Skip to main content
Log in

Photoacoustic imaging aided with deep learning: a review

  • Review Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

Photoacoustic imaging (PAI) is an emerging hybrid imaging modality integrating the benefits of both optical and ultrasound imaging. Although PAI exhibits superior imaging capabilities, its translation into clinics is still hindered by various limitations. In recent years, deeplearning (DL), a new paradigm of machine learning, is gaining a lot of attention due to its ability to improve medical images. Likewise, DL is also widely being used in PAI to overcome some of the limitations of PAI. In this review, we provide a comprehensive overview on the various DL techniques employed in PAI along with its promising advantages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Das D, Sharma A, Rajendran P, Pramanik M. Another decade of photoacoustic imaging. Phys Med Biol. 2021;66(5):05TR1.

    Article  Google Scholar 

  2. Lin L, Hu P, Tong X, Na S, Cao R, Yuan X, Garrett DC, Shi J, Maslov K, Wang LV. High-speed three-dimensional photoacoustic computed tomography for preclinical research and clinical translation. Nat Commun. 2021;12(1):882.

    Article  Google Scholar 

  3. Attia ABE, Balasundaram G, Moothanchery M, Dinish U, Bi R, Ntziachristos V, Olivo M. A review of clinical photoacoustic imaging: current and future trends. Photoacoustics. 2019;16:100144.

    Article  Google Scholar 

  4. Omar M, Aguirre J, Ntziachristos V. Optoacoustic mesoscopy for biomedicine. Nat Biomed Eng. 2019;3(5):354–70.

    Article  Google Scholar 

  5. Gottschalk S, Degtyaruk O, Mc Larney B, Rebling J, Hutter MA, Deán-Ben XL, Shoham S, Razansky D. Rapid volumetric optoacoustic imaging of neural dynamics across the mouse brain. Nat Biomed Eng. 2019;3(5):392–401.

    Article  Google Scholar 

  6. Deán-Ben X, Gottschalk S, Mc Larney B, Shoham S, Razansky D. Advanced optoacoustic methods for multiscale imaging of in vivo dynamics. Chem Soc Rev. 2017;46(8):2158–98.

    Article  Google Scholar 

  7. Upputuri PK, Pramanik M. Recent advances toward preclinical and clinical translation of photoacoustic tomography: a review. J Biomed Opt. 2017;22(4):041006.

    Article  Google Scholar 

  8. Zhang P, Li L, Lin L, Shi J, Wang LV. In vivo superresolution photoacoustic computed tomography by localization of single dyed droplets. Light Sci Appl. 2019;8(1):36.

    Article  Google Scholar 

  9. Seong M, Chen SL. Recent advances toward clinical applications of photoacoustic microscopy: a review. Sci China Life Sci. 2020;63:1798–812.

    Article  Google Scholar 

  10. Baik JW, Kim JY, Cho S, Choi S, Kim J, Kim C. Super wide-field photoacoustic microscopy of animals and humans in vivo. IEEE Trans Med Imaging. 2020;39(4):975–84.

    Article  Google Scholar 

  11. Zhang C, Zhao H, Xu S, Chen N, Li K, Jiang X, Liu L, Liu Z, Wang L, Wong KKY, Zou J, Liu C, Song L. Multiscale high-speed photoacoustic microscopy based on free-space light transmission and a MEMS scanning mirror. Opt Lett. 2020;45(15):4312–5.

    Article  Google Scholar 

  12. Li M, Chen J, Wang L. High acoustic numerical aperture photoacoustic microscopy with improved sensitivity. Opt Lett. 2020;45(3):628–31.

    Article  Google Scholar 

  13. Liu C, Liang Y, Wang L. Optical-resolution photoacoustic microscopy of oxygen saturation with nonlinear compensation. Biomed Opt Express. 2019;10(6):3061–9.

    Article  Google Scholar 

  14. Periyasamy V, Das N, Sharma A, Pramanik M. 1064 nm acoustic resolution photoacoustic microscopy. J Biophotonics. 2019;12(5):e201800357.

    Article  Google Scholar 

  15. Yao JJ, Maslov KI, Puckett ER, Rowland KJ, Warner BW, Wang LV. Double-illumination photoacoustic microscopy. Opt Lett. 2012;37(4):659–61.

    Article  Google Scholar 

  16. Chen Q, Xie H, Xi L. Wearable optical resolution photoacoustic microscopy. J Biophotonics. 2019;12(8):e201900066.

    Article  Google Scholar 

  17. Allen TJ, Ogunlade O, Zhang E, Beard PC. Large area laser scanning optical resolution photoacoustic microscopy using a fibre optic sensor. Biomed Opt Express. 2018;9(2):650–60.

    Article  Google Scholar 

  18. Jin T, Guo H, Jiang H, Ke B, Xi L. Portable optical resolution photoacoustic microscopy (pORPAM) for human oral imaging. Opt Lett. 2017;42(21):4434–7.

    Article  Google Scholar 

  19. Hu S, Maslov K, Wang LV. Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed. Opt Lett. 2011;36(7):1134–6.

    Article  Google Scholar 

  20. Moothanchery M, Dev K, Balasundaram G, Bi R, Olivo M. Acoustic resolution photoacoustic microscopy based on MEMS scanner. J Biophotonics. 2019;13:e201960127.

    Google Scholar 

  21. Cai D, Li Z, Chen S-L. In vivo deconvolution acoustic-resolution photoacoustic microscopy in three dimensions. Biomed Opt Express. 2016;7(2):369–80.

    Article  Google Scholar 

  22. Park S, Lee C, Kim J, Kim C. Acoustic resolution photoacoustic microscopy. Biomed Eng Lett. 2014;4(3):213–22.

    Article  Google Scholar 

  23. Rajendran P, Sahu S, Dienzo RA, Pramanik M. In vivo detection of venous sinus distension due to intracranial hypotension in small animal using pulsed-laser-diode photoacoustic tomography. J Biophotonics. 2020;13(6):e201960162.

    Article  Google Scholar 

  24. Kalva SK, Upputuri PK, Pramanik M. High-speed, low-cost, pulsed-laser-diode-based second-generation desktop photoacoustic tomography system. Opt Lett. 2019;44(1):81–4.

    Article  Google Scholar 

  25. Sharma A, Kalva SK, Pramanik M. A comparative study of continuous versus stop-and-go scanning in circular scanning photoacoustic tomography. IEEE J Sel Top Quantum Electron. 2019;25(1):7100409.

    Article  Google Scholar 

  26. Nishiyama M, Namita T, Kondo K, Yamakawa M, Shiina T. Ring-array photoacoustic tomography for imaging human finger vasculature. J Biomed Opt. 2019;24(9):096005.

    Article  Google Scholar 

  27. Prakash J, Kalva SK, Pramanik M, Yalavarthy PK. Binary photoacoustic tomography for improved vasculature imaging. J Biomed Opt. 2021;26(8):086004.

    Article  Google Scholar 

  28. Yalavarthy PK, Kalva SK, Pramanik M, Prakash J. Non-local means improves total-variation constrained photoacoustic image reconstruction. J Biophotonics. 2021;14(1):e202000191.

    Article  Google Scholar 

  29. Poudel J, Na S, Wang LV, Anastasio MA. Iterative image reconstruction in transcranial photoacoustic tomography based on the elastic wave equation. Phys Med Biol. 2020;65(5):055009.

    Article  Google Scholar 

  30. Ma X, Peng C, Yuan J, Cheng Q, Xu G, Wang X, Carson PL. Multiple delay and sum with enveloping beamforming algorithm for photoacoustic imaging. IEEE Trans Med Imaging. 2020;39(6):1812–21.

    Article  Google Scholar 

  31. Deán-Ben X, Razansky D. Optoacoustic image formation approaches: a clinical perspective. Phys Med Biol. 2019;64(18):18TR01.

    Article  Google Scholar 

  32. Prakash J, Sanny D, Kalva SK, Pramanik M, Yalavarthy PK. Fractional regularization to improve photoacoustic tomographic image reconstruction. IEEE Trans Med Imaging. 2019;38(8):1935–47.

    Article  Google Scholar 

  33. Mozaffarzadeh M, Mahloojifar A, Periyasamy V, Pramanik M, Orooji M. Eigenspace-based minimum variance combined with delay multiply and sum beamforming algorithm: application to linear-array photoacoustic imaging. IEEE J Sel Top Quantum Electron. 2019;25(1):6800608.

    Article  Google Scholar 

  34. Paridar R, Mozaffarzadeh M, Periyasamy V, Basji M, Mehrmodammadi M, Pramanik M, Orooji M. Validation of delay-multiply-and-standard-deviation weighing factor for improved photoacoustic imaging of sentinel lymph node. J Biophotonics. 2019;12(6):e201800292.

    Article  Google Scholar 

  35. Mozaffarzadeh M, Periyasamy V, Pramanik M, Makkiabadi B. Efficient nonlinear beamformer based on Pth root of detected signals for linear-array photoacoustic tomography: application to sentinel lymph node imaging. J Biomed Opt. 2018;23(12):121604.

    Google Scholar 

  36. Gutta S, Kalva SK, Pramanik M, Yalavarthy PK. Accelerated image reconstruction using extrapolated Tikhonov filtering for photoacoustic tomography. Med Phys. 2018;45(8):3749–67.

    Article  Google Scholar 

  37. Pramanik M. Improving tangential resolution with a modified delay-and-sum reconstruction algorithm in photoacoustic and thermoacoustic tomography. J Opt Soc Am A. 2014;31(3):621–7.

    Article  Google Scholar 

  38. Prakash J, Raju AS, Shaw CB, Pramanik M, Yalavarthy PK. Basis pursuit deconvolution for improving model-based reconstructed images in photoacoustic tomography. Biomed Opt Express. 2014;5(5):1363–77.

    Article  Google Scholar 

  39. Shaw CB, Prakash J, Pramanik M, Yalavarthy PK. Least squares QR-based decomposition provides an efficient way of computing optimal regularization parameter in photoacoustic tomography. J Biomed Opt. 2013;18(8):080501.

    Article  Google Scholar 

  40. Kalva SK, Hui ZZ, Pramanik M. Calibrating reconstruction radius in a multi single-element ultrasound-transducer-based photoacoustic computed tomography system. J Opt Soc Am A. 2018;35(5):764–71.

    Article  Google Scholar 

  41. Tian L, Hunt B, Bell MAL, Yi J, Smith JT, Ochoa M, Intes X, Durr NJ. Deep learning in biomedical optics. Lasers Surg Med. 2021;53:748–75.

    Article  Google Scholar 

  42. Pradhan P, Guo S, Ryabchykov O, Popp J, Bocklitz TW. Deep learning a boon for biophotonics? J Biophotonics. 2020;13(6):e201960186.

    Article  Google Scholar 

  43. Shen C, Nguyen D, Zhou Z, Jiang SB, Dong B, Jia X. An introduction to deep learning in medical physics: advantages, potential, and challenges. Phys Med Biol. 2020;65(5):05TR1.

    Article  Google Scholar 

  44. Razzak MI, Naz S, Zaib A. Deep learning for medical image processing: overview, challenges and the future. In: Dey N, Ashour AS, Borra S, editors. Classification in BioApps lecture notes in computational vision and biomechanics, vol. 26. Cham: Springer; 2018. p. 323–50.

    Google Scholar 

  45. Shen D, Wu G, Suk H-I. Deep learning in medical image analysis. Ann Rev Biomed Eng. 2017;19:221–48.

    Article  Google Scholar 

  46. Grohl J, Schellenberg M, Dreher K, Maier-Hein L. Deep learning for biomedical photoacoustic imaging: a review. Photoacoustics. 2021;22:100241.

    Article  Google Scholar 

  47. Manwar R, Zafar M, Xu Q. Signal and image processing in biomedical photoacoustic imaging: a review. Optics. 2021;2(1):1–24.

    Article  Google Scholar 

  48. DiSpirito A III, Vu T, Pramanik M, Yao J. Sounding out the hidden data: a concise review of deep learning in photoacoustic imaging. Exp Biol Med. 2021;246(12):1355–67.

    Article  Google Scholar 

  49. Deng H, Qiao H, Dai Q, Ma C. Deep learning in photoacoustic imaging: a review. J Biomed Opt. 2021;26(4):040901.

    Article  Google Scholar 

  50. Yang C, Lan H, Gao F, Gao F. Review of deep learning for photoacoustic imaging. Photoacoustics. 2021;21:100215.

    Article  Google Scholar 

  51. Hsu K-T, Guan S, Chitnis PV. Comparing deep learning frameworks for photoacoustic tomography image reconstruction. Photoacoustics. 2021;23:100271.

    Article  Google Scholar 

  52. Hauptmann A, Cox B. Deep learning in photoacoustic tomography: current approaches and future directions. J Biomed Opt. 2020;25(11):112903.

    Article  Google Scholar 

  53. Yang C, Lan H, Gao F, Gao F. Deep learning for photoacoustic imaging: a survey. arXiv:2008.04221arXiv (2020).

  54. Cho SW, Park SM, Park B, Kim DY, Lee TG, Kim BM, Kim C, Kim J, Lee SW, Kim CS. High-speed photoacoustic microscopy: a review dedicated on light sources. Photoacoustics. 2021;24:100291.

    Article  Google Scholar 

  55. Kuniyil Ajith Singh M, Xia W. Portable and affordable light source-based photoacoustic tomography. Sensors. 2020;20(21):6173.

    Article  Google Scholar 

  56. Erfanzadeh M, Zhu Q. Photoacoustic imaging with low-cost sources: a review. Photoacoustics. 2019;14:1–11.

    Article  Google Scholar 

  57. Kalva SK, Pramanik M. Photoacoustic tomography using high-energy pulsed laser diodes. Bellingham: SPIE Press; 2020.

    Google Scholar 

  58. Erfanzadeh M, Kumavor PD, Zhu Q. Laser scanning laser diode photoacoustic microscopy system. Photoacoustics. 2018;9:1–9.

    Article  Google Scholar 

  59. Upputuri PK, Pramanik M. Fast photoacoustic imaging systems using pulsed laser diodes: a review. Biomed Eng Lett. 2018;8(2):167–81.

    Article  Google Scholar 

  60. Dai X, Yang H, Jiang H. In vivo photoacoustic imaging of vasculature with a low-cost miniature light emitting diode excitation. Opt Lett. 2017;42(7):1456–9.

    Article  Google Scholar 

  61. Upputuri PK, Pramanik M. Pulsed laser diode based optoacoustic imaging of biological tissues. Biomed Phys Eng Express. 2015;1(4):045010–7.

    Article  Google Scholar 

  62. Chan J, Zheng Z, Bell K, Le M, Reza PH, Yeow JTW. Photoacoustic imaging with capacitive micromachined ultrasound transducers: principles and developments. Sensors. 2019;19(16):3617.

    Article  Google Scholar 

  63. Zhang E, Laufer J, Beard P. Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues. Appl Opt. 2008;47(4):561–77.

    Article  Google Scholar 

  64. Lin X, Sun M, Liu Y, Shen Z, Shen Y, Feng N. Variable speed of sound compensation in the linear-array photoacoustic tomography using a multi-stencils fast marching method. Biomed Signal Process Control. 2018;44:67–74.

    Article  Google Scholar 

  65. Deán-Ben XL, Özbek A, Razansky D. Accounting for speed of sound variations in volumetric hand-held optoacoustic imaging. Front Optoelectron. 2017;10(3):280–6.

    Article  Google Scholar 

  66. Gutta S, Bhatt M, Kalva SK, Pramanik M, Yalavarthy PK. Modeling errors compensation with total least squares for limited data photoacoustic tomography. IEEE J Sel Top Quantum Electron. 2019;25(1):6800214.

    Article  Google Scholar 

  67. Awasthi N, Kalva SK, Pramanik M, Yalavarthy PK. Vector extrapolation methods for accelerating iterative reconstruction methods in limited-data photoacoustic tomography. J Biomed Opt. 2018;23(7):071204.

    Article  Google Scholar 

  68. Haltmeier M, Zangerl G. Spatial resolution in photoacoustic tomography: effects of detector size and detector bandwidth. Inverse Problems. 2010;26(12):125002.

    Article  MathSciNet  MATH  Google Scholar 

  69. Liu W, Zhou Y, Wang M, Li L, Vienneau E, Chen R, Luo J, Xu C, Zhou Q, Wang LV, Yao J. Correcting the limited view in optical-resolution photoacoustic microscopy. J Biophotonics. 2017;11:e201700196.

    Article  Google Scholar 

  70. Yang X, Zhang Y, Zhao K, Zhao Y, Liu Y, Gong H, Luo Q, Zhu D. Skull optical clearing solution for enhancing ultrasonic and photoacoustic imaging. IEEE Trans Med Imaging. 2016;35(8):1903–6.

    Article  Google Scholar 

  71. Langer G, Buchegger B, Jacak J, Klar TA, Berer T. Frequency domain photoacoustic and fluorescence microscopy. Biomed Opt Express. 2016;7(7):2692–702.

    Article  Google Scholar 

  72. Yao J, Wang LV. Sensitivity of photoacoustic microscopy. Photoacoustics. 2014;2(2):87–101.

    Article  Google Scholar 

  73. Mozaffarzadeh M, Varnosfaderani MHH, Sharma A, Pramanik M, Jong ND, Verweij MD. Enhanced contrast acoustic-resolution photoacoustic microscopy using double-stage delay-multiply-and-sum beamformer for vasculature imaging. J Biophotonics. 2019;12(11):e201900133.

    Article  Google Scholar 

  74. Asadollahi A, Latifi H, Pramanik M, Qazvini H, Rezaei A, Nikbakht H, Abedi A. Axial accuracy and signal enhancement in acoustic-resolution photoacoustic microscopy by laser jitter effect correction and pulse energy compensation. Biomed Opt Express. 2021;12(4):1834–45.

    Article  Google Scholar 

  75. Brnabic A, Hess LM. Systematic literature review of machine learning methods used in the analysis of real-world data for patient-provider decision making. BMC Med Inform Decis Mak. 2021;21(1):54.

    Article  Google Scholar 

  76. Emmert-Streib F, Yang Z, Feng H, Tripathi S, Dehmer M. An introductory review of deep learning for prediction models with big data. Front Artif Intell. 2020;3:4.

    Article  Google Scholar 

  77. Liu J-E, An F-P. Image classification algorithm based on deep learning-kernel function. Sci Progr. 2020;2020:7607612.

    Google Scholar 

  78. Huang M-L, Wu Y-S. Classification of atrial fibrillation and normal sinus rhythm based on convolutional neural network. Biomed Eng Lett. 2020;10(2):183–93.

    Article  Google Scholar 

  79. Yadav SS, Jadhav SM. Deep convolutional neural network based medical image classification for disease diagnosis. J Big Data. 2019;6(1):113.

    Article  Google Scholar 

  80. Minaee S, Boykov YY, Porikli F, Plaza AJ, Kehtarnavaz N, Terzopoulos D. Image segmentation using deep learning: a survey. IEEE Trans Pattern Anal Mach Intell. 2021. https://doi.org/10.1109/TPAMI.2021.3059968.

    Article  Google Scholar 

  81. Zhou T, Ruan S, Canu S. A review: Deep learning for medical image segmentation using multi-modality fusion. Array. 2019;3–4:100004.

    Article  Google Scholar 

  82. Hegazy MAA, Cho MH, Cho MH, Lee SY. U-net based metal segmentation on projection domain for metal artifact reduction in dental CT. Biomed Eng Lett. 2019;9(3):375–85.

    Article  Google Scholar 

  83. Hooda R, Mittal A, Sofat S. Segmentation of lung fields from chest radiographs-a radiomic feature-based approach. Biomed Eng Lett. 2019;9(1):109–17.

    Article  Google Scholar 

  84. Kim S-H, Hwang Y. A survey on deep learning based methods and datasets for monocular 3D object detection. Electronics. 2021;10(4):517.

    Article  Google Scholar 

  85. Gupta A, Anpalagan A, Guan L, Khwaja AS. Deep learning for object detection and scene perception in self-driving cars: survey, challenges, and open issues. Array. 2021;10:100057.

    Article  Google Scholar 

  86. Li Y, Sixou B, Peyrin F. A review of the deep learning methods for medical images super resolution problems. IRBM. 2021;42(2):120–33.

    Article  Google Scholar 

  87. Yang W, Zhang X, Tian Y, Wang W, Xue J, Liao Q. Deep Learning for single image super-resolution: a brief review. IEEE Trans Multimed. 2019;21(12):3106–21.

    Article  Google Scholar 

  88. Shahid AH, Singh MP. A deep learning approach for prediction of Parkinson’s disease progression. Biomed Eng Lett. 2020;10(2):227–39.

    Article  Google Scholar 

  89. Zhao W, Wang H, Gemmeke H, van Dongen KWA, Hopp T, Hesser J. Ultrasound transmission tomography image reconstruction with a fully convolutional neural network. Phys Med Biol. 2020;65(23):235021.

    Article  Google Scholar 

  90. Yamashita R, Nishio M, Do RKG, Togashi K. Convolutional neural networks: an overview and application in radiology. Insights Imaging. 2018;9(4):611–29.

    Article  Google Scholar 

  91. Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. In: Medical image computing and computer-assisted intervention-MICCAI 2015. Cham: Springer; 2015. p. 234–41.

  92. Rejesh NA, Pullagurla H, Pramanik M. Deconvolution-based deblurring of reconstructed images in photoacoustic/thermoacoustic tomography. J Opt Soc Am A. 2013;30(10):1994–2001.

    Article  Google Scholar 

  93. Gutta S, Kadimesetty VS, Kalva SK, Pramanik M, Ganapathy S, Yalavarthy PK. Deep neural network-based bandwidth enhancement of photoacoustic data. J Biomed Opt. 2017;22(11):116001.

    Article  Google Scholar 

  94. Awasthi N, Jain G, Kalva SK, Pramanik M, Yalavarthy PK. Deep neural network based sinogram super-resolution and bandwidth enhancement for limited-data photoacoustic tomography. IEEE Trans Ultrason Ferroelectr Freq Control. 2020;67(12):2660–73.

    Article  Google Scholar 

  95. Durairaj DA, Agrawal S, Johnstonbaugh K, Chen H, Karri SPK, Kothapalli S-R. Unsupervised deep learning approach for photoacoustic spectral unmixing. Proc SPIE. 2020;11240:112403H.

    Google Scholar 

  96. Antholzer S, Haltmeier M, Schwab J. Deep learning for photoacoustic tomography from sparse data. Inverse Probl Sci Eng. 2019;27(7):987–1005.

    Article  MathSciNet  MATH  Google Scholar 

  97. Davoudi N, Deán-Ben XL, Razansky D. Deep learning optoacoustic tomography with sparse data. Nat Mach Intell. 2019;1(10):453–60.

    Article  Google Scholar 

  98. Zhang J, Lan H, Yang C, Guo S, Gao F, Gao F. Limited-view photoacoustic imaging reconstruction with dual domain inputs under mutual information constraint. arXiv:2011.06147 (2020).

  99. Shahid H, Khalid A, Liu X, Irfan M, Ta D. A deep learning approach for the photoacoustic tomography recovery from undersampled measurements. Front Neurosci. 2021;15:18.

    Article  Google Scholar 

  100. Guan S, Khan AA, Sikdar S, Chitnis PV. Fully dense UNet for 2-D sparse photoacoustic tomography artifact removal. IEEE J Biomed Health Inform. 2020;24(2):568–76.

    Article  Google Scholar 

  101. Lu T, Chen T, Gao F, Sun B, Ntziachristos V, Li J. LV-GAN: A deep learning approach for limited-view optoacoustic imaging based on hybrid datasets. J Biophotonics. 2021;14(2):e202000325.

    Article  Google Scholar 

  102. Vu T, Li M, Humayun H, Zhou Y, Yao J. A generative adversarial network for artifact removal in photoacoustic computed tomography with a linear-array transducer. Exp Biol Med. 2020;245(7):597–605.

    Article  Google Scholar 

  103. Godefroy G, Arnal B, Bossy E. Compensating for visibility artefacts in photoacoustic imaging with a deep learning approach providing prediction uncertainties. Photoacoustics. 2021;21:100218.

    Article  Google Scholar 

  104. Zhang H, Hongyu LI, Nyayapathi N, Wang D, Le A, Ying L, Xia J. A new deep learning network for mitigating limited-view and under-sampling artifacts in ring-shaped photoacoustic tomography. Comput Med Imaging Graph. 2020;84:101720.

    Article  Google Scholar 

  105. Schwab J, Antholzer S, Nuster R, Paltauf G, Haltmeier M. Deep learning of truncated singular values for limited view photoacoustic tomography. Proc SPIE. 2019;10878:1087836.

    Google Scholar 

  106. Guan S, Hsu K, Eyassu M, Chitnis PV. Dense dilated UNet: deep learning for 3D photoacoustic tomography image reconstruction. arXiv:2104.03130 (2021).

  107. Anas EMA, Zhang HK, Kang J, Boctor EM. Towards a fast and safe LED-based photoacoustic imaging using deep convolutional neural network. In: Medical image computing and computer assisted intervention—MICCAI 2018. Cham: Springer; 2018. p. 159–67.

  108. Singh MKA, Sivasubramanian K, Sato N, Ichihashi F, Sankai Y, Xing L. Deep learning-enhanced LED-based photoacoustic imaging. Proc SPIE. 2020;11240:1124038.

    Google Scholar 

  109. Anas EMA, Zhang HK, Kang J, Boctor E. Enabling fast and high quality LED photoacoustic imaging: a recurrent neural networks based approach. Biomed Opt Express. 2018;9(8):3852–66.

    Article  Google Scholar 

  110. Hariri A, Alipour K, Mantri Y, Schulze J, Jokerst J. Deep learning improves contrast in low-fluence photoacoustic imaging. Biomed Opt Express. 2020;11(6):3360–73.

    Article  Google Scholar 

  111. Manwar R, Li X, Mahmoodkalayeh S, Asano E, Zhu D, Avanaki K. Deep learning protocol for improved photoacoustic brain imaging. J Biophotonics. 2020;13(10):e202000212.

    Article  Google Scholar 

  112. Upputuri PK, Pramanik M. Recent advances in photoacoustic contrast agents for in vivo imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020;12(4):e1618.

    Article  Google Scholar 

  113. Upputuri PK, Pramanik M. Photoacoustic imaging in the second near-infrared window: a review. J Biomed Opt. 2019;24(4):040901.

    Article  Google Scholar 

  114. Baulin VA, Usson Y, Le Guevel X. Deep learning: step forward to high-resolution in vivo shortwave infrared imaging. J Biophotonics. 2021;14:e202100102.

    Article  Google Scholar 

  115. Jeon S, Kim C. Deep learning-based speed of sound aberration correction in photoacoustic images. Proc SPIE. 2020;11240:112400J.

    Google Scholar 

  116. Awasthi N, Prabhakar KR, Kalva SK, Pramanik M, Babu RV, Yalavarthy PK. PA-Fuse: deep supervised approach for the fusion of photoacoustic images with distinct reconstruction characteristics. Biomed Opt Express. 2019;10(5):2227–43.

    Article  Google Scholar 

  117. Rajendran P, Pramanik M. Deep learning approach to improve tangential resolution in photoacoustic tomography. Biomed Opt Express. 2020;11(12):7311–23.

    Article  Google Scholar 

  118. Warbal P, Pramanik M, Saha RK. Impact of sensor apodization on the tangential resolution in photoacoustic tomography. J Opt Soc Am A. 2019;36(2):245–52.

    Article  Google Scholar 

  119. Kalva SK, Pramanik M. Experimental validation of tangential resolution improvement in photoacoustic tomography using a modified delay-and-sum reconstruction algorithm. J Biomed Opt. 2016;21(8):086011.

    Article  Google Scholar 

  120. Pramanik M, Ku G, Wang LV. Tangential resolution improvement in thermoacoustic and photoacoustic tomography using a negative acoustic lens. J Biomed Opt. 2009;14(2):024028.

    Article  Google Scholar 

  121. Rajendran P, Pramanik M. Deep-learning-based multi-transducer photoacoustic tomography imaging without radius calibration. Opt Lett. 2021;46(18):4510–3.

    Article  Google Scholar 

  122. Yang C, Gao F. EDA-Net: dense aggregation of deep and shallow information achieves quantitative photoacoustic blood oxygenation imaging deep in human breast. In: Medical image computing and computer assisted intervention–MICCAI 2019. Cham: Springer; 2019. p. 246–54.

  123. Cai C, Deng K, Ma C, Luo J. End-to-end deep neural network for optical inversion in quantitative photoacoustic imaging. Opt Lett. 2018;43(12):2752–5.

    Article  Google Scholar 

  124. Yang C, Lan H, Zhong H, Gao F. Quantitative photoacoustic blood oxygenation imaging using deep residual and recurrent neural network. In: IEEE 16th international symposium on biomedical imaging (ISBI 2019); 2019. p. 741–4.

  125. Hoffer-Hawlik K. absO2luteU-Net: tissue oxygenation calculation using photoacoustic imaging and convolutional neural networks. Hanover: Dartmouth College; 2019.

    Google Scholar 

  126. Gröhl J, Kirchner T, Adler TJ, Maier-Hein L. Estimation of blood oxygenation with learned spectral decoloring for quantitative photoacoustic imaging (LSD-qPAI). arXiv:abs/1902.05839 (2019).

  127. Olefir I, Tzoumas S, Restivo C, Mohajerani P, Xing L, Ntziachristos V. Deep learning-based spectral unmixing for optoacoustic imaging of tissue oxygen saturation. IEEE Trans Med Imaging. 2020;39(11):3643–54.

    Article  Google Scholar 

  128. Bench C, Hauptmann A, Cox B. Toward accurate quantitative photoacoustic imaging: learning vascular blood oxygen saturation in three dimensions. J Biomed Opt. 2020;25(8):085003.

    Article  Google Scholar 

  129. Zhang J, Chen B, Zhou M, Lan H, Gao F. Photoacoustic image classification and segmentation of breast cancer: a feasibility study. IEEE Access. 2019;7:5457–66.

    Article  Google Scholar 

  130. Boink YE, Manohar S, Brune C. A partially-learned algorithm for joint photo-acoustic reconstruction and segmentation. IEEE Trans Med Imaging. 2020;39(1):129–39.

    Article  Google Scholar 

  131. Chlis N-K, Karlas A, Fasoula N-A, Kallmayer M, Eckstein H-H, Theis FJ, Ntziachristos V, Marr C. A sparse deep learning approach for automatic segmentation of human vasculature in multispectral optoacoustic tomography. Photoacoustics. 2020;20:100203.

    Article  Google Scholar 

  132. Lafci B, Merćep E, Morscher S, Deán-Ben XL, Razansky D. Efficient segmentation of multi-modal optoacoustic and ultrasound images using convolutional neural networks. Proc SPIE. 2020;11240:112402N.

    Google Scholar 

  133. Lafci B, Merčep E, Morscher S, Deán-Ben XL, Razansky D. Deep learning for automatic segmentation of hybrid optoacoustic ultrasound (OPUS) images. IEEE Trans Ultrason Ferroelectr Freq Control. 2021;68(3):688–96.

    Article  Google Scholar 

  134. Gröhl J, Kirchner T, Adler T, Maier-Hein L. Confidence estimation for machine learning-based quantitative photoacoustics. J Imaging. 2018;4(12):147.

    Article  Google Scholar 

  135. Rajanna AR, Ptucha R, Sinha S, Chinni B, Dogra V, Rao N. Prostate cancer detection using photoacoustic imaging and deep learning. Image Process Algorithms Syst. 2016.

  136. Jnawali K, Chinni B, Dogra V, Rao N. Transfer learning for automatic cancer tissue detection using multispectral photoacoustic imaging. Proc SPIE. 2019;10950:109503W.

    Google Scholar 

  137. Jnawali K, Chinni B, Dogra V, Sinha S, Rao N. Deep 3D convolutional neural network for automatic cancer tissue detection using multispectral photoacoustic imaging. Proc SPIE. 2019;10955:109551D.

    Google Scholar 

  138. Kikkawa R, Sekiguchi H, Tsuge I, Saito S, Bise R. Semi-supervised learning with structured knowledge for body hair detection in photoacoustic image. In: IEEE 16th international symposium on biomedical imaging (ISBI 2019); 2019. p. 1411–5.

  139. Waibel D, Gröhl J, Isensee F, Kirchner T, Maier-Hein K, Maier-Hein L. Reconstruction of initial pressure from limited view photoacoustic images using deep learning. Proc SPIE. 2018;10494:104942S.

    Google Scholar 

  140. Anas EMA, Zhang HK, Audigier C, Boctor EM. Robust photoacoustic beamforming using dense convolutional neural networks. In: Simulation, image processing, and ultrasound systems for assisted diagnosis and navigation. Cham: Springer. 2018; p. 3–11.

  141. Feng J, Deng J, Li Z, Sun Z, Dou H, Jia K. End-to-end Res-Unet based reconstruction algorithm for photoacoustic imaging. Biomed Opt Express. 2020;11(9):5321–40.

    Article  Google Scholar 

  142. Guan S, Khan AA, Sikdar S, Chitnis PV. Limited-view and sparse photoacoustic tomography for neuroimaging with deep learning. Sci Rep. 2020;10:8510.

    Article  Google Scholar 

  143. Kim MW, Jeng GS, Pelivanov I, O’Donnell M. Deep-learning image reconstruction for real-time photoacoustic system. IEEE Trans Med Imaging. 2020;39(11):3379–90.

    Article  Google Scholar 

  144. Lan H, Yang C, Jiang D, Gao F. Reconstruct the photoacoustic image based on deep learning with multi-frequency ring-shape transducer array. In: 41st Annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 2019. p. 7115–8.

  145. Allman D, Reiter A, Bell MAL. Photoacoustic source detection and reflection artifact removal enabled by deep learning. IEEE Trans Med Imaging. 2018;37(6):1464–77.

    Article  Google Scholar 

  146. Johnstonbaugh K, Agrawal S, Abhishek D, Homewood M, Karri SPK, Kothapalli S-R. Novel deep learning architecture for optical fluence dependent photoacoustic target localization. Proc SPIE. 2019;10878:108781L.

    Google Scholar 

  147. Lan H, Jiang D, Gao F, Gao F. Deep learning enabled real-time photoacoustic tomography system via single data acquisition channel. arXiv:2001.07454 (2021).

  148. Tong T, Huang W, Wang K, He Z, Yin L, Yang X, Zhang S, Tian J. Domain transform network for photoacoustic tomography from limited-view and sparsely sampled data. Photoacoustics. 2020;19:100190.

    Article  Google Scholar 

  149. Antholzer S, Schwab J, Bauer-Marschallinger J, Burgholzer P, Haltmeier M. NETT regularization for compressed sensing photoacoustic tomography. Proc SPIE. 2019;10878:108783B.

    Google Scholar 

  150. Hauptmann A, Lucka F, Betcke M, Huynh N, Adler J, Cox B, Beard P, Ourselin S, Arridge S. Model-based learning for accelerated, limited-view 3-D photoacoustic tomography. IEEE Trans Med Imaging. 2018;37(6):1382–93.

    Article  Google Scholar 

  151. Hauptmann A, Cox B, Lucka F, Huynh NT, Betcke M, Beard P, Arridge S. Approximate k-space models and deep learning for fast photoacoustic reconstruction. In: Knoll F, Maier A, Rueckert D, editors. Machine learning for medical image reconstruction, vol. 11074. Cham: Springer; 2018. p. 103–11.

    Chapter  Google Scholar 

  152. Shan H, Wiedeman C, Wang G, Yang Y. Simultaneous reconstruction of the initial pressure and sound speed in photoacoustic tomography using a deep-learning approach. Proc SPIE. 2019;11105:1110504.

    Google Scholar 

  153. Yang C, Lan H, Gao F. Accelerated photoacoustic tomography reconstruction via recurrent inference machines. In: 41st Annual international conference of the IEEE engineering in medicine and biology society (EMBC); 2019. p. 6371–4.

  154. Ma X, Cao M, Shen Q, Yuan J, Feng T, Cheng Q, Wang X, Washabaugh AR, Baker NA, Lumeng CN, O’Rourke RW. Adipocyte size evaluation based on photoacoustic spectral analysis combined with deep learning method. Appl Sci. 2018;8(11):2178.

    Article  Google Scholar 

  155. Xu Q, Zheng Z, Jiang H. Deep learning for image reconstruction in thermoacoustic tomography. Chin Phys B. 2021.

  156. Lan H, Zhou K, Yang C, Cheng J, Liu J, Gao S, Gao F. Ki-GAN: knowledge infusion generative adversarial network for photoacoustic image reconstruction in vivo. In: Medical image computing and computer assisted intervention-MICCAI 2019. Cham: Springer; 2019. p. 273–81.

  157. Lan H, Jiang D, Yang C, Gao F, Gao F. Y-Net: hybrid deep learning image reconstruction for photoacoustic tomography in vivo. Photoacoustics. 2020;20:100197.

    Article  Google Scholar 

  158. Guo M, Lan H, Yang C, Gao F. AS-Net: fast photoacoustic reconstruction with multi-feature fusion from sparse data. arXiv:2101.08934 (2021).

  159. Davoudi N, Lafci B, Özbek A, Deán-Ben XL, Razansky D. Deep learning of image- and time-domain data enhances the visibility of structures in optoacoustic tomography. Opt Lett. 2021;46(13):3029.

    Article  Google Scholar 

  160. Jeon S, Park J, Managuli R, Kim C. A novel 2-D synthetic aperture focusing technique for acoustic-resolution photoacoustic microscopy. IEEE Trans Med Imaging. 2019;38(1):250–60.

    Article  Google Scholar 

  161. Turner J, Estrada H, Kneipp M, Razansky D. Universal weighted synthetic aperture focusing technique (W-SAFT) for scanning optoacoustic microscopy. Optica. 2017;4(7):770–8.

    Article  Google Scholar 

  162. Zhao H, Chen N, Li T, Zhang J, Lin R, Gong X, Song L, Liu Z, Liu C. Motion Correction in optical resolution photoacoustic microscopy. IEEE Trans Med Imaging. 2019;38(9):2139–50.

    Article  Google Scholar 

  163. Guney G, Uluc N, Demirkiran A, Aytac-Kipergil E, Unlu MB, Birgul O. Comparison of noise reduction methods in photoacoustic microscopy. Comput Biol Med. 2019;109:333–41.

    Article  Google Scholar 

  164. Chen J, Lin R, Wang H, Meng J, Zheng H, Song L. Blind-deconvolution optical-resolution photoacoustic microscopy in vivo. Opt Express. 2013;21(6):7316–27.

    Article  Google Scholar 

  165. Aguirre J, Giannoula A, Minagawa T, Funk L, Turon P, Durduran T. A low memory cost model based reconstruction algorithm exploiting translational symmetry for photoacoustic microscopy. Biomed Opt Express. 2013;4(12):2813–27.

    Article  Google Scholar 

  166. Li Q, Li L, Yu T, Zhao Q, Zhou C, Chai X. Vascular tree extraction for photoacoustic microscopy and imaging of cat primary visual cortex. J Biophotonics. 2017;10(6–7):780–91.

    Article  Google Scholar 

  167. Haq IU, Ryo N, Syahril S, Yoshifumi S. Sparse-representation-based denoising of photoacoustic images. Biomed Phys Eng Express. 2017;3(4):045014.

    Article  Google Scholar 

  168. Govinahallisathyanarayana S, Ning B, Cao R, Hu S, Hossack JA. Dictionary learning-based reverberation removal enables depth-resolved photoacoustic microscopy of cortical microvasculature in the mouse brain. Sci Rep. 2018;8(1):985.

    Article  Google Scholar 

  169. Mohammadi L, Behnam H, Tavakkoli J, Avanaki K. Skull acoustic aberration correction in photoacoustic microscopy using a vector space similarity model: a proof-of-concept simulation study. Biomed Opt Express. 2020;11(10):5542–56.

    Article  Google Scholar 

  170. Sharma A, Pramanik M. Convolutional neural network for resolution enhancement and noise reduction in acoustic resolution photoacoustic microscopy. Biomed Opt Express. 2020;11(12):6826–39.

    Article  Google Scholar 

  171. Zhou Y, Zhong F, Hu S. Temporal and spectral unmixing of photoacoustic signals by deep learning. Opt Lett. 2021;46(11):2690–3.

    Article  Google Scholar 

  172. Leng X, Uddin KMS, Chapman W, Luo H, Kou S, Amidi E, Yang G, Chatterjee D, Shetty A, Hunt S, Mutch M, Zhu Q. Assessing rectal cancer treatment response using coregistered endorectal photoacoustic and US imaging paired with deep learning. Radiology. 2021;299(2):349–58.

    Article  Google Scholar 

  173. Chen X, Qi W, Xi L. Deep-learning-based motion-correction algorithm in optical resolution photoacoustic microscopy. Vis Comput Ind Biomed Art. 2019;2(1):12.

    Article  Google Scholar 

  174. Zhao H, Ke Z, Chen N, Wang S, Li K, Wang L, Gong X, Zheng W, Song L, Liu Z, Liang D, Liu C. A new deep learning method for image deblurring in optical microscopic systems. J Biophotonics. 2020;13(3):e201960147.

    Article  Google Scholar 

  175. DiSpirito A III, Li D, Vu T, Chen M, Zhang D, Luo J, Horstmeyer R, Yao J. Reconstructing undersampled photoacoustic microscopy images using deep learning. IEEE Trans Med Imaging. 2021;40(2):562–70.

    Article  Google Scholar 

  176. Vu T, DiSpirito A, Li D, Wang Z, Zhu X, Chen M, Jiang L, Zhang D, Luo J, Zhang YS, Zhou Q, Horstmeyer R, Yao J. Deep image prior for undersampling high-speed photoacoustic microscopy. Photoacoustics. 2021;22:100266.

    Article  Google Scholar 

  177. Zhou J, He D, Shang X, Guo Z, Chen S-L, Luo J. Photoacoustic microscopy with sparse data by convolutional neural networks. Photoacoustics. 2021;22:100242.

    Article  Google Scholar 

  178. Yuan AY, Gao Y, Peng L, Zhou L, Liu J, Zhu S, Song W. Hybrid deep learning network for vascular segmentation in photoacoustic imaging. Biomed Opt Express. 2020;11(11):6445–57.

    Article  Google Scholar 

  179. Tang K, Li B, Zhang J, Wei J, Song L, Song X. Denoising method for photoacoustic microscopy using deep learning. Proc SPIE. 2020;11525:115252P.

    Google Scholar 

  180. Wang Z, Li S, Song X. Super-resolution photoacoustic microscopy based on deep learning. Proc SPIE. 2021;11736:1173608.

    Google Scholar 

  181. Zhang Z, Jin H, Zheng Z, Luo Y, Zheng Y. Photoacoustic microscopy imaging from acoustic resolution to optical resolution enhancement with deep learning. In: IEEE international symposium on circuits and systems (ISCAS); 2021. p. 1–5.

Download references

Acknowledgements

The author would like to acknowledge the support by Tier 1 Grant funded by the Ministry of Education in Singapore (RG144/18, RG127/19).

Funding

Authors have no relevant financial interests in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manojit Pramanik.

Ethics declarations

Ethical statement

This paper does not contain any studies with human participant or animal performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajendran, P., Sharma, A. & Pramanik, M. Photoacoustic imaging aided with deep learning: a review. Biomed. Eng. Lett. 12, 155–173 (2022). https://doi.org/10.1007/s13534-021-00210-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-021-00210-y

Keywords

Navigation