Skip to main content
Log in

Polymer nanofiber network reinforced gold electrode array for neural activity recording

  • Original Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

Flexible and stretchable neural electrodes are promising tools for high-fidelity interfacing with soft and curvilinear brain surface. Here, we describe a flexible and stretchable neural electrode array that consists of polyacrylonitrile (PAN) nanofiber network reinforced gold (Au) film electrodes. Under stretching, the interweaving PAN nanofibers effectively terminate the formation of propagating cracks in the Au films and thus enable the formation of a dynamically stable electrode-tissue interface. Moreover, the PAN nanofibers increase the surface roughness and active surface areas of the Au electrodes, leading to reduced electrochemical impedance and improved signal-to-noise ratio. As a result, PAN nanofiber network reinforced Au electrode arrays can allow for reliable in vivo multichannel recording of epileptiform activities in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rivnay J, Wang H, Fenno L, et al. Next-generation probes, particles, and proteins for neural interfacing. Sci Adv. 2017;3(6): e1601649.

    Article  Google Scholar 

  2. Im C, Seo JM. A review of electrodes for the electrical brain signal recording. Biomed Eng Lett. 2016;6(3):104.

    Article  Google Scholar 

  3. Fattahi P, Yang G, Kim G, et al. A review of organic and inorganic biomaterials for neural interfaces. Adv Mater. 2014;26(12):1846.

    Article  Google Scholar 

  4. Kozai TDY, Jaquins-Gerstl AS, Vazquez AL, et al. Brain tissue responses to neural implants impact signal sensitivity and intervention strategies. ACS Chem Neurosci. 2015;6(1):48.

    Article  Google Scholar 

  5. Ganji M, Kaestner E, Hermiz J, et al. Development and translation of PEDOT: PSS microelectrodes for intraoperative monitoring. Adv Func Mater. 2018;28(12):1700232.

    Article  Google Scholar 

  6. Shi Z, Zheng F, Zhou Z, et al. Silk-enabled conformal multifunctional bioelectronics for investigation of spatiotemporal epileptiform activities and multimodal neural encoding/decoding. Advanced Science. 2019;6(9):1801617.

    Article  Google Scholar 

  7. Shokoueinejad M, Park DW, Jung YH, et al. Progress in the field of micro-electrocorticography. Micromachines. 2019;10(1):62.

    Article  Google Scholar 

  8. Yang T, Hakimian S, Schwartz TH. Intraoperative ElectroCorticoGraphy (ECog): indications, techniques, and utility in epilepsy surgery. Epileptic Disord. 2014;16(3):271.

    Article  Google Scholar 

  9. Shah P, Bernabei JM, Kini LG, et al. High interictal connectivity within the resection zone is associated with favorable post-surgical outcomes in focal epilepsy patients. NeuroImage: Clin. 2019;23:101908.

    Article  Google Scholar 

  10. Ghinda DC, Lambert B, Lu J, et al. Scale-free analysis of intraoperative ECoG during awake craniotomy for glioma. Front Oncol. 2021;10:3497.

    Article  Google Scholar 

  11. Debatisse D, Pralong E, Dehdashti AR, et al. Simultaneous multilobar electrocorticography (mEcoG) and scalp electroencephalography (scalp EEG) during intracranial vascular surgery: a new approach in neuromonitoring. Clin Neurophysiol. 2005;116(12):2734.

    Article  Google Scholar 

  12. Kim GH, Kim K, Lee E, et al. Recent progress on microelectrodes in neural interfaces. Materials. 2018;11(10):1995.

    Article  MathSciNet  Google Scholar 

  13. Du M, Guan S, Gao L, et al. Flexible Micropillar electrode arrays for in vivo neural activity recordings. Small. 2019;15(20):1900582.

    Article  Google Scholar 

  14. Liu S, Zhao Y, Hao W, et al. Micro-and nanotechnology for neural electrode-tissue interfaces. Biosens Bioelectron. 2020;1:112645.

    Article  Google Scholar 

  15. Campbell A, Wu C. Chronically implanted intracranial electrodes: tissue reaction and electrical changes. Micromachines. 2018;9(9):430.

    Article  Google Scholar 

  16. Shi J, Fang Y. Flexible and implantable microelectrodes for chronically stable neural interfaces. Adv Mater. 2019;31(45):1804895.

    Article  Google Scholar 

  17. Chiang CH, Won SM, Orsborn AL, et al. Development of a neural interface for high-definition, long-term recording in rodents and nonhuman primates. Sci Transl Med. 2020;12(538):1.

    Article  Google Scholar 

  18. Kim DH, Viventi J, Amsden JJ, et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat Mater. 2010;9(6):511.

    Article  Google Scholar 

  19. Guo Y, Fang Z, Du M, et al. Flexible and biocompatible nanopaper-based electrode arrays for neural activity recording. Nano Res. 2018;11(10):5604.

    Article  Google Scholar 

  20. Khodagholy D, Gelinas JN, Thesen T, et al. NeuroGrid: recording action potentials from the surface of the brain. Nat Neurosci. 2015;18(2):310.

    Article  Google Scholar 

  21. Wei X, Luan L, Zhao Z, et al. Nanofabricated ultraflexible electrode arrays for high-density intracortical recording. Adv Sci. 2018;5(6):1700625.

    Article  Google Scholar 

  22. Lacour SP, Courtine G, Guck J. Materials and technologies for soft implantable neuroprostheses. Nat Rev Mater. 2016;1(10):1.

    Article  Google Scholar 

  23. Konerding WS, Froriep UP, Kral A, et al. New thin-film surface electrode array enables brain mapping with high spatial acuity in rodents. Sci Rep. 2018;8(1):1.

    Article  Google Scholar 

  24. Zhang J, Liu X, Xu W, et al. Stretchable transparent electrode arrays for simultaneous electrical and optical interrogation of neural circuits in vivo. Nano Lett. 2018;18(5):2903.

    Article  Google Scholar 

  25. Khan Y, Pavinatto FJ, Lin MC, et al. Inkjet-printed flexible gold electrode arrays for bioelectronic interfaces. Adv Func Mater. 2016;26(7):1004.

    Article  Google Scholar 

  26. Qi D, Liu Z, Yu M, et al. Highly stretchable gold nanobelts with sinusoidal structures for recording electrocorticograms. Adv Mater. 2015;27(20):3145.

    Article  Google Scholar 

  27. Araki T, Yoshida F, Uemura T, et al. Long-term implantable, flexible, and transparent neural interface based on Ag/Au core–shell nanowires. Adv Healthcare Mater. 2019;8(10):1900130.

    Article  Google Scholar 

  28. Park AH, Lee SH, Lee C, et al. Optogenetic mapping of functional connectivity in freely moving mice via insertable wrapping electrode array beneath the skull. ACS Nano. 2016;10(2):2791.

    Article  Google Scholar 

  29. Renz AF, Lee J, Tybrandt K, et al. Opto-e-dura: a soft, stretchable ECoG array for multimodal, multiscale neuroscience. Adv Healthcare Mater. 2020;9(17):2000814.

    Article  Google Scholar 

  30. Pashley DW. A study of the deformation and fracture of single-crystal gold films of high strength inside an electron microscope. Proc R Soc Lond Ser A Math Phys Sci. 1960;255(1281):218.

    Google Scholar 

  31. Sarwar MN, Ullah A, Haider MK, et al. Evaluating antibacterial efficacy and biocompatibility of PAN nanofibers loaded with diclofenac sodium salt. Polymers. 2021;13(4):510.

    Article  Google Scholar 

  32. Wei SY, Yin RK, Tang T, et al. Gas-permeable, irritation-free, transparent hydrogel contact lens devices with metal-coated nanofiber mesh for eye interfacing. ACS Nano. 2019;13(7):7920.

    Article  Google Scholar 

  33. Shi J, Li X, Cheng H, et al. Graphene reinforced carbon nanotube networks for wearable strain sensors. Adv Func Mater. 2016;26(13):2078.

    Article  Google Scholar 

  34. Ren H, Zheng L, Wang G, et al. Transfer-medium-free nanofiber-reinforced graphene film and applications in wearable transparent pressure sensors. ACS Nano. 2019;13(5):5541.

    Article  Google Scholar 

  35. Seo JW, Kim K, Seo KW, et al. Artifact-free 2D mapping of neural activity in vivo through transparent gold nanonetwork array. Adv Func Mater. 2020;30(34):2000896.

    Article  Google Scholar 

  36. Patil AC, Bandla A, Liu YH, et al. Nontransient silk sandwich for soft, conformal bionic links. Mater Today. 2020;32:68.

    Article  Google Scholar 

  37. Castagnola E, Ansaldo A, Maggiolini E, et al. Biologically compatible neural interface to safely couple nanocoated electrodes to the surface of the brain. ACS Nano. 2013;7(5):3887.

    Article  Google Scholar 

  38. Huigen E, Peper A, Grimbergen CA. Investigation into the origin of the noise of surface electrodes. Med Biol Eng Compu. 2002;40(3):332.

    Article  Google Scholar 

  39. Calia AB, Codina EM, Smith TM, et al. Full bandwidth electrophysiology of seizures and epileptiform activity enabled by flexible graphene micro-transistor depth neural probes. Nat Nanotechnol. 2022;17:301.

    Article  Google Scholar 

  40. Xiao G, Xu S, Song Y, et al. In situ detection of neurotransmitters and epileptiform electrophysiology activity in awake mice brains using a nanocomposites modified microelectrode array. Sens Actuators B Chem. 2019;288:601.

    Article  Google Scholar 

  41. Yang J, Du M, Wang L, et al. Bacterial cellulose as a supersoft neural interfacing substrate. ACS Appl Mater Interfaces. 2018;10(39):33049.

    Article  Google Scholar 

  42. Schevon CA, Goodman RR, McKhann G Jr, et al. Propagation of epileptiform activity on a submillimeter scale. J Clin Neurophysiol. 2010;27(6):406.

    Article  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (Nos. 51972073, 61971150, 21790393, 22102040) and the Strategic Priority Research Program of Chinese Academy of Science (Grant No. XDB32030100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbian Li.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants. All animal procedures were approved by the Animal Care and Use Committee of the National Center for Nanoscience and Technology, China.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1781 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Xu, K., Guan, S. et al. Polymer nanofiber network reinforced gold electrode array for neural activity recording. Biomed. Eng. Lett. 13, 111–118 (2023). https://doi.org/10.1007/s13534-022-00257-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-022-00257-5

Keywords

Navigation