Skip to main content
Log in

A deep learning approach for prediction of Parkinson’s disease progression

  • Original Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

This paper proposes a deep neural network (DNN) model using the reduced input feature space of Parkinson’s telemonitoring dataset to predict Parkinson’s disease (PD) progression. PD is a chronic and progressive nervous system disorder that affects body movement. PD is assessed by using the unified Parkinson’s disease rating scale (UPDRS). In this paper, firstly, principal component analysis (PCA) is employed to the featured dataset to address the multicollinearity problems in the dataset and to reduce the dimension of input feature space. Then, the reduced input feature space is fed into the proposed DNN model with a tuned parameter norm penalty (L2) and analyses the prediction performance of it in PD progression by predicting Motor and Total-UPDRS score. The model’s performance is evaluated by conducting several experiments and the result is compared with the result of previously developed methods on the same dataset. The model’s prediction accuracy is measured by fitness parameters, mean absolute error (MAE), root mean squared error (RMSE), and coefficient of determination (R2). The MAE, RMSE, and R2 values are 0.926, 1.422, and 0.970 respectively for motor-UPDRS. These values are 1.334, 2.221, and 0.956 respectively for Total-UPDRS. Both the Motor and Total-UPDRS score is better predicted by the proposed method. This paper shows the usefulness and efficacy of the proposed method for predicting the UPDRS score in PD progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. National Institute of Neurological Disorders and Stroke. Parkinson’s disease: hope through research. Bethesda: National Institute of Neurological Disorders and Stroke; 1994.

    Google Scholar 

  2. Marras C, Beck J, Bower J, Roberts E, Ritz B, Ross G, et al. Prevalence of Parkinson’s disease across North America. NPJ Parkinson’s Dis. 2018;4(1):21.

    Article  Google Scholar 

  3. Clinic M. Parkinson’s disease (2019). https://www.mayoclinic.org.

  4. Ramaker C, Marinus J, Stiggelbout AM, Van Hilten BJ. Systematic evaluation of rating scales for impairment and disability in Parkinson’s disease. Mov Disord. 2002;17(5):867–76.

    Article  Google Scholar 

  5. Rascol O, Goetz C, Koller W, Poewe W, Sampaio C. Treatment interventions for Parkinson’s disease: an evidence based assessment. Lancet. 2002;359(9317):1589–98.

    Article  Google Scholar 

  6. Leon S, Mutnick H, Souney F, Swanson N. Comprehensive pharmacy review. Baltimore: West Camden Street; 2004.

    Google Scholar 

  7. Rosenbaum RB. Understanding Parkinson’s disease: a personal and professional view. Westport: Greenwood Publishing Group; 2006.

    Google Scholar 

  8. Shulman LM, Gruber-Baldini AL, Anderson KE, Fishman PS, Reich SG, Weiner WJ. The clinically important difference on the unified Parkinson’s disease rating scale. Arch Neurol. 2010;67(1):64–70.

    Article  Google Scholar 

  9. Brooks DJ. The early diagnosis of Parkinson’s disease. Ann Neurol. 1998;44(1):S10–8.

    Article  Google Scholar 

  10. Tsanas A, Little MA, McSharry PE, Ramig LO. Accurate telemonitoring of Parkinson’s disease progression by noninvasive speech tests. IEEE Trans Biomed Eng. 2010;57(4):884–93.

    Article  Google Scholar 

  11. Hely MA, Morris JG, Traficante R, Reid WG, O’Sullivan DJ, Williamson PM. The Sydney multicentre study of Parkinson’s disease: progression and mortality at 10 years. J Neurol Neurosurg Psychiatry. 1999;67(3):300–7.

    Article  Google Scholar 

  12. Diamond S, Markham C, Hoehn M, McDowell F, Muenter M. Effect of age at onset on progression and mortality in Parkinson’s disease. Neurology. 1989;39(9):1187–90.

    Article  Google Scholar 

  13. Haaxma CA, Bloem BR, Borm GF, Oyen WJ, Leenders KL, Eshuis S, et al. Gender differences in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2007;78(8):819–24.

    Article  Google Scholar 

  14. Bhattacharya I, Bhatia MPS. SVM classification to distinguish Parkinson disease patients. In: Proceedings of the 1st Amrita ACM-W celebration on women in computing in India. ACM; 2010.

  15. Ozcift A. SVM feature selection based rotation forest ensemble classifiers to improve computer-aided diagnosis of Parkinson disease. J Med Syst. 2012;36(4):2141–7.

    Article  Google Scholar 

  16. Das R. A comparison of multiple classification methods for diagnosis of Parkinson disease. Expert Syst Appl. 2010;37(2):1568–72.

    Article  Google Scholar 

  17. Babu GS, Suresh S. Parkinson’s disease prediction using gene expression—a projection based learning meta-cognitive neural classifier approach. Expert Syst Appl. 2013;40(5):1519–29.

    Article  Google Scholar 

  18. Buza K, Varga NÁ. ParkinsoNET: estimation of UPDRS score using hubness-aware feedforward neural networks. Applied Artificial Intelligence. 2016;30(6):541–55.

    Article  Google Scholar 

  19. Al-Fatlawi AH, Jabardi MH, Ling SH. Efficient diagnosis system for Parkinson’s disease using deep belief network. In: 2016 IEEE congress on evolutionary computation (CEC). IEEE; 2016.

  20. Åström F, Koker R. A parallel neural network approach to prediction of Parkinson’s disease. Expert Syst Appl. 2011;38(10):12470–4.

    Article  Google Scholar 

  21. Li D-C, Liu C-W, Hu SC. A fuzzy-based data transformation for feature extraction to increase classification performance with small medical data sets. Artif Intell Med. 2011;52(1):45–52.

    Article  Google Scholar 

  22. Avci D, Dogantekin A. An expert diagnosis system for parkinson disease based on genetic algorithm-wavelet kernel-extreme learning machine. Parkinson’s Dis. 2016;2016:5264743.

    Google Scholar 

  23. Peterek T, Dohnálek P, Gajdoš P, Šmondrk M. Performance evaluation of Random Forest regression model in tracking Parkinson’s disease progress. In: 13th international conference on hybrid intelligent systems (HIS 2013). IEEE; 2013.

  24. Froelich W, Wrobel K, Porwik P. Diagnosis of Parkinson’s disease using speech samples and threshold-based classification. J Med Imaging Health Inform. 2015;5(6):1358–63.

    Article  Google Scholar 

  25. Guo P-F, Bhattacharya P, Kharma N. Advances in detecting Parkinson’s disease. In: International conference on medical biometrics. Springer; 2010.

  26. Polat K. Classification of Parkinson’s disease using feature weighting method on the basis of fuzzy C-means clustering. Int J Syst Sci. 2012;43(4):597–609.

    Article  MathSciNet  MATH  Google Scholar 

  27. Eskidere Ö, Ertaş F, Hanilçi C. A comparison of regression methods for remote tracking of Parkinson’s disease progression. Expert Syst Appl. 2012;39(5):5523–8.

    Article  Google Scholar 

  28. Chen H-L, Huang C-C, Yu X-G, Xu X, Sun X, Wang G, et al. An efficient diagnosis system for detection of Parkinson’s disease using fuzzy k-nearest neighbor approach. Expert Syst Appl. 2013;40(1):263–71.

    Article  Google Scholar 

  29. Hariharan M, Polat K, Sindhu R. A new hybrid intelligent system for accurate detection of Parkinson’s disease. Comput Methods Programs Biomed. 2014;113(3):904–13.

    Article  Google Scholar 

  30. Jain S, Shetty S. Improving accuracy in noninvasive telemonitoring of progression of Parkinson’s disease using two-step predictive model. In: Third international conference on electrical, electronics, computer engineering and their applications (EECEA). IEEE; 2016.

  31. Behroozi M, Sami A. A multiple-classifier framework for Parkinson’s disease detection based on various vocal tests. Int J Telemed Appl. 2016. https://doi.org/10.1155/2016/6837498.

    Article  Google Scholar 

  32. Nilashi M, Ibrahim O, Ahmadi H, Shahmoradi L, Farahmand M. A hybrid intelligent system for the prediction of Parkinson’s disease progression using machine learning techniques. Biocybern Biomed Eng. 2018;38(1):1–15.

    Article  Google Scholar 

  33. Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adeli H. Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Comput Biol Med. 2018;100:270–8.

    Article  Google Scholar 

  34. Yu L, Chen H, Dou Q, Qin J, Heng P-A. Automated melanoma recognition in dermoscopy images via very deep residual networks. IEEE Trans Med Imaging. 2017;36(4):994–1004.

    Article  Google Scholar 

  35. Liu M, Zhang J, Adeli E, Shen D. Landmark-based deep multi-instance learning for brain disease diagnosis. Med Image Anal. 2018;43:157–68.

    Article  Google Scholar 

  36. Shahid AH, Singh MP. Computational intelligence techniques for medical diagnosis and prognosis: problems and current developments. Biocybern Biomed Eng. 2019;10(3):345.

    Google Scholar 

  37. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems. Red Hook: Curran Associates Inc.; 2012.

    Google Scholar 

  38. Farabet C, Couprie C, Najman L, LeCun Y. Learning hierarchical features for scene labeling. IEEE Trans Pattern Anal Mach Intell. 2013;35(8):1915–29.

    Article  Google Scholar 

  39. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2015.

  40. Mikolov T, Deoras A, Povey D, Burget L, Černocký J. Strategies for training large scale neural network language models. In: IEEE workshop on automatic speech recognition and understanding (ASRU). IEEE; 2011.

  41. Hinton G, Deng L, Yu D, Dahl GE, Mohamed A-R, Jaitly N, et al. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process Mag. 2012;29(6):82–97.

    Article  Google Scholar 

  42. Sainath TN, Mohamed A-R, Kingsbury B, Ramabhadran B. Deep convolutional neural networks for LVCSR. In: 2013 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE; 2013.

  43. Ma J, Sheridan RP, Liaw A, Dahl GE, Svetnik V. Deep neural nets as a method for quantitative structure–activity relationships. J Chem Inf Model. 2015;55(2):263–74.

    Article  Google Scholar 

  44. Leung MK, Xiong HY, Lee LJ, Frey BJ. Deep learning of the tissue-regulated splicing code. Bioinformatics. 2014;30(12):i121–9.

    Article  Google Scholar 

  45. Xiong HY, Alipanahi B, Lee LJ, Bretschneider H, Merico D, Yuen RK, et al. The human splicing code reveals new insights into the genetic determinants of disease. Science. 2015;347(6218):1254806.

    Article  Google Scholar 

  46. Jolliffe I. Principal component analysis. In: Lorvic M, editor. International encyclopedia of statistical science. New York: Springer; 2011. p. 1094–6.

    Chapter  Google Scholar 

  47. Campbell N, Atchley WR. The geometry of canonical variate analysis. Syst Biol. 1981;30(3):268–80.

    Article  Google Scholar 

  48. Hu T, Wu F, Zhang X. Rainfall–runoff modeling using principal component analysis and neural network. Hydrology Research. 2007;38(3):235–48.

    Article  Google Scholar 

  49. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436.

    Article  Google Scholar 

  50. Ravı D, Wong C, Deligianni F, Berthelot M, Andreu-Perez J, Lo B, et al. Deep learning for health informatics. IEEE J Biomed Health Inform. 2017;21(1):4–21.

    Article  Google Scholar 

  51. Acharya UR, Fujita H, Oh SL, Raghavendra U, Tan JH, Adam M, et al. Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network. Fut Gener Comput Syst. 2018;79:952–9.

    Article  Google Scholar 

  52. Acharya UR, Fujita H, Lih OS, Adam M, Tan JH, Chua CK. Automated detection of coronary artery disease using different durations of ECG segments with convolutional neural network. Knowl-Based Syst. 2017;132:62–71.

    Article  Google Scholar 

  53. Tajbakhsh N, Shin JY, Gurudu SR, Hurst RT, Kendall CB, Gotway MB, et al. Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans Med Imaging. 2016;35(5):1299–312.

    Article  Google Scholar 

  54. Kallenberg M, Petersen K, Nielsen M, Ng AY, Diao P, Igel C, et al. Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring. IEEE Trans Med Imaging. 2016;35(5):1322–31.

    Article  Google Scholar 

  55. Belagiannis V, Rupprecht C, Carneiro G, Navab N. Robust optimization for deep regression. In: Proceedings of the IEEE international conference on computer vision, 2015.

  56. Bottou L, Bousquet O. The tradeoffs of large scale learning. Adv Neural Inf Process Syst. 2008;20:161–8.

    Google Scholar 

  57. Kingma DP, Ba JA. A method for stochastic optimization. arXiv preprint, 2014. arXiv:14126980.

  58. Duchi J, Hazan E, Singer Y. Adaptive subgradient methods for online learning and stochastic optimization. J Mach Learn Res. 2011;12:2121–59.

    MathSciNet  MATH  Google Scholar 

  59. Tieleman T, Hinton G. Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude. COURSERA Neural Netw Mach Learn. 2012;4(2):26–31.

    Google Scholar 

  60. Zeiler MD. ADADELTA: an adaptive learning rate method. arXiv preprint, 2012. arXiv:12125701.

  61. Karpathy A. Cs231n convolutional neural networks for visual recognition. Neural Netw. 2016;1:1.

    Google Scholar 

  62. Xu K, Ba J, Kiros R, Cho K, Courville A, Salakhudinov R, et al. Show, attend and tell: neural image caption generation with visual attention. In: International conference on machine learning, 2015.

  63. Gregor K, Danihelka I, Graves A, Rezende DJ, Wierstra D. Draw: a recurrent neural network for image generation. arXiv preprint, 2015. arXiv:150204623.

  64. Bühlmann P, Van De Geer S. Statistics for high-dimensional data: methods, theory and applications. Berlin: Springer; 2011.

    Book  MATH  Google Scholar 

  65. Goodfellow I, Bengio Y, Courville A, Bengio Y. Deep learning. Cambridge: MIT Press; 2016.

    MATH  Google Scholar 

  66. Tsanas A, Little MA, McSharry PE, Ramig LO. Accurate telemonitoring of Parkinson’s disease progression by noninvasive speech tests. IEEE Trans Biomed Eng. 2009;57(4):884–93.

    Article  Google Scholar 

  67. Zhao Y-P, Li B, Li Y-B, Wang K-K. Householder transformation based sparse least squares support vector regression. Neurocomputing. 2015;161:243–53.

    Article  Google Scholar 

  68. Bigiarini MZ, Bigiarini MMZ. Package “hydroGOF”. R-package www.r-project.org (2013). Accessed 7 May 2018.

Download references

Acknowledgements

The authors would like to acknowledge the Ministry of Electronics & Information Technology (MeitY), Government of India for supporting the research work through “Visvesvaraya Ph.D. Scheme for Electronics & IT”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afzal Hussain Shahid.

Ethics declarations

Conflict of interest

Afzal Hussain Shahid declares that he has no conflict of interest. Maheshwari Prasad Singh declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahid, A.H., Singh, M.P. A deep learning approach for prediction of Parkinson’s disease progression. Biomed. Eng. Lett. 10, 227–239 (2020). https://doi.org/10.1007/s13534-020-00156-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-020-00156-7

Keywords

Navigation