Skip to main content
Log in

Vacuum Calcination Behavior of SBA-15 Ordered Mesoporous Silica

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, the calcination of SBA-15 in vacuum is followed by in situ and ex situ small angle X-ray scattering (SAXS) measurements at different temperatures and the material properties are compared with the conventional calcination process in nitrogen and air. The whole process of template decomposition and by-products elimination is investigated as a function of temperature, showing early stages of polymer decomposition at 200 °C. The textural properties of the vacuum-calcined material, analyzed by nitrogen adsorption isotherm data at the end of the calcination process at 540 °C, revealed a smaller surface area and no detectable volume of micropores. A sharp monomodal pore size distribution with a mean value around 108 Å is obtained, larger than the material calcined via the usual procedure, which gives values around 98 Å. The results indicate that the vacuum heat treatment is an alternative calcination strategy for applications which require a well-ordered mesoporous structure, rigid pore walls, and large pore diameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C.T. Kresge, M.E. Leonowicz, J.W. Roth, J.C. Vartuli, J.S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710–712 (1992)

    Article  ADS  Google Scholar 

  2. M.E. Davis, Ordered porous materials for emerging applications. Nature 417, 813–821 (2002)

    Article  ADS  Google Scholar 

  3. B.J. Melde, B.J. Johnson, P.T. Charles, Mesoporous silicate materials in sensing. Sensors 8, 5202–5228 (2008)

    Article  Google Scholar 

  4. M. Vallet-Regí, International scholarly research network materials science, ID 608548, 20 pages (2012)

  5. A. Popat, S. Jambhrunkar, J. Zhang, J. Yang, H. Zhang, A. Meka, C. Yu, Programmable drug release using bioresponsive mesoporous silica nanoparticles for site-specific oral drug delivery. Chem. Commun. 50(42), 5547–5550 (2014)

    Article  Google Scholar 

  6. K. Scaramuzzi, G.D. Tanaka, F.M. Neto, P.R.A.F. Garcia, J.J.M. Gabrili, D.C.A. Oliveira, D.V. Tambourgi, J.S. Mussalem, D. Paixão-Cavalcante, M.T. D’Azeredo Orlando, V.F. Botosso, C.L.P. Oliveira, M.C.A. Fantini, O.A. Sant’Anna, Nanostructured SBA-15 silica: an effective protective vehicle to oral hepatitis B vaccine immunization. Nanomedicine 12, 2241–2250 (2016)

    Article  Google Scholar 

  7. D. Zhao, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 Angstrom pores. Science 279, 548–552 (1998)

    Article  ADS  Google Scholar 

  8. T. Benamor, L. Michelin, B. Lebeau, C. Marichal, Flash induction calcination: a powerful tool for total template removal and fine tuning of the hydrophobic/hydrophilic balance in SBA-15 type silica mesoporous materials. Microporous Mesoporous Mater. 147, 334–342 (2012)

    Article  Google Scholar 

  9. F. Kleitz, W. Schmidt, F. Schüth, Calcination behavior of different surfactant-templated mesostructured silica materials. Microporous Mesoporous Mater. 65, 1–29 (2003)

    Article  Google Scholar 

  10. S.A. Bagshaw, I.J. Bruce, Rapid calcination of high quality mesostructured MCM-41, MSU-X, and SBA-15 silicate materials: a step towards continuous processing? Microporous Mesoporous Mater. 109, 199–209 (2008)

    Article  Google Scholar 

  11. F. Bérubé, S. Kaliaguine, Calcination and thermal degradation mechanisms of triblock copolymer template in SBA-15 materials. Microporous Mesoporous Mater. 115, 469–479 (2008)

    Article  Google Scholar 

  12. V. Cauda, C. Argyo, D.G. Piercey, T. Bein, “Liquid-phase calcination” of colloidal mesoporous silica nanoparticles in high-boiling solvents. J. Am. Chem. Soc. 133(17), 6484–6486 (2011)

  13. T.L. Lai, Y.Y. Shu, Y.C. Lin, W.N. Chen, C.B. Wang, Rapid removal of organic template from SBA-15 with microwave assisted extraction. Mater. Lett. 63, 1693–1695 (2009)

    Article  Google Scholar 

  14. Z. Zhang, J. Yin, H.J. Heeres, I. Melián-Cabrera, Thermal detemplation of SBA-15 mesophases. Effect of the activation protocol on the framework contraction. Microporous Mesoporous Mater. 176, 103–111 (2013)

    Article  Google Scholar 

  15. S.G. Avila, L.C.C. Silva, J.R. Matos, Optimisation of SBA-15 properties using Soxhlet solvent extraction for template removal. Microporous Mesoporous Mater. 234, 277–286 (2016)

    Article  Google Scholar 

  16. S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938)

    Article  ADS  Google Scholar 

  17. E.P. Barrett, L.G. Joyner, P.P. Halenda, The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73(1), 373–380 (1951)

  18. M. Jaroniec, L.A. Solovyov, Improvement of the Kruk−Jaroniec−Sayari method for pore size analysis of ordered silicas with cylindrical mesopores. Langmuir 22, 6757–6760 (2006)

    Article  Google Scholar 

  19. A. Sundblom, C.L.P. Oliveira, A.E.C. Palmqvist, J.S. Pedersen, Modeling in situ small-angle X-ray scattering measurements following the formation of mesostructured silica. J. Phys. Chem. C 113, 7706–7713 (2009)

    Article  Google Scholar 

  20. A. Sundblom, C.L.P. Oliveira, J.S. Pedersen, A.E.C. Palmqvist, Decoupling particle formation from intraparticle ordering in mesostructured silica colloids. Microporous Mesoporous Mater. 145, 59–64 (2011)

    Article  Google Scholar 

  21. S. Förster et al., Scattering Curves of Ordered Mesoscopic Materials. J. Phys. Chem. B 109, 1347–1360 (2005)

  22. J.K. Pedersen, Analysis of small-angle scattering data from colloids and polymer solutions: modeling and least-squares fitting. Adv. Colloid Interface Sci. 70, 171–210 (1997)

  23. J.S. Pedersen, Analysis of small-angle scattering data from colloids and polymer solutions: modeling and least-squares fitting. Adv. Colloid Interf. Sci. 70, 171–210 (1997)

    Article  Google Scholar 

  24. K.S.W. Sing et al., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984). Pure Appl. Chem. 57, 603–619 (1985)

    Article  Google Scholar 

  25. J.R. Matos, L.P. Mercuri, M. Kruk, M. Jaroniec, Toward the synthesis of extra-large-pore MCM-41 analogues. Chem. Mater. 13, 1726–1731 (2001)

    Article  Google Scholar 

  26. G. Socrates, Infrared and Raman characteristic group frequencies (Wiley, Chichester, 2001)

    Google Scholar 

  27. R. Ojeda-Lopez, I.J. Perez-Hermosillo, J.M. Esparza-Schulz, A. Cervantes-Uribe, A. Dominguez-Ortiz, SBA-15 materials: calcination temperature influence on textural properties and total silanol ratio. Adsorption 21, 659–669 (2015)

    Article  Google Scholar 

  28. V. Escax, E. Delahaye, M. Imperor-Clerc, P. Beaunier, M.D. Appay, A. Davidson, Modifying the porosity of SBA-15 silicas by post-synthesis basic treatments. Microporous Mesoporous Mater. 102, 234–241 (2007)

    Article  Google Scholar 

  29. C.M. Yang, B. Zibrowius, W. Schmidt, F. Schuth, Stepwise removal of the copolymer template from mesopores and micropores in SBA-15. Chem. Mater. 16, 2918–2925 (2004)

    Article  Google Scholar 

Download references

Funding

This work has been supported by the Brazilian Synchrotron Light Laboratory (LNLS) under proposal D11A - SAXS1 5820. Thanks are due to CNPq and FAPESP for supporting this research. M.C.A. Fantini and C.L.P. Oliveira are CNPq fellows.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Márcia C. A. Fantini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mariano-Neto, F., Cides da Silva, L.C., Oliveira, C.L.P. et al. Vacuum Calcination Behavior of SBA-15 Ordered Mesoporous Silica. Braz J Phys 48, 442–450 (2018). https://doi.org/10.1007/s13538-018-0579-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-018-0579-3

Keywords

Navigation