Skip to main content
Log in

Fourth-order cumulants based-least squares methods for fractional Multiple-Input-Single-Output Errors-In-Variables system identification

  • Original Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

This paper presents new consistent methods for continuous-time Multiple-Input-Single-Output (MISO) Errors-In-Variables (EIV) systems by fractional models. The proposed idea is to use Higher-Order Statistics (HOS), such as fourth-order cumulants (foc), instead of noisy input and output measurements to obtain unbiased estimates. Firstly, all differentiation orders are assumed to be known a priori and linear coefficients are estimated. The developed estimator is based on minimizing the equation error and it is called fractional fourth-order based-least squares estimator (\(frac-foc-ls\)). Secondly, the global commensurability of the fractional MISO system is considered. The \(frac-foc-ls\) is combined with a non linear technique to estimate the global commensurate order along with linear coefficients. The developed algorithm is based on minimizing the output error and called fractional fourth-order cumulants based-least squares combined with global commensurate order optimization (\(frac-foc-gcools\)). The consistency of the developed estimators, in presence of high levels of noise corrupting both the input and output measurements, is assessed through a numerical example with the help of Monte Carlo simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. The time space contains the lines of cumulants obtained for \(N_t\) samples of data.

References

  1. Agrawal, O.P.: A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dynamics 38(1), 323–337 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amairi, M., Najar, S., Aoun, M., Abdelkrim, M.: Guaranteed output-error identification of fractional order model. In: 2nd International Conference on Advanced Computer Control (ICACC), vol. 2, pp. 246–250. IEEE (2010)

  3. Baleanu, D., Machado, J.A.T., Luo, A.C.: Fractional Dynamics and Control. Springer Science & Business Media (2011)

  4. Brillinger, D.R.: Time Series: Data Analysis and Theory. SIAM (2001)

  5. Chetoui, M., Aoun, M.: Instrumental variables based methods for linear systems identification with fractional models in the EIV context. In: 2019 16th International Multi-Conference on Systems, Signals & Devices (SSD), pp. 90–95. IEEE (2019)

  6. Chetoui, M., Malti, R., Aoun, M., Thomassin, M., Abdelkrim, M., Oustaloup, A.: Continuous-time system identification with fractional models from noisy input and output data using fourth-order cumulants. Systems, Automation, and Control 7, 125 (2017)

    Article  MATH  Google Scholar 

  7. Chetoui, M., Thomassin, M., Malti, R., Aoun, M., Najar, S., Abdelkrim, M.N., Oustaloup, A.: New consistent methods for order and coefficient estimation of continuous-time errors-in-variables fractional models. Computers & Mathematics with Applications 66(5), 860–872 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dennis Jr, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. SIAM (1996)

  9. Gabano, J.D., Poinot, T.: Estimation of thermal parameters using fractional modelling. Signal Processing 91(4), 938–948 (2011)

    Article  MATH  Google Scholar 

  10. Grünwald, A.: Ueber begrenzte derivationen und deren anwendung. Zeitschrift fur Mathematik und Physik 12(6), 441–480 (1867)

    Google Scholar 

  11. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific (2000)

  12. Ionescu, C.M., De Keyser, R.: Relations between fractional-order model parameters and lung pathology in chronic obstructive pulmonary disease. IEEE Transactions on Biomedical Engineering 56(4), 978–987 (2008)

    Article  Google Scholar 

  13. Ljung, L.: System Identification. Springer (1998)

  14. Luenberger, D.G., Ye, Y., et al.: Linear and Nonlinear Programming, vol. 2. Springer (1984)

  15. Maachou, A., Malti, R., Melchior, P., Battaglia, J.L., Oustaloup, A., Hay, B.: Nonlinear thermal system identification using fractional volterra series. Control Engineering Practice 29, 50–60 (2014)

    Article  Google Scholar 

  16. Magin, R.L.: Fractional calculus models of complex dynamics in biological tissues. Computers & Mathematics with Applications 59(5), 1586–1593 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Malti, R., Aoun, M., Sabatier, J., Oustaloup, A.: Tutorial on system identification using fractional differentiation models. IFAC Proceedings Volumes 39(1), 606–611 (2006)

    Article  Google Scholar 

  18. Malti, R., Thomassin, M.: Differentiation similarities in fractional pseudo-state space representations and the subspace-based methods. Fractional Calculus and Applied Analysis 16, 273–287 (2013). https://doi.org/10.2478/s13540-013-0017-8

    Article  MathSciNet  MATH  Google Scholar 

  19. Matignon, D.: Stability properties for generalized fractional differential systems. In: ESAIM: proceedings, vol. 5, pp. 145–158. EDP Sciences (1998)

  20. Mayoufi, A., Victor, S., Chetoui, M., Malti, R., Aoun, M.: Output error miso system identification using fractional models. Fractional Calculus and Applied Analysis 24(5), 1601–1618 (2021). https://doi.org/10.1515/fca-2021-0067

    Article  MathSciNet  MATH  Google Scholar 

  21. Mendel, J.: Tutorial on high-order statistics (spectra) in signal processing and system theory: Theoretical results and some applications. In: Proceedings of the IEEE, vol. 79, pp. 278–305 (1991)

  22. Monje, C.A., Chen, Y., Vinagre, B.M., Xue, D., Feliu-Batlle, V.: Fractional-Order Systems and Controls: Fundamentals and Applications. Springer Science & Business Media (2010)

  23. Moussa, N.B., Chetoui, M., Amairi, M.: Miso fractional systems identification with fractional models in the eiv context. In: 18th International Multi-Conference on Systems, Signals & Devices (SSD), pp. 942–947. IEEE (2021)

  24. Nasser-Eddine, A., Huard, B., Gabano, J.D., Poinot, T., Martemianov, S., Thomas, A.: Fast time domain identification of electrochemical systems at low frequencies using fractional modeling. Journal of Electroanalytical Chemistry 862, 113957 (2020)

    Article  Google Scholar 

  25. Padula, F., Visioli, A., et al.: Advances in Robust Fractional Control. Springer (2015)

  26. Podlubny, I.: Fractional derivatives and integrals. Fractional Differential Equations 198, 41–117 (1998)

    Google Scholar 

  27. Sabatier, J., Agrawal, O.P., Machado, J.T.: Advances in Fractional Calculus, vol. 4. Springer (2007)

  28. Sabatier, J., Lanusse, P., Melchior, P., Oustaloup, A.: Fractional order differentiation and robust control design. Intelligent Systems, Control and Automation: Science and Engineering 77, 13–18 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Salem, T., Chetoui, M., Aoun, M.: Instrumental variable based methods for continuous-time linear parameter varying system identification with fractional models. In: 2016 24th Mediterranean Conference on Control and Automation (MED), pp. 640–645. IEEE (2016)

  30. Thil, S., Garnier, H., Gilson, M.: Third-order cumulants based methods for continuous-time errors-in-variables model identification. Automatica 44(3), 647–658 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Victor, S., Malti, R., Oustaloup, A.: Instrumental variable method with optimal fractional differentiation order for continuous-time system identification. In: 15th IFAC Symposium on System Identification, pp. 904–909. Saint-Malo, France (2009)

  32. Victor, S., Mayoufi, A., Malti, R., Chetoui, M., Aoun, M.: System identification of miso fractional systems: Parameter and differentiation order estimation. Automatica 141, 110268 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  33. Victor, S., Melchior, P., Pellet, M., Oustaloup, A.: Lung thermal transfer system identification with fractional models. IEEE Transactions on Control Systems Technology 28(1), 172–182 (2018)

    Article  Google Scholar 

  34. Wang, Y., Li, M., Chen, Z.: Experimental study of fractional-order models for lithium-ion battery and ultra-capacitor: Modeling, system identification, and validation. Applied Energy 278, 115736 (2020)

    Article  Google Scholar 

  35. Xue, D.: Fractional-Order Control Systems. de Gruyter (2017)

  36. Yakoub, Z., Amairi, M., Aoun, M., Chetoui, M.: On the fractional closed-loop linear parameter varying system identification under noise corrupted scheduling and output signal measurements. Transactions of the Institute of Measurement and Control 41(10), 2909–2921 (2019)

    Article  Google Scholar 

  37. Yakoub, Z., Amairi, M., Chetoui, M., Aoun, M.: On the closed-loop system identification with fractional models. Circuits, Systems, and Signal Processing 34(12), 3833–3860 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Yakoub, Z., Aoun, M., Amairi, M., Chetoui, M.: Identification of continuous-time fractional models from noisy input and output signals. In: S. Cham (ed.) Fractional Order Systems Control Theory and Applications, pp. 181–216 (2022)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manel Chetoui.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chetoui, M., Aoun, M. Fourth-order cumulants based-least squares methods for fractional Multiple-Input-Single-Output Errors-In-Variables system identification. Fract Calc Appl Anal 26, 1868–1893 (2023). https://doi.org/10.1007/s13540-023-00174-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13540-023-00174-z

Keywords

Mathematics Subject Classification

Navigation