Skip to main content
Log in

Berberine alleviates sodium arsenite-induced renal and liver toxicity by regulating oxidative stress and inflammation in rats

  • Original Article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Background

Arsenic is ubiquitous in the environment, and long- or short-term exposure through water, food, and occupational sources can contribute to oxidative stress-related injuries. We investigated berberine (BBR, as a natural anti-oxidant) protective effects against sodium arsenite (NaAsO2) related damage.

Methods

Animals were allocated to five groups. Group 1 was used as a control. Group 2 received NaAsO2 (10 mg/kg P.O., for 3 weeks). Groups 3, 4, and 5 received oral administration of BBR (25, 50, and 100 mg/kg, respectively) within 4 weeks + NaAsO2 (10 mg/kg P.O., for 3 weeks). Twenty-four h after the last administration, markers of renal and liver function, oxidative stress, and inflammatory factors were measured.

Results

NaAsO2 exposure significantly increased hepatic enzymes, like ALT, ALP, and AST as well as markers of renal function, like creatinine and BUN, oxidative damage markers, like malondialdehyde, nitric oxide, and inflammatory markers, like NF-kB level, interleukin-1β, and tumor necrosis factor-alpha. Furthermore, NaAsO2 caused a significant reduction in anti-oxidant markers (glutathione content, glutathione peroxidase, catalase, and superoxide dismutase). The administration BBR + NaAsO2 caused a significant change in these factors compared to the arsenic group.

Conclusion

The BBR treatment exerted a significant protective effect on NaAsO2-related hepatorenal toxicity. These protective effects of BBR are possible because of a reduction in inflammation and oxidative stress markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Upon reasonable request, the data supporting the results of this article will be made available by the corresponding responsible author.

References

  1. Li Y, Chu Y, Sun H, Bao Q, Huang Y (2023) Melatonin alleviates arsenite toxicity by decreasing the arsenic accumulation in cell protoplasts and increasing the antioxidant capacity in rice. Chemosphere 312:137292

    Article  CAS  PubMed  Google Scholar 

  2. Kandhol N, Bansal R, Parveen N, Singh VP, Chauhan DK, Sonah H, Sahi S, Grillo R, Peralta-Videa J, Deshmukh R (2022) Nanoparticles as a potential protective agent for arsenic toxicity alleviation in plants. Environ Pollut 118887

  3. Bjørklund G, Rahaman MS, Shanaida M, Lysiuk R, Oliynyk P, Lenchyk L, Chirumbolo S, Chasapis CT, Peana M (2022) Natural dietary compounds in the treatment of arsenic toxicity. Molecules 27(15):4871

    Article  PubMed  PubMed Central  Google Scholar 

  4. Farkhondeh T, Samarghandian S, Azimi-Nezhad M (2019) The role of arsenic in obesity and diabetes. J Cell Physiol 234(8):12516–12529

    Article  CAS  PubMed  Google Scholar 

  5. Garza-Lombó C, Pappa A, Panayiotidis MI, Gonsebatt ME, Franco R (2019) Arsenic-induced neurotoxicity: a mechanistic appraisal. J Biol Inorg Chem 24(8):1305–1316

    Article  PubMed  PubMed Central  Google Scholar 

  6. Samanta J, Mondal A, Saha S, Chakraborty S, Sengupta A (2020) Oleic acid protects from arsenic-induced cardiac hypertrophy via AMPK/FoxO/NFATc3 pathway. Cardiovasc Toxicol 20(3):261–280

    Article  CAS  PubMed  Google Scholar 

  7. Zhao J, Li A, Mei Y, Zhou Q, Li Y, Li K, Xu Q (2021) The association of arsenic exposure with hypertension and blood pressure: a systematic review and dose–response meta-analysis. Environ Pollut 289:117914

    Article  CAS  PubMed  Google Scholar 

  8. Renu K, Saravanan A, Elangovan A, Ramesh S, Annamalai S, Namachivayam A, Abel P, Madhyastha H, Madhyastha R, Maruyama M (2020) An appraisal on molecular and biochemical signalling cascades during arsenic-induced hepatotoxicity. Life Sci 260:118438

    Article  CAS  PubMed  Google Scholar 

  9. Ramadan SS, Almeer R, Albasher G, Abdel Moneim AE (2022) Lycopene mitigates arsenic-induced nephrotoxicity with activation of the Nrf2 pathway in mice. Toxin Rev 41(2):446–456

    Article  CAS  Google Scholar 

  10. Hu Y, Li J, Lou B, Wu R, Wang G, Lu C, Wang H, Pi J, Xu Y (2020) The role of reactive oxygen species in arsenic toxicity. Biomolecules 10(2):240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Leemans JC, Kors L, Anders H-J, Florquin S (2014) Pattern recognition receptors and the inflammasome in kidney disease. Nat Rev Nephrol 10(7):398

    Article  CAS  PubMed  Google Scholar 

  12. Zhang Z, Guo C, Jiang H, Han B, Wang X, Li S, Lv Y, Lv Z, Zhu Y (2020) Inflammation response after the cessation of chronic arsenic exposure and post-treatment of natural astaxanthin in liver: potential role of cytokine-mediated cell–cell interactions. Food Funct 11(10):9252–9262

    Article  CAS  PubMed  Google Scholar 

  13. Singh N, Kumar D, Lal K, Raisuddin S, Sahu AP (2010) Adverse health effects due to arsenic exposure: modification by dietary supplementation of jaggery in mice. Toxicol Appl Pharmacol 242(3):247–255

    Article  CAS  PubMed  Google Scholar 

  14. Das N, Paul S, Chatterjee D, Banerjee N, Majumder NS, Sarma N, Sau TJ, Basu S, Banerjee S, Majumder P (2012) Arsenic exposure through drinking water increases the risk of liver and cardiovascular diseases in the population of West Bengal, India. BMC Public Health 12(1):639

    Article  PubMed  PubMed Central  Google Scholar 

  15. Karim MR, Rahman M, Islam K, Mamun AA, Hossain S, Hossain E, Aziz A, Yeasmin F, Agarwal S, Hossain MI (2013) Increases in oxidized low-density lipoprotein and other inflammatory and adhesion molecules with a concomitant decrease in high-density lipoprotein in the individuals exposed to arsenic in Bangladesh. Toxicol Sci 135(1):17–25

    Article  CAS  PubMed  Google Scholar 

  16. Yan N, Xu G, Zhang C, Liu X, Li X, Sun L, Wang D, Duan X, Li B (2020) Chronic arsenic exposure induces the time-dependent modulation of inflammation and immunosuppression in spleen. Cell Biosci 10(1):1–10

    Article  CAS  Google Scholar 

  17. Roussel RR, Barchowsky A (2000) Arsenic inhibits NF-κB-mediated gene transcription by blocking IκB kinase activity and IκBα phosphorylation and degradation. Arch Biochem Biophys 377(1):204–212

    Article  CAS  PubMed  Google Scholar 

  18. Ghosh J, Das J, Manna P, Sil PC (2009) Taurine prevents arsenic-induced cardiac oxidative stress and apoptotic damage: Role of NF-κB, p38 and JNK MAPK pathway. Toxicol Appl Pharmacol 240(1):73–87

    Article  CAS  PubMed  Google Scholar 

  19. Jin W, Xue Y, Xue Y, Han X, Song Q, Zhang J, Li Z, Cheng J, Guan S, Sun S (2020) Tannic acid ameliorates arsenic trioxide-induced nephrotoxicity, contribution of NF-κB and Nrf2 pathways. Biomed Pharmacother 126:110047

    Article  CAS  PubMed  Google Scholar 

  20. Das AK, Bag S, Sahu R, Dua TK, Sinha MK, Gangopadhyay M, Zaman K, Dewanjee S (2010) Protective effect of Corchorus olitorius leaves on sodium arsenite-induced toxicity in experimental rats. Food Chem Toxicol 48(1):326–335

    Article  CAS  PubMed  Google Scholar 

  21. Chowdhury R, Dutta A, Chaudhuri SR, Sharma N, Giri AK, Chaudhuri K (2008) In vitro and in vivo reduction of sodium arsenite induced toxicity by aqueous garlic extract. Food Chem Toxicol 46(2):740–751

    Article  CAS  PubMed  Google Scholar 

  22. Yadav RS, Shukla RK, Sankhwar ML, Patel DK, Ansari RW, Pant AB, Islam F, Khanna VK (2010) Neuroprotective effect of curcumin in arsenic-induced neurotoxicity in rats. Neurotoxicology 31(5):533–539

    Article  CAS  PubMed  Google Scholar 

  23. Hosseinzadeh A, Houshmand G, Goudarzi M, Sezavar SH, Mehrzadi S, Mansouri E, Kalantar M (2019) Ameliorative effect of gallic acid on sodium arsenite-induced spleno-, cardio-and hemato-toxicity in rats. Life Sci 217:91–100

    Article  CAS  PubMed  Google Scholar 

  24. Ye M, Fu S, Pi R, He F (2009) Neuropharmacological and pharmacokinetic properties of berberine: a review of recent research. J Pharm Pharmacol 61(7):831–837

    Article  CAS  PubMed  Google Scholar 

  25. Hur JM, Hyun MS, Lim SY, Lee WY, Kim D (2009) The combination of berberine and irradiation enhances anti-cancer effects via activation of p38 MAPK pathway and ROS generation in human hepatoma cells. J Cell Biochem 107(5):955–964

    Article  CAS  PubMed  Google Scholar 

  26. Peng L, Kang S, Yin Z, Jia R, Song X, Li L, Li Z, Zou Y, Liang X, Li L (2015) Antibacterial activity and mechanism of berberine against Streptococcus agalactiae. Int J Clin Exp Pathol 8(5):5217

    PubMed  PubMed Central  Google Scholar 

  27. Han J, Lin H, Huang W (2011) Modulating gut microbiota as an anti-diabetic mechanism of berberine. Med Sci Monit Int Med J Exp Clin Res 17(7):164

    Google Scholar 

  28. Chen C, Tao C, Liu Z, Lu M, Pan Q, Zheng L, Li Q, Song Z, Fichna J (2015) A randomized clinical trial of berberine hydrochloride in patients with diarrhea-predominant irritable bowel syndrome. Phytother Res 29(11):1822–1827

    Article  CAS  PubMed  Google Scholar 

  29. Brusq J-M, Ancellin N, Grondin P, Guillard R, Martin S, Saintillan Y, Issandou M (2006) Inhibition of lipid synthesis through activation of AMP kinase: an additional mechanism for the hypolipidemic effects of berberine. J Lipid Res 47(6):1281–1288

    Article  CAS  PubMed  Google Scholar 

  30. Zhao X, Zhang J, Tong N, Chen Y, Luo Y (2012) Protective effects of berberine on doxorubicin-induced hepatotoxicity in mice. Biol Pharm Bull 35(5):796–800

    Article  CAS  PubMed  Google Scholar 

  31. Zhang Y-p, Deng Y-j, Tang K-r, Chen R-s, Liang S, Liang Y-j, Han L, Jin L, Liang Z-e, Chen Y-n (2019) Berberine ameliorates high-fat diet-induced non-alcoholic fatty liver disease in rats via activation of SIRT3/AMPK/ACC pathway. Curr Med Sci 39(1):37–43

    Article  PubMed  Google Scholar 

  32. Zhao Z, Wei Q, Hua W, Liu Y, Liu X, Zhu Y (2018) Hepatoprotective effects of berberine on acetaminophen-induced hepatotoxicity in mice. Biomed Pharmacother 103:1319–1326

    Article  CAS  PubMed  Google Scholar 

  33. Mahmoud A, Fadel A, Ramadan S, Hozayen W (2017) Berberine mitigates methotrexate-induced oxidative stress and inflammation in the cerebrum of rats. J Appl Pharm Sci 7(11):43–49

    Google Scholar 

  34. Kalalian-Moghaddam H, Baluchnejadmojarad T, Roghani M, Goshadrou F, Ronaghi A (2013) Hippocampal synaptic plasticity restoration and anti-apoptotic effect underlie berberine improvement of learning and memory in streptozotocin-diabetic rats. Eur J Pharmacol 698(1–3):259–266

    Article  CAS  PubMed  Google Scholar 

  35. Lao-ong T, Chatuphonprasert W, Nemoto N, Jarukamjorn K (2012) Alteration of hepatic glutathione peroxidase and superoxide dismutase expression in streptozotocin-induced diabetic mice by berberine. Pharm Biol 50(8):1007–1012

    Article  CAS  PubMed  Google Scholar 

  36. Sarna LK, Wu N, Hwang S-Y, Siow YL, Oil K (2010) Berberine inhibits NADPH oxidase mediated superoxide anion production in macrophages. Can J Physiol Pharmacol 88(3):369–378

    Article  CAS  PubMed  Google Scholar 

  37. Patil S, Tawari S, Mundhada D, Nadeem S (2015) Protective effect of berberine, an isoquinoline alkaloid ameliorates ethanol-induced oxidative stress and memory dysfunction in rats. Pharmacol Biochem Behav 136:13–20

    Article  CAS  PubMed  Google Scholar 

  38. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  CAS  PubMed  Google Scholar 

  39. Preuss HG, Jarrell ST, Scheckenbach R, Lieberman S, Anderson RA (1998) Comparative effects of chromium, vanadium and Gymnema sylvestre on sugar-induced blood pressure elevations in SHR. J Am Coll Nutr 17(2):116–123

    Article  CAS  PubMed  Google Scholar 

  40. Kalantar H, Sabetkasaei M, Shahriari A, Haj Molla Hoseini M, Mansouri S, Kalantar M, Kalantari A, Khazaei Poul Y, Labibi F, Moini-Zanjani T The effect of rapamycin on oxidative stress in MCF-7 and MDA MB-231 human breast cancer cell lines. Jundishapur J Nat Pharm Prod 11(3)

  41. Tracey WR, Linden J, Peach MJ, Johns RA (1990) Comparison of spectrophotometric and biological assays for nitric oxide (NO) and endothelium-derived relaxing factor (EDRF): nonspecificity of the diazotization reaction for NO and failure to detect EDRF. J Pharmacol Exp Ther 252(3):922–928

    CAS  PubMed  Google Scholar 

  42. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82(1):70–77

    Article  CAS  PubMed  Google Scholar 

  43. Goudarzi M, Esmaeilizadeh M, Dolatshahi M, Kalantar H, Frouzandeh H, Kalantar M (2018) Protective effect of Elaeagnus angustifolia L. fruit hydroalcoholic extract on cyclophosphamide-induced nephrotoxicity in mice. Shiraz E Med J 19(1)

  44. Bonaventura J, Schroeder W, Fang S (1972) Human erythrocyte catalase: an improved method of isolation and a reevaluation of reported properties. Arch Biochem Biophys 150(2):606–617

    Article  CAS  PubMed  Google Scholar 

  45. Sheehan H, Storey G (1947) An improved method of staining leucocyte granules with Sudan black B. J Pathol Bacteriol 59(1–2):336–337

    Article  CAS  PubMed  Google Scholar 

  46. Kalantar M, Houshmand G, Kalantar H, Asadi M, Goudarzi M (2016) Protective effect of hydroalcoholic extract of Lavandula officinalis L. on gentamicin induced nephrotoxicity in rats. J Babol Univ Med Sci 18(7):62–67

    Google Scholar 

  47. Goudarzi M, Karamallah MH, Malayeri A, Kalantar M, Mansouri E, Kalantar H (2020) Protective effect of alpha-lipoic acid on di-(2-ethylhexyl) phthalate-induced testicular toxicity in mice. Environ Sci Pollut Res 27:1–9

    Article  Google Scholar 

  48. Mazumder DG (2005) Effect of chronic intake of arsenic-contaminated water on liver. Toxicol Appl Pharmacol 206(2):169–175

    Article  PubMed  Google Scholar 

  49. Rana MN, Tangpong J, Rahman MM (2018) Toxicodynamics of lead, cadmium, mercury and arsenic-induced kidney toxicity and treatment strategy: a mini review. Toxicol Rep 5:704–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ibtissem BA, Hajer BS, Ahmed H, Awatef E, Choumous K, Ons B, Mounir ZK, Najiba Z (2017) Oxidative stress and histopathological changes induced by methylthiophanate, a systemic fungicide, in blood, liver and kidney of adult rats. Afr Health Sci 17(1):154–163

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sharma MK, Kumar M, Kumar A (2002) Ocimum sanctum aqueous leaf extract provides protection against mercury induced toxicity in Swiss albino mice

  52. Flora SJ (2011) Arsenic-induced oxidative stress and its reversibility. Free Radic Biol Med 51(2):257–281

    Article  CAS  PubMed  Google Scholar 

  53. Sarath TS, Waghe P, Gupta P, Choudhury S, Kannan K, Pillai AH, Harikumar SK, Mishra SK, Sarkar SN (2014) Atorvastatin ameliorates arsenic-induced hypertension and enhancement of vascular redox signaling in rats. Toxicol Appl Pharmacol 280(3):443–454

    Article  CAS  PubMed  Google Scholar 

  54. El-Demerdash FM, Yousef MI, Radwan FM (2009) Ameliorating effect of curcumin on sodium arsenite-induced oxidative damage and lipid peroxidation in different rat organs. Food Chem Toxicol 47(1):249–254

    Article  CAS  PubMed  Google Scholar 

  55. Kwiecien S, Jasnos K, Magierowski M, Sliwowski Z, Pajdo R, Brzozowski B, Mach T, Wojcik D, Brzozowski T (2014) Lipid peroxidation, reactive oxygen species and antioxidative factors in the pathogenesis of gastric mucosal lesions and mechanism of protection against oxidative stress-induced gastric injury. J Physiol Pharmacol Off J Pol Physiol Soc 65(5):613

    CAS  Google Scholar 

  56. Toyokuni S (1999) Reactive oxygen species-induced molecular damage and its application in pathology. Pathol Int 49(2):91–102

    Article  CAS  PubMed  Google Scholar 

  57. Palmer RM, Rees DD, Ashton DS, Moncada S (1988) L-arginine is the physiological precursor for the formation of nitric oxide in endothelium-dependent relaxation. Biochem Biophys Res Commun 153(3):1251–1256

    Article  CAS  PubMed  Google Scholar 

  58. Iwakiri Y, Kim MY (2015) Nitric oxide in liver diseases. Trends Pharmacol Sci 36(8):524–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ahmad A, Dempsey SK, Daneva Z, Azam M, Li N, Li P-L, Ritter JK (2018) Role of nitric oxide in the cardiovascular and renal systems. Int J Mol Sci 19(9):2605

    Article  PubMed  PubMed Central  Google Scholar 

  60. Tewari D, Sah A, Bawari S, Nabavi S, Dehpour A, Shirooie S, Braidy N, Fiebich B, Vacca R, Nabavi S (2020) Role of nitric oxide in neurodegeneration: function, regulation and inhibition. Curr Neuropharmacol 19:114–126

    Article  Google Scholar 

  61. Sharma AK, Kaur J, Kaur T, Singh B, Yadav HN, Pathak D, Singh AP (2020) Ameliorative role of bosentan, an endothelin receptor antagonist, against sodium arsenite–induced renal dysfunction in rats. Environ Sci Pollut Res 28:1–11

    Google Scholar 

  62. Kumar A, Singh RP, Singh PK, Awasthi S, Chakrabarty D, Trivedi PK, Tripathi RD (2014) Selenium ameliorates arsenic induced oxidative stress through modulation of antioxidant enzymes and thiols in rice (Oryza sativa L.). Ecotoxicology 23(7):1153–1163

    Article  CAS  PubMed  Google Scholar 

  63. Ray A, Shelly A, Roy S, Mazumder S (2020) Arsenic induced alteration in Mrp-1 like activity leads to zebrafish hepatocyte apoptosis: the cellular GSH connection. Environ Toxicol Pharmacol 79:103427

    Article  CAS  PubMed  Google Scholar 

  64. Pawlik-Skowrońska B, Pirszel J, Kalinowska R, Skowroński T (2004) Arsenic availability, toxicity and direct role of GSH and phytochelatins in As detoxification in the green alga Stichococcus bacillaris. Aquat Toxicol 70(3):201–212

    Article  PubMed  Google Scholar 

  65. Travacio M, Llesuy S (1996) Antioxidant enzymes and their modification under oxidative stress conditions. Ciênc cult(Säo Paulo) 9–13

  66. Liu Y, Zhang Q, Wang L, Wang H, Sun T, Xia H, Yang Y, Zhang L (2017) The α-lipoic acid improves high-fat diet-induced cerebral damage through inhibition of oxidative stress and inflammatory reaction. Environ Toxicol Pharmacol 56:219–224

    Article  CAS  PubMed  Google Scholar 

  67. Sinha M, Manna P, Sil PC (2008) Protective effect of arjunolic acid against arsenic-induced oxidative stress in mouse brain. J Biochem Mol Toxicol 22(1):15–26

    Article  CAS  PubMed  Google Scholar 

  68. Pace C, Dagda R, Angermann J (2017) Antioxidants protect against arsenic induced mitochondrial cardio-toxicity. Toxics 5(4):38

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kuzu M, Kandemir FM, Yıldırım S, Çağlayan C, Küçükler S (2020) Attenuation of sodium arsenite-induced cardiotoxicity and neurotoxicity with the antioxidant, anti-inflammatory, and antiapoptotic effects of hesperidin. Environ Sci Pollut Res 28:1–14

    Google Scholar 

  70. Othman MS, Safwat G, Aboulkhair M, Moneim AEA (2014) The potential effect of berberine in mercury-induced hepatorenal toxicity in albino rats. Food Chem Toxicol 69:175–181

    Article  CAS  PubMed  Google Scholar 

  71. Chen X, Zhang Y, Zhu Z, Liu H, Guo H, Xiong C, Xie K, Zhang X, Su S (2016) Protective effect of berberine on doxorubicin-induced acute hepatorenal toxicity in rats. Mol Med Rep 13(5):3953–3960

    Article  CAS  PubMed  Google Scholar 

  72. Hwang J-M, Wang C-J, Chou F-P, Tseng T-H, Hsieh Y-S, Lin W-L, Chu C-Y (2002) Inhibitory effect of berberine on tert-butyl hydroperoxide-induced oxidative damage in rat liver. Arch Toxicol 76(11):664–670

    Article  CAS  PubMed  Google Scholar 

  73. Das J, Ghosh J, Manna P, Sinha M, Sil PC (2009) Taurine protects rat testes against NaAsO2-induced oxidative stress and apoptosis via mitochondrial dependent and independent pathways. Toxicol Lett 187(3):201–210

    Article  CAS  PubMed  Google Scholar 

  74. Tseng C-H (2004) The potential biological mechanisms of arsenic-induced diabetes mellitus. Toxicol Appl Pharmacol 197(2):67–83

    Article  CAS  PubMed  Google Scholar 

  75. Li Q, Verma IM (2002) NF-κB regulation in the immune system. Nat Rev Immunol 2(10):725–734

    Article  CAS  PubMed  Google Scholar 

  76. Yang D, Lv Z, Zhang H, Liu B, Jiang H, Tan X, Lu J, Baiyun R, Zhang Z (2017) Activation of the Nrf2 signaling pathway involving KLF9 plays a critical role in allicin resisting against arsenic trioxide-induced hepatotoxicity in rats. Biol Trace Elem Res 176(1):192–200

    Article  CAS  PubMed  Google Scholar 

  77. Tacke F (2017) Targeting hepatic macrophages to treat liver diseases. J Hepatol 66(6):1300–1312

    Article  CAS  PubMed  Google Scholar 

  78. Lv Y, Bing Q, Lv Z, Xue J, Li S, Han B, Yang Q, Wang X, Zhang Z (2020) Imidacloprid-induced liver fibrosis in quails via activation of the TGF-β1/Smad pathway. Sci Total Environ 705:135915

    Article  CAS  PubMed  Google Scholar 

  79. Liu J, Chang G, Huang J, Wang Y, Ma N, Roy A-C, Shen X (2019) Sodium butyrate inhibits the inflammation of lipopolysaccharide-induced acute lung injury in mice by regulating the toll-like receptor 4/nuclear factor κB signaling pathway. J Agric Food Chem 67(6):1674–1682

    Article  CAS  PubMed  Google Scholar 

  80. Li J, Zheng X, Ma X, Xu X, Du Y, Lv Q, Li X, Wu Y, Sun H, Yu L (2019) Melatonin protects against chromium (VI)-induced cardiac injury via activating the AMPK/Nrf2 pathway. J Inorg Biochem 197:110698

    Article  CAS  PubMed  Google Scholar 

  81. Liu B, Yu H, Baiyun R, Lu J, Li S, Bing Q, Zhang X, Zhang Z (2018) Protective effects of dietary luteolin against mercuric chloride-induced lung injury in mice: involvement of AKT/Nrf2 and NF-κB pathways. Food Chem Toxicol 113:296–302

    Article  PubMed  Google Scholar 

  82. Gholamine B, Houshmand G, Hosseinzadeh A, Kalantar M, Mehrzadi S, Goudarzi M (2021) Gallic acid ameliorates sodium arsenite-induced renal and hepatic toxicity in rats. Drug Chem Toxicol 44(4):341–352

    Article  CAS  PubMed  Google Scholar 

  83. Fouad AA, Al-Mulhim AS, Jresat I (2012) Telmisartan treatment attenuates arsenic-induced hepatotoxicity in mice. Toxicology 300(3):149–157

    Article  CAS  PubMed  Google Scholar 

  84. Das S, Santra A, Lahiri S, Mazumder DG (2005) Implications of oxidative stress and hepatic cytokine (TNF-α and IL-6) response in the pathogenesis of hepatic collagenesis in chronic arsenic toxicity. Toxicol Appl Pharmacol 204(1):18–26

    Article  CAS  PubMed  Google Scholar 

  85. Choudhury S, Gupta P, Ghosh S, Mukherjee S, Chakraborty P, Chatterji U, Chattopadhyay S (2016) Arsenic-induced dose-dependent modulation of the NF-κB/IL-6 axis in thymocytes triggers differential immune responses. Toxicology 357:85–96

    Article  PubMed  Google Scholar 

  86. Germoush MO, Mahmoud AM (2014) Berberine mitigates cyclophosphamide-induced hepatotoxicity by modulating antioxidant status and inflammatory cytokines. J Cancer Res Clin Oncol 140(7):1103–1109

    Article  CAS  PubMed  Google Scholar 

  87. Mahmoud AM, Germoush MO, Soliman AS (2014) Berberine attenuates isoniazid-induced hepatotoxicity by modulating peroxisome proliferator-activated receptor gamma, oxidative stress and inflammation. Int J Pharmacol 10(8):451–460

    Article  CAS  Google Scholar 

  88. Li Z, Zhang W (2017) Protective effect of berberine on renal fibrosis caused by diabetic nephropathy. Mol Med Rep 16(2):1055–1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was kindly supported by the Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran (Grant No: MPRC-9615).

Author information

Authors and Affiliations

Authors

Contributions

HK, MG, and ARM designed this project. MK, ZB, and MHK collected data and analyzed the data. HK and MG wrote the manuscript, modified the English version, and edited the final draft.

Corresponding author

Correspondence to Hadi Kalantar.

Ethics declarations

Conflict of interest

Mehdi Goudarzi, Mojtaba Kalantar, Alireza Malayeri, Zahra Basir, Mojtaba Haghi Karamallah and Hadi Kalantar declare that we have no conflict of interest.

Ethics approval

The investigation complies with the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH Publication no. 85-23, revised 1996). The Animal Ethics Committee of the Ahvaz Jundishapur University of Medical Sciences approved our research protocol (Ethics code: IR.AJUMS.REC.1396.664).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goudarzi, M., Kalantar, M., Malayeri, A. et al. Berberine alleviates sodium arsenite-induced renal and liver toxicity by regulating oxidative stress and inflammation in rats. Toxicol. Environ. Health Sci. 15, 157–172 (2023). https://doi.org/10.1007/s13530-023-00168-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-023-00168-7

Keywords

Navigation