Skip to main content
Log in

Geomagnetic Activity Following Interplanetary Shocks in Solar Cycles 23 and 24

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Interplanetary shocks are important precursors of interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs). The shock compression and draping effects on the interplanetary magnetic field (IMF) in sheaths can lead to significant geomagnetic activity. We identified 297 fast forward shocks observed by the Advanced Composition Explorer spacecraft upstream of the Earth, and analyzed their geomagnetic impacts in solar cycle (SC) 23 (1998–2008) and SC24 (2009–2018). The shock (normalized) occurrence rate is found to be significantly higher during SC23 compared to SC24, and it exhibits a stronger correlation with the sunspot number during SC23 (correlation coefficient \(r = 0.93\)) than during SC24 (\(r = 0.86\)). The average shock compressions of the IMF magnitude and plasma density are \(\approx 2.0\) and \(\approx 2.4\), respectively, with no significant correlation with geomagnetic activity. Variations of solar wind parameters and geomagnetic activity indices following the shock arrival are explored. An interval of 6 h (3 days) following the shock is characterized by the average peak values of solar wind speed \(V_{\textrm{sw}} = 525~(610)\) km s\(^{-1}\), IMF \(B_{\textrm{z}} = -6.5~(-11.1)\) nT, and electric field \(E_{\textrm{y}} = 3.5~(6.1)\) mV m\(^{-1}\), followed by the average peak geomagnetic indices of \(\textrm{Dst}=-36~(-83)\) nT, \(\textrm{ap}=56~(92)\) nT, and \(\textrm{AE}=733~(1061)\) nT. About 25% and 63% of the shocks are followed by geomagnetic storms with \(\textrm{Dst}\le -50\) nT in the following 6-h and 3-day periods, respectively. The percentages of shocks followed by the auroral activity level \(\textrm{AE}>500\) nT are \(\approx 65\)% and \(\approx 96\)% for the short and long intervals, respectively. For the ap activity level (\(>56\) nT), the geoeffective shocks are \(\approx 30\)% and \(\approx 60\)%, respectively. The overall increase in the geomagnetic activity after the shock arrival for the longer shock-preceded interval is possibly due to inclusion of contributions from shock driver (ICME or CIR) fields. It can be concluded that an interplanetary fast forward shock has a probability of 1/4 to be followed by geomagnetic storms, and of 2/3 to be followed by significant auroral activity. We derived probability distribution functions of geomagnetic indices for the 6-h and 3-day intervals following shocks. The results might be important for space weather modeling and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The solar wind plasma and IMF data used in this work are obtained from the ACE Science Center (http://www.srl.caltech.edu/ACE/ASC/level2/). The geomagnetic indices are collected from the OMNIweb database (https://omniweb.gsfc.nasa.gov/). The SSN data are obtained from the Royal Observatory of Belgium (https://wwwbis.sidc.be/silso/home).

References

  1. E.N. Parker, Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 128, 664–676 (1958). https://doi.org/10.1086/146579

    Article  ADS  Google Scholar 

  2. D.F. Webb, T.A. Howard, Coronal mass ejections: Observations. Liv. Rev. Solar Phys. 9, 1–83 (2012). https://doi.org/10.12942/lrsp-2012-3

  3. A. Balogh, V. Bothmer, N.U. Crooker, R.J. Forsyth, G. Gloeckler, A. Hewish, M. Hilchenbach, R. Kallenbach, B. Klecker, J.A. Linker, E. Lucek, G. Mann, E. Marsch, A. Posner, I.G. Richardson, J.M. Schmidt, M. Scholer, Y.M. Wang, R.F. Wimmer-Schweingruber, M.R. Aellig, P. Bochsler, S. Hefti, Z. Mikii, The solar origin of corotating interaction regions and their formation in the inner heliosphere. Space Sci. Rev. 89, 141–178 (1999). https://doi.org/10.1023/A:1005245306874

  4. A.J. Hundhausen, Coronal Expansion and Solar Wind (Springer-Verlag. Berlin (1972). https://doi.org/10.1007/978-3-642-65414-5

    Article  ADS  Google Scholar 

  5. E.J. Smith, J.H. Wolfe, Observations of interaction regions and corotating shocks between one and five AU: Pioneers 10 and 11. Geophys. Res. Lett. 3, 137–140 (1976). https://doi.org/10.1029/GL003i003p00137

    Article  ADS  Google Scholar 

  6. L.F. Burlaga, Interplanetary magnetohydrodynamics, vol. 3 (Oxford University Press) 272 (1995)

  7. D. Burgess, in Introduction to Space Plasma Physics, ed. by M.G. Kivelson, C.T. Russell (Cambridge University Press, Cambridge - UK) Chapter 5 (1995)

  8. A.J. Hundhausen, The Solar Wind (Cambridge University Press, Cambridge, 1995), pp.91–128

    Google Scholar 

  9. B. Heber, T. Sanderson, M. Zhang, Corotating interaction regions. Adv. Space Res. 23, 567–579 (1999). https://doi.org/10.1016/S0273-1177(99)80013-1

    Article  ADS  Google Scholar 

  10. L. Jian, C.T. Russell, J.G. Luhhmann, R.M. Skoug, Properties of stream interactions at one AU during 1995–2004. Sol. Phys. 239, 337–392 (2006). https://doi.org/10.1007/s11207-006-0132-3

    Article  ADS  Google Scholar 

  11. R. Schwenn, Space weather: The solar perspective. Liv. Rev. Sol. Phys. 3, 1–72 (2006). https://doi.org/10.1007/s41116-021-00030-3

    Article  Google Scholar 

  12. B.T. Tsurutani, G.S. Lakhina, O.P. Verkhoglyadova, W.D. Gonzalez, E. Echer, F.L. Guarnieri, A review of interplanetary discontinuities and their geomagnetic effects. J. Atmos. Sol. Terr. Phys. 73, 5–19 (2011a). https://doi.org/10.1016/j.jastp.2010.04.001

  13. E.K.J. Kilpua, E. Lumme, K. Andreeova, A. Isavnin, H.E.J. Koskinen, Properties and drivers of fast interplanetary shocks near the orbit of the Earth (1995-2013). J. Geophys. Res. 120, 4112–4125 (2015). https://doi.org/10.1002/2015JA021138

    Article  Google Scholar 

  14. I.G. Richardson, Solar wind stream interaction regions throughout the heliosphere. Liv. Rev. Sol. Phys. 15, 1–95 (2018). https://doi.org/10.1007/s41116-017-0011-z

    Article  Google Scholar 

  15. E. Echer, M.J.A. Bolzan, A.M.S. Franco, Statistical analysis of solar wind parameter variation with heliospheric distance: Ulysses observations in the ecliptic plane. Adv. Space Res. 65, 2846–2856 (2020). https://doi.org/10.1016/j.asr.2020.03.036

    Article  ADS  Google Scholar 

  16. R. Hajra, J.V. Sunny, Corotating interaction regions during solar cycle 24: A study on characteristics and geoeffectiveness. Sol. Phys. 297, 30 (2022). https://doi.org/10.1007/s11207-022-01962-1

    Article  ADS  Google Scholar 

  17. E. Echer, W.D. Gonzalez, L.E.A. Vieira, A. Dal Lago, F.L. Guarnieri, A. Prestes, A.L.C. Gonzalez, N.J. Schuch, Interplanetary shock parameterse during solar activity maximum 2000 and minimum 1995–1996. Brazilian J. Phys. 33, 115–122 (2003). https://doi.org/10.1590/S0103-97332003000100010

    Article  ADS  Google Scholar 

  18. E. Echer, Interplanetary shock parameters near Jupiter’s orbit. Geophys. Res. Lett. 46, 5681–5688 (2019). https://doi.org/10.1029/2019GL082126

    Article  ADS  Google Scholar 

  19. E. Echer, Solar wind and interplanetary shock parameters near Saturn’s orbit (~10 au). Planet. Space Sci. 165, 210–220 (2019). https://doi.org/10.1016/j.pss.2018.10.006

    Article  ADS  Google Scholar 

  20. R. Hajra, Variation of the interplanetary shocks in the inner heliosphere. Astrophys. J. 917, 91 (2021). https://doi.org/10.3847/1538-4357/ac0897

    Article  ADS  Google Scholar 

  21. H.V. Cane, The evolution of interplanetary shocks. J. Geophys. Res. 90, 191–197 (1985). https://doi.org/10.1029/JA090iA01p00191

    Article  ADS  Google Scholar 

  22. N.R. Sheeley, R.A. Howard, M.J. Koomen, D.J. Michels, R. Schwenn, K.H. Muser, H. Rosenbauer, Coronal mass ejections and interplanetary shocks. J. Geophys. Res. 90, 163–175 (1985). https://doi.org/10.1029/JA090iA01p00163

  23. E. Echer, W.D. Gonzalez, B.T. Tsurutani, L.E.A. Vieira, M.V. Alves, A.L.C. Gonzalez, On the preferential occurrence of interplanetary shocks in July and November: Causes (solar wind annual dependence) and consequences (intense magnetic storms). J. Geophys. Res. 110, A02,101 (2005a). https://doi.org/10.1029/2004JA010527

  24. T. Gold, in Gas Dynamics of Cosmic Clouds. 2, 97 (1955)

  25. J.C. Foster, J.R. Wygant, M.K. Hudson, A.J. Boyd, B.D. N., P.j. Erickson, H.E. Spence, Shock-induced prompt relativistic electron acceleration in the inner magnetosphere. J. Geophys. Res 120(3), 1661–1674 (2015). https://doi.org/10.1002/2014JA020642

  26. S.G. Kanekal, D.N. Baker, J.F. Fennell, A. Jones, Q. Schiller, I.G. Richardson, X. Li, D.L. Turner, S. Califf, S.G. Claudepierre, L.B. Wilson III, A. Jaynes, J.B. Blake, G.D. Reeves, H.E. Spence, C.A. Kletzing, J.R. Wygant, Prompt acceleration of magnetospheric electrons to ultrarelativistic energies by the 17 March 2015 interplanetary shock. J. Geophys. Res. 121, 7622–7635 (2016). https://doi.org/10.1002/2016JA022596

  27. R. Hajra, B.T. Tsurutani, in Extreme Events in Geospace: Origins, Predictability, and Consequences, ed. by N. Buzulukova (Elsevier), pp. 373–400 (2018a). https://doi.org/10.1016/B978-0-12-812700-1.00014-5

  28. D.M. Oliveira, A.A. Samsonov, Geoeffectiveness of interplanetary shocks controlled by impact angles: A review. Adv. Space Res. 61, 1–44 (2018). https://doi.org/10.1016/j.asr.2017.10.006

    Article  ADS  Google Scholar 

  29. E. Echer, B.T. Tsurutani, W.D. Gonzalez, Interplanetary fast forward shocks and their geomagnetic effects: Cawses events. J. Atmos. Sol. Terr. Phys. 73, 1330–1338 (2011). https://doi.org/10.1016/j.jastp.2010.09.020

    Article  ADS  Google Scholar 

  30. B.T. Tsurutani, E. Echer, W.D. Gonzalez, The solar and interplanetary causes of the recent minimum in geomagnetic activity (MGA23): A combination of mid latitude small coronal holes, low IMF Bz variances, low solar wind speeds and low solar magnetic fields. Ann. Geophys. 29, 839–849 (2011). https://doi.org/10.5194/angeo-29-839-2011

    Article  ADS  Google Scholar 

  31. B.T. Tsurutani, R. Hajra, The interplanetary and magnetospheric causes of geomagnetically induced currents (GICs)>10 A in the Mäntsälä Finland pipeline: 1999 through 2019. J. Space Weather Space Clim. 11, 23 (2021). https://doi.org/10.1051/swsc/2021001

    Article  ADS  Google Scholar 

  32. B.T. Tsurutani, W.D. Gonzalez, F. Tang, S.I. Akasofu, E.J. Smith, Origin of interplanetary southward magnetic fields responsible for major magnetic storms near solar maximum (1978-1979). J. Geophys. Res. 93, 8519–8531 (1988). https://doi.org/10.1029/JA093iA08p08519

  33. D.J. McComas, J.T. Gosling, S.J. Bame, E.J. Smith, H.V. Cane, A test of magnetic field draping induced Bz perturbations ahead of fast coronal mass ejecta. J. Geophys. Res. 94, 1465–1471 (1989). https://doi.org/10.1029/JA094iA02p01465

  34. W.D. Gonzalez, B.T. Tsurutani, A.L. Clua de Gonzalez, Interplanetary origin of geomagnetic storms. Space Sci. Rev. 88, 529–562 (1999). https://doi.org/10.1023/A:1005160129098

    Article  ADS  Google Scholar 

  35. E. Kilpua, H.E.J. Koskinen, T.I. Pulkkinen, Coronal mass ejections and their sheath regions in interplanetary space. Liv. Rev. Sol. Phys. 14, 1–83 (2017). https://doi.org/10.1007/s41116-017-0009-6

    Article  Google Scholar 

  36. W.D. Gonzalez, E. Echer, B.T. Tsurutani, A.L. Gonzalez, A. Lago, Interplanetary origin of intense, superintense and extreme geomagnetic storms. Space Sci. Rev. 158, 69–89 (2011). https://doi.org/10.1007/s11214-010-9715-2

    Article  ADS  Google Scholar 

  37. E. Echer, W.D. Gonzalez, Geoeffectiveness of interplanetary shocks, magnetic clouds, sector boundary crossings and their combined occurrence. Geophys. Res. Lett. 31, 1–4 (2004). https://doi.org/10.1029/2003GL019199

    Article  Google Scholar 

  38. E. Echer, M.V. Alves, W.D. Gonzalez, Geoeffectiveness of interplanetary shocks during solar minimum (1995–1996) and solar maximum (2000). Sol. Phys. 221, 361–280 (2004). https://doi.org/10.1016/j.pss.2018.10.006

    Article  ADS  Google Scholar 

  39. E. Echer, W.D. Gonzalez, M.V. Alves, On the geomagnetic effects of solar wind interplanetary magnetic structures. Space Weather 4, 1–16 (2006). https://doi.org/10.1029/2005SW000200

    Article  Google Scholar 

  40. M.V. Alves, E. Echer, W.D. Gonzalez, Geoeffectiveness of solar wind interplanetary magnetic structures. J. Atmos. Sol. Terr. Phys. 73(73), 1380–1384 (2011). https://doi.org/10.1016/j.jastp.2010.07.024

    Article  ADS  Google Scholar 

  41. F. Cletee, F. Lefevre, The new sunspot number: assembling all corrections. Sol. Phys. 291, 2629–2651 (2016). https://doi.org/10.1007/s11207-016-1014-y

    Article  ADS  Google Scholar 

  42. J.C. Davis, Statistics and Data Analysis in Geoglogy (Wiley, 2002)

  43. M. Sugiura, Hourly values of equatorial Dst for the IGY. Ann. Intern. Geophys. Year 35, 9 (1964)

    Google Scholar 

  44. G. Rostoker, Geomagnetic indices. Rev. Geophys. 10, 935–950 (1972). https://doi.org/10.1029/RG010i004p00935

    Article  ADS  Google Scholar 

  45. T.N. Davis, M. Sugiura, Auroral electrojet activity index AE and its universal time variations. J. Geophys. Res. 71, 785–801 (1966). https://doi.org/10.1029/JZ071i003p00785

    Article  ADS  Google Scholar 

  46. M. Janvier, R.M. Winslow, S. Good, E. Bonhomme, P. Démoulin, S. Dasso, C. Mestl, N. Lugaz, T. Amerstorfer, E. Soubrié, P.D. Boakes, Generic magnetic field intensity profiles of interplanetary coronal mass ejections at Mercury, Venus, and Earth from superposed epoch analyses. J. Geophys. Res. 124, 812–836 (2019). https://doi.org/10.1029/2018JA025949

  47. W.D. Gonzalez, J.A. Joselyn, Y. Kamide, H.W. Kroehl, G. Rostoker, B.T. Tsurutani, V.M. Vasyliunas, What is a geomagnetic storm? J. Geophys. Res. 99, 5771–5792 (1994). https://doi.org/10.1029/93JA02867

    Article  ADS  Google Scholar 

  48. B.T. Tsurutani, G.S. Lakhina, E. Echer, R. Hajra, C. Nayak, A.J. Mannucci, X. Meng, Comment on “Modeling extreme “Carrington-type” space weather events using three-dimensional global MHD simulations by C. M. Ngwira, A. Pulkkinen, M. M. Kuznetsova, and A. Glocer”. J. Geophys. Res. 123, 1388–1392 (2018). https://doi.org/10.1002/2017JA024779

  49. R. Hajra, B.T. Tsurutani, Near-Earth sub-Alfvénic solar winds: Interplanetary origins and geomagnetic impacts. Astrophys. J. 926, 135 (2022). https://doi.org/10.3847/1538-4357/ac4471

    Article  ADS  Google Scholar 

  50. E. Echer, W.D. Gonzalez, B.T. Tsurutani, A.L.C. Gonzalez, Interplanetary conditions causing intense geomagnetic storms (Dst<-100 nT) during solar cycle 23 (1996–2006). J. Geophys. Res. 113, 1–20 (2008). https://doi.org/10.1029/2007JA012744

    Article  Google Scholar 

  51. M.M.F. Saba, W.D. Gonzalez, A.L. Clúa de Gonzalez, Relationships between the AE, ap and Dst indices near solar minimum (1974) and at solar maximum (1979). Ann. Geophys. 15, 1265–1270 (1997). https://doi.org/10.1007/s00585-997-1265-x

    Article  ADS  Google Scholar 

  52. R. Hajra, B.T. Tsurutani, Interplanetary shocks inducing magnetospheric supersubstorms (SML<-2500 nT): Unusual auroral morphologies and energy flow. Astrophys. J. 858, 123 (2018). https://doi.org/10.3847/1538-4357/aabaed

    Article  ADS  Google Scholar 

  53. B.T. Tsurutani, R. Hajra, Energetics of shock triggered supersubstorms (SML<-2500 nT). Astrophys. J 946, 17, (2023). https://doi.org/10.3847/1538-4357/acb143

  54. K.E.J. Huttunen, J.E.J. Koskinen, Importance of post-shock streams and sheath regions as drivers of intense magnetospheric storms and high latitude activity. Ann. Geophys. 22, 1729–1738 (2004). https://doi.org/10.5194/angeo-22-1729-2004

    Article  ADS  Google Scholar 

Download references

Acknowledgements

E. E. would like to thank Brazilian agencies for research grants: CNPq (contract no. PQ-302583/2015-7, PQ-301883/2019-0) and FAPESP (2018/21657-1). A. L. and L. E. S. N. would like to thank the PIBIFSP Program for the fellowship received during 2019 and 2020 as well as CAPES – Brazilian Federal Agency - and CAP/INPE Pos Graduation Program for the Master's fellowship. The work of R. H. is funded by the Science and Engineering Research Board (SERB, grant no. SB/S2/RJN-080/2018), a statutory body of the Department of Science and Technology (DST), Government of India through the Ramanujan fellowship. The work of A. M. S. F. is funded by the Brazilian CNPq agency (project no. PQ-300969/2020-1, PQ-301542/2021-0). The work of M. J. A. B. was supported by CNPq agency (contract no. PQ-302330/2015-1, PQ-305692/2018-6) and FAPEG agency (contract no. 2012.1026.7000905). We thank the Brazilian Ministry of Science, Technology and Innovation and the Brazilian Space Agency as well. The solar wind plasma and IMF data used in this work are obtained from the ACE Science Center (http://www.srl.caltech.edu/ACE/ASC/level2/). The geomagnetic indices are collected from the OMNIweb database (https://omniweb.gsfc.nasa.gov/). The SSN data are obtained from the Royal Observatory of Belgium (https://wwwbis.sidc.be/silso/home).

Funding

A. M. S. F was funded by FAPESP (projects 2016/10794-2 and 2017/00516-8) and CNPq agency (projects PQ-300969/2020-1, PQ-301542/2021-0). E. E. received grants from FAPESP (2018/21657-1) and CNPq (PQ-301883/2019-0) agencies. M. J. A. B. was supported by CNPq agency contract number (PQ-305692/2018-6) and FAPEG agency contract number 2012. 1026.7000905. R. H. received support from the Science and Engineering Research Board grant SB/S2/RJN-080/2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ezequiel Echer.

Ethics declarations

Ethics Approval

The work followed better human and scientific practices.

Consent to Participate

All participants consent to the work.

Consent for Publication

All participants consent for publication.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Echer, E., Lucas, A.d., Hajra, R. et al. Geomagnetic Activity Following Interplanetary Shocks in Solar Cycles 23 and 24. Braz J Phys 53, 79 (2023). https://doi.org/10.1007/s13538-023-01294-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-023-01294-w

Keywords

Navigation