  231. Parham WA, Mehdirad AA, Biermann KM, et al (2006) Hyperkalemia revisited. Tex Heart Inst J 33:40–7

    PubMed Central  PubMed  Google Scholar 

  232. Maxwell AP, Linden K, O’Donnell S, et al (2013) Management of hyperkalaemia. J R Coll Physicians Edinb 43:246–51

    Article  CAS  PubMed  Google Scholar 

  233. Waters JH, Howard RS, Lesnik IK (1996) Plasma potassium response after tromethamine (THAM) or sodium bicarbonate in the acidotic rabbit. Anesth Analg 83:789–92

    CAS  PubMed  Google Scholar 

  234. Lin JL, Lim PS, Leu ML, et al (1994) Outcomes of severe hyperkalemia in cardiopulmonary resuscitation with concomitant hemodialysis. Intensive Care Med 20:287–90

    Article  CAS  PubMed  Google Scholar 

  235. Williams A, Barnes J, Cunningham J, et al (1984) Effect of dialysate buffer on potassium removal during haemodialysis. In: Editor (ed) (eds) Book Effect of dialysate buffer on potassium removal during haemodialysis. City, pp. 209–214

    Google Scholar 

  236. Ward RA, Wathen RL, Williams TE, et al (1987) Hemodialysate composition and intradialytic metabolic, acid-base and potassium changes. Kidney Int 32:129–35

    Article  CAS  PubMed  Google Scholar 

  237. Zehnder C, Gutzwiller JP, Huber A, et al (2001) Low-potassium and glucose-free dialysis maintains urea but enhances potassium removal. Nephrol Dial Transplant 16:78–84

    Article  CAS  PubMed  Google Scholar 

  238. Gutzwiller J, Schneditz D, Huber A, et al (2003) Increasing blood flow increases kt/V (urea) and potassium removal but fails to improve phosphate removal. Clin Nephrol 59:130–6

    Article  CAS  PubMed  Google Scholar 

  239. Hou S, McElroy PA, Nootens J, et al (1989) Safety and efficacy of low-potassium dialysate. Am J Kidney Dis 13:137–43

    Article  CAS  PubMed  Google Scholar 

  240. Redaelli B, Sforzini S, Bonoldi L, et al (1983) Potassium removal as a factor limiting the correction of acidosis during dialysis. Proc Eur Dial Transplant Assoc 19:366–71

    CAS  PubMed  Google Scholar 

  241. Dalal S, Yu AW, Gupta DK, et al (1990) L-lactate highefficiency hemodialysis: hemodynamics, blood gas changes, potassium/phosphorus, and symptoms. Kidney Int 38:896–903

    Article  CAS  PubMed  Google Scholar 

  242. Feig PU, Shook A, Sterns RH (1981) Effect of potassium removal during hemodialysis on the plasma potassium concentration. Nephron 27:25–30

    Article  CAS  PubMed  Google Scholar 

  243. Flinn RB, Merrill JP, Welzant WR (1961) Treatment of the oliguric patient with a new sodium-exchange resin and sorbitol: preliminary report. N Engl J Med 264:111–5

    Article  CAS  PubMed  Google Scholar 

  244. Scherr L, Ogden DA, Mead AW, et al (1961) Management of hyperkalemia with a cation-exchange resin. N Engl J Med 264:115–9

    Article  CAS  PubMed  Google Scholar 

  245. Sterns RH, Rojas M, Bernstein P, et al (2010) Ion-exchange resins for the treatment of hyperkalemia: are they safe and effective? J Am Soc Nephrol 21:733–5

    Article  CAS  PubMed  Google Scholar 

  246. Watson MA, Baker TP, Nguyen A, et al (2012) Association of prescription of oral sodium polystyrene sulfonate with sorbitol in an inpatient setting with colonic necrosis: a retrospective cohort study. Am J Kidney Dis 60:409–16

    Article  CAS  PubMed  Google Scholar 

  247. Lillemoe KD, Romolo JL, Hamilton SR, et al (1987) Intestinal necrosis due to sodium polystyrene (Kayexalate) in sorbitol enemas: clinical and experimental support for the hypothesis. Surgery 101:267–72

    CAS  PubMed  Google Scholar 

  248. Gerstman BB, Kirkman R, Platt R (1992) Intestinal necrosis associated with postoperative orally administered sodium polystyrene sulfonate in sorbitol. Am J Kidney Dis 20:159–61

    Article  CAS  PubMed  Google Scholar 

  249. Roy-Chaudhury P, Meisels IS, Freedman S, et al (1997) Combined gastric and ileocecal toxicity (serpiginous ulcers) after oral kayexalate in sorbital therapy. Am J Kidney Dis 30:120–2

    Article  CAS  PubMed  Google Scholar 

  250. Abraham SC, Bhagavan BS, Lee LA, et al (2001) Upper gastrointestinal tract injury in patients receiving kayexalate (sodium polystyrene sulfonate) in sorbitol: clinical, endoscopic, and histopathologic findings. Am J Surg Pathol 25:637–44

    Article  CAS  PubMed  Google Scholar 

  251. Gardiner GW (1997) Kayexalate (sodium polystyrene sulphonate) in sorbitol associated with intestinal necrosis in uremic patients. Can J Gastroenterol 11:573–7

    CAS  PubMed  Google Scholar 

  252. Scott TR, Graham SM, Schweitzer EJ, et al (1993) Colonic necrosis following sodium polystyrene sulfonate (Kayexalate)- sorbitol enema in a renal transplant patient. Report of a case and review of the literature. Dis Colon Rectum 36:607–9

    Article  CAS  PubMed  Google Scholar 

  253. Perloff LJ, Chon H, Petrella EJ, et al (1976) Acute colitis in the renal allograft recipient. Ann Surg 183:77–83

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  254. Chernin G, Gal-Oz A, Ben-Assa E, et al (2012) Secondary prevention of hyperkalemia with sodium polystyrene sulfonate in cardiac and kidney patients on renin-angiotensin-aldosterone system inhibition therapy. Clin Cardiol 35:32–6

    Article  PubMed  Google Scholar 

  255. Harel Z, Harel S, Shah PS, et al (2013) Gastrointestinal adverse events with sodium polystyrene sulfonate (Kayexalate) use: a systematic review. Am J Med 126:264.e9–24

    Article  PubMed  CAS  Google Scholar 

  256. Packham DK, Rasmussen HS, Lavin PT, et al (2015) Sodium zirconium cyclosilicate in hyperkalemia. N Engl J Med 372:222–31

    Article  PubMed  CAS  Google Scholar 

  257. Kosiborod M, Rasmussen HS, Lavin P, et al (2014) Effect of sodium zirconium cyclosilicate on potassium lowering for 28 days among outpatients with hyperkalemia: the HARMONIZE randomized clinical trial. JAMA 312:2223–33

    Article  PubMed  CAS  Google Scholar 

  258. Stavros F, Yang A, Leon A, et al (2014) Characterization of structure and function of ZS-9, a K+ selective ion trap. PLoS One 9:e114686

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  259. Kosiborod M, Peacock WF, Packham DK (2015) Sodium zirconium cyclosilicate for urgent therapy of severe hyperkalemia. N Engl J Med 372:1577–8

    Article  PubMed  Google Scholar 

  260. Weir MR, Bakris GL, Bushinsky DA, et al (2015) Patiromer in patients with kidney disease and hyperkalemia receiving RAAS inhibitors. N Engl J Med 372:211–21

    Article  PubMed  CAS  Google Scholar 

  261. Hartmann R, Mellinkoff S (1955) Relationship of platelets to the serum potassium concentration. In: Editor (ed) (eds) Book Relationship of platelets to the serum potassium concentration. Rockefeller univ press 1114 first ave, 4TH FL, New York, NY 10021, City, pp 938–8

    Google Scholar 

  262. Mödder B, Meuthen I (1986) Pseudohyperkalemia in the serum in reactive thrombocytosis and thrombocythemia. Dtsch Med Wochenschr 111:329–32

    Article  PubMed  Google Scholar 

  263. Wulkan RW, Michiels JJ (1990) Pseudohyperkalaemia in thrombocythaemia. J Clin Chem Clin Biochem 28:489–91

    CAS  PubMed  Google Scholar 

  264. Graber M, Subramani K, Corish D, et al (1988) Thrombocytosis elevates serum potassium. Am J Kidney Dis 12:116–20

    Article  CAS  PubMed  Google Scholar 

  265. Ingram RH, Seki M (1962) Pseudohyperkalemia with thrombocytosis. N Engl J Med 267:895–900

    Article  PubMed  Google Scholar 

  266. Don BR, Sebastian A, Cheitlin M, et al (1990) Pseudohyperkalemia caused by fist clenching during phlebotomy. N Engl J Med 322:1290–2

    Article  CAS  PubMed  Google Scholar 

  267. Stankovic AK, Smith S (2004) Elevated serum potassium values: the role of preanalytic variables. Am J Clin Pathol 121: S105–12

    PubMed  Google Scholar 

  268. Sindhu SK, Hix JK, Fricke W (2011) Pseudohyperkalemia in chronic lymphocytic leukemia: phlebotomy sites and pneumatic tubes. Am J Kidney Dis 57:354–5

    Article  PubMed  Google Scholar 

  269. Chan JS, Baker SL, Bernard AW (2012) Pseudohyperkalemia without reported haemolysis in a patient with chronic lymphocytic leukaemia. BMJ Case Rep 2012

    Google Scholar 

  270. Colussi G, Cipriani D (1995) Pseudohyperkalemia in extreme leukocytosis. Am J Nephrol 15:450–2

    Article  CAS  PubMed  Google Scholar 

  271. Myerson RM, Frumin AM (1960) Hyperkalemia associated with the myeloproliferative disorder. Arch Intern Med 106:479–82

    Article  CAS  PubMed  Google Scholar 

  272. Ruddy KJ, Wu D, Brown JR (2008) Pseudohyperkalemia in chronic lymphocytic leukemia. J Clin Oncol 26:2781–2

    Article  PubMed  Google Scholar 

  273. Meng QH, Krahn J (2011) Reverse pseudohyperkalemia in heparin plasma samples from a patient with chronic lymphocytic leukemia. Clin Biochem 44:728–30

    Article  CAS  PubMed  Google Scholar 

  274. Bernard C (1857) Leçons sur les effets des substances toxiques et médicamenteuses. Baillière eds

    Book  Google Scholar 

  275. Caldwell JE (2004) The continuing search for a succinylcholine replacement. Anesthesiology 100:763–4

    Article  PubMed  Google Scholar 

  276. Sakles JC, Laurin EG, Rantapaa AA, et al (1998) Airway management in the emergency department: a one-year study of 610 tracheal intubations. Ann Emerg Med 31:325–32

    Article  CAS  PubMed  Google Scholar 

  277. Bulger EM, Copass MK, Sabath DR, et al (2005) The use of neuromuscular blocking agents to facilitate prehospital intubation does not impair outcome after traumatic brain injury. J Trauma 58:718–23; discussion 723–14

    Article  PubMed  Google Scholar 

  278. Martyn JA, Richtsfeld M (2006) Succinylcholine-induced hyperkalemia in acquired pathologic states: etiologic factors and molecular mechanisms. Anesthesiology 104:158–69

    Article  CAS  PubMed  Google Scholar 

  279. Gronert GA, Theye RA (1975) Pathophysiology of hyperkalemia induced by succinylcholine. Anesthesiology 43:89–99

    Article  CAS  PubMed  Google Scholar 

  280. Cooperman LH, Strobel GE Jr, Kennell EM (1970) Massive hyperkalemia after administration of succinylcholine. Anesthesiology 32:161–4

    Article  CAS  PubMed  Google Scholar 

  281. Fischer U, Reinhardt S, Albuquerque EX, et al (1999) Expression of functional alpha7 nicotinic acetylcholine receptor during mammalian muscle development and denervation. Eur J Neurosci 11:2856–64

    Article  CAS  PubMed  Google Scholar 

  282. Thapa S, Brull SJ (2000) Succinylcholine-induced hyperkalemia in patients with renal failure: an old question revisited. Anesth Analg 91:237–41

    CAS  PubMed  Google Scholar 

  283. Slawson KB (1972) Anaesthesia for the patient in renal failure. Br J Anaesth 44:277–82

    Article  CAS  PubMed  Google Scholar 

  284. Yang SC, Wang CH, Chen CL, et al (2014) The effectiveness and impact of 10 gram glucose and 10 units insulin in treating hyperkalemia during living donor liver transplantation. Acta Chir Belg 114:400–3

    PubMed  Google Scholar 

  285. Li Q, Zhou MT, Wang Y, et al (2004) Effect of insulin on hyperkalemia during anhepatic stage of liver transplantation. World J Gastroenterol 10:2427–9

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Mesnard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robert, T., Algalarrondo, V. & Mesnard, L. Hyperkaliémie sévère ou menaçante : le diable est dans les détails. Réanimation 24, 688–712 (2015). https://doi.org/10.1007/s13546-015-1125-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13546-015-1125-8

Mots clés

Keywords

Navigation