Skip to main content
Log in

Hemato-biochemical indices alteration, oxidative stress, and immune suppression in the African catfish (Clarias gariepinus) exposed to metformin

  • Original Article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Objectives

The increase in pharmaceutical drug consumption and the presence of these drugs in the environment causes concern about their effects. Due to the prevalence of metformin in surface and waste waters, this study investigated its 7 day chronic toxicity. Typically, metformin is prescribed with other medications to control blood sugar levels and achieve healthy HbA1c (hemoglobin) levels for people with type 2 diabetes (T2D).

Methods

Accordingly, the effect of metformin on catfish (Clarias gariepinus) following exposure and post-exposure recovery was evaluated using blood indices as biomarkers for hematotoxicity, electrolytes imbalance, oxidative stress, and immunosuppression. The first group was a control group, the second group was exposed to 10 mg/L of metformin, and the third group was exposed to 50 mg/L of metformin for 7 days, followed by a 15-day recovery period. Hemotoxic effects of the metformin residue on fish were reported.

Results

A significant decrease in the most of antioxidants and electrolytes concentrations was observed in the present study. Low- and high- dose metformin suppressed the immunity of the exposed treated fish could be through the activation of lymphocytes and monocytes compared to control fish. Also, high dose of metformin induces cell oxidative stress through the reduction of super oxide dismutase (SOD) antioxidant enzyme and total antioxidant capacity (TAC). In addition, metformin increased the expression of inflammatory mediators as interleukin-6 (IL-6) and interleukin-1 beta (IL-1 β). However, some parameters were returned to their normal levels after 15 days post- exposure such as urea, uric acid, superoxide dismutase, chloride and IL-1 β especially with high- dose metformin exposure.

Conclusion

We conclude that our findings contribute to the current eco-toxicological knowledge regarding commonly consumed drugs and have provided additional data for research into these drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ambrosio-Albuquerque EP, Cusioli LF, Bergamasco R, Gigliolli AAS, Lupepsa L, Paupitz BR, Barbieri PA, Borin-Carvalho LA, De Brito Portela-Castro AL (2021) Metformin environmental exposure: a systematic review. Environ Toxicol Pharmacol 83:103588

    Article  CAS  PubMed  Google Scholar 

  2. Attia ZI, Hegazi MM, Mourad MH, Ashour OA (2016) Antioxidant enzymes status in liver and white muscle of Nile Tilapia exposed to different hypoxic levels and durations. The Egypt J Exp Biol (Zoology) 11:71–71

    Google Scholar 

  3. Axelsson AS, Tubbs E, Mecham B, Chacko S, Nenonen HA, Tang Y, Fahey JW, Derry JM, Wollheim CB, Wierup N (2017) Sulforaphane reduces hepatic glucose production and improves glucose control in patients with type 2 diabetes. Sci Transl Med 9:eaah4477

    Article  PubMed  Google Scholar 

  4. Badawy MA, Yasseen BA et al (2021) Neutrophil-mediated oxidative stress and albumin structural damage predict COVID-19-associated mortality. Elife 10:e69417. https://doi.org/10.7554/eLife.69417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bailey CJ (2017) Metformin: historical overview. Diabetologia 60:1566–1576

    Article  CAS  PubMed  Google Scholar 

  6. Bailey CJ, Gwilt M (2022) Diabetes, metformin and the clinical course of Covid-19: outcomes, mechanisms and suggestions on the therapeutic use of metformin. Front Pharmacol 13:784459. https://doi.org/10.3389/fphar.2022.784459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Beavers WN, Skaar EP (2016) Neutrophil-generated oxidative stress and protein damage in Staphylococcus aureus. Pathog Dis 74

  8. Ben Sahra I, Le Marchand-Brustel Y, Tanti JF, Bost F (2010) Metformin in cancer therapy: a new perspective for an old antidiabetic drug? Mol Cancer Ther 9:1092–1099

    Article  CAS  PubMed  Google Scholar 

  9. Besse J-P, Garric J (2008) Human pharmaceuticals in surface waters: implementation of a prioritization methodology and application to the French situation. Toxicol Lett 176:104–123

    Article  CAS  PubMed  Google Scholar 

  10. Cho K, Chung JY, Cho SK, Shin H-W, Jang I-J, Park J-W, Yu K-S, Cho J-Y (2015) Antihyperglycemic mechanism of metformin occurs via the AMPK/LXRα/POMC pathway. Sci Rep 5:1–7

    Article  CAS  Google Scholar 

  11. Corremans R, Neven E, Maudsley S, Leysen H, de Broe ME, D’Haese PC, Vervaet BA, Verhulst A (2022) Progression of established non-diabetic chronic kidney disease is halted by metformin treatment in rats. Kidney Int 101:929–944

    Article  CAS  PubMed  Google Scholar 

  12. Costa F, Lago A, Rocha VN, Barros OS, Costa L, Vipotnik Z, Silva B, Tavares T (2019) A review on biological processes for pharmaceuticals wastes abatement—a growing threat to modern society. Environ Sci Technol 53:7185–7202

    Article  CAS  PubMed  Google Scholar 

  13. Currie CJ, Poole CD, Gale E (2009) The influence of glucose-lowering therapies on cancer risk in type 2 diabetes. Diabetologia 52:1766–1777

    Article  CAS  PubMed  Google Scholar 

  14. Didion SP (2017) Cellular and oxidative mechanisms associated with interleukin-6 signaling in the vasculature. Int J Mol Sci 18:2563

    Article  PubMed  PubMed Central  Google Scholar 

  15. El-Naggar SA, Elwan M et al (2021) Metformin causes hepato-renal dysfunctions in obese male rats. Braz Arch Biol Technol 64. https://doi.org/10.1590/1678-4324-2021210188

  16. Elliott SM, Brigham ME, Lee KE, Banda JA, Choy SJ, Gefell DJ, Minarik TA, Moore JN, Jorgenson ZG (2017) Contaminants of emerging concern in tributaries to the Laurentian Great Lakes: I. Patterns of occurrence. PLoS ONE 12:e0182868

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fabbri E, Franzellitti S (2016) Human pharmaceuticals in the marine environment: focus on exposure and biological effects in animal species. Environ Toxicol Chem 35:799–812

    Article  CAS  PubMed  Google Scholar 

  18. Filippatos T, Tzavella E, Rizos C, Elisaf M, Liamis G (2017) Acid-base and electrolyte disorders associated with the use of antidiabetic drugs. Expert Opin Drug Saf 16:1121–1132

    Article  CAS  PubMed  Google Scholar 

  19. Fish U, Service W (2010) American Fisheries Society–Fish Health Section (AFS-FHS): 2010, Standard procedures for aquatic animal health inspections. AFS-FHS blue book: suggested procedures for the detection and identification of certain finfish and shellfish pathogens

  20. Foretz M, Guigas B, Viollet B (2019) Understanding the glucoregulatory mechanisms of metformin in type 2 diabetes mellitus. Nat Rev Endocrinol 15:569–589

    Article  CAS  PubMed  Google Scholar 

  21. Foster LB, Dunn RT (1974) Single-antibody technique for radioimmunoassay of cortisol in unextracted serum or plasma. Clin Chem 20:365–368

    Article  CAS  PubMed  Google Scholar 

  22. Fukai T, Ushio-Fukai M (2011) Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal 15:1583–1606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gabr RQ, El-Sherbeni AA, Ben-Eltriki M, El-Kadi AO, Brocks DR (2017) Pharmacokinetics of metformin in the rat: assessment of the effect of hyperlipidemia and evidence for its metabolism to guanylurea. Can J Physiol Pharmacol 95:530–538

    Article  CAS  PubMed  Google Scholar 

  24. García-Ayllón M-S, Small DH, Avila J, Sáez-Valero J (2011) Revisiting the role of acetylcholinesterase in Alzheimer’s disease: cross-talk with P-tau and β-amyloid. Front Mol Neurosci 4:22

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gaweł S, Wardas M, Niedworok E, Wardas P (2004) Malondialdehyde (MDA) as a lipid peroxidation marker. Wiadomosci Lekarskie (Warsaw, Poland: 1960) 57:453–455

    PubMed  Google Scholar 

  26. Gnudi L and Ricciardi CA (2022) Diabetes and kidney disease: metformin. Diabetes and Kidney Disease. Springer

  27. Gong L, Goswami S, Giacomini KM, Altman RB, Klein TE (2012) Metformin pathways: pharmacokinetics and pharmacodynamics. Pharmacogenet Genomics 22:820–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gormsen LC, Søndergaard E, Christensen NL, Brøsen K, Jessen N, Nielsen S (2019) Metformin increases endogenous glucose production in non-diabetic individuals and individuals with recent-onset type 2 diabetes. Diabetologia 62:1251–1256

    Article  CAS  PubMed  Google Scholar 

  29. Grenni P, Ancona V, Caracciolo AB (2018) Ecological effects of antibiotics on natural ecosystems: a review. Microchem J 136:25–39

    Article  CAS  Google Scholar 

  30. Hamed M, Soliman HA, Osman AG, Sayed AE-DH (2019) Assessment the effect of exposure to microplastics in Nile Tilapia (Oreochromis niloticus) early juvenile: I. blood biomarkers. Chemosphere 228:345–350

    Article  CAS  PubMed  Google Scholar 

  31. Hamed M, Soliman HA, Osman AG, Sayed AE-DH (2020) Antioxidants and molecular damage in Nile Tilapia (Oreochromis niloticus) after exposure to microplastics. Environ Sci Pollut Res 27:14581–14588

    Article  CAS  Google Scholar 

  32. Hanington PC, Belosevic M (2007) Interleukin-6 family cytokine M17 induces differentiation and nitric oxide response of goldfish (Carassius auratus L.) macrophages. Dev Comp Immunol 31:817–829

    Article  CAS  PubMed  Google Scholar 

  33. Huang X-J, Choi Y-K, Im H-S, Yarimaga O, Yoon E, Kim H-S (2006) Aspartate aminotransferase (AST/GOT) and alanine aminotransferase (ALT/GPT) detection techniques. Sensors 6:756–782

    Article  CAS  PubMed Central  Google Scholar 

  34. Khadre S, Ibrahim H, Shabana M, El-Seady N (2011) Effect of metformin and glimepiride on liver and kidney functions in alloxan-induced diabetic rats. J High Inst Publ Health 41:282–310

    Article  Google Scholar 

  35. Knedel M, Böttger R (1967) A kinetic method for determination of the activity of pseudocholinesterase (acylcholine acyl-hydrolase 3.1. 1.8.). Klin Wochenschr 45:325–327

    Article  CAS  PubMed  Google Scholar 

  36. Lazarus B, Wu A, Shin J-I, Sang Y, Alexander GC, Secora A, Inker LA, Coresh J, Chang AR, Grams ME (2018) Association of metformin use with risk of lactic acidosis across the range of kidney function: a community-based cohort study. JAMA Intern Med 178:903–910

    Article  PubMed  PubMed Central  Google Scholar 

  37. Maclaren RD, Wisniewski K, Maclaren C (2018) Environmental concentrations of metformin exposure affect aggressive behavior in the Siamese fighting fish. Betta splendens PloS one 13:e0197259

    Article  PubMed  Google Scholar 

  38. Massima Mouele ES, Tijani JO, Badmus KO, Pereao O, Babajide O, Zhang C, Shao T, Sosnin E, Tarasenko V, Fatoba OO (2021) Removal of pharmaceutical residues from water and wastewater using dielectric barrier discharge methods—a review. Int J Environ Res Publ Health 18:1683

    Article  Google Scholar 

  39. Meador JP, Yeh A, Gallagher EP (2018) Adverse metabolic effects in fish exposed to contaminants of emerging concern in the field and laboratory. Environ Pollut 236:850–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mekkawy IA, Mahmoud UM, Sayed AE-DH (2011) Effects of 4-nonylphenol on blood cells of the African catfish Clarias gariepinus (Burchell, 1822). Tissue Cell 43:223–229

    Article  CAS  PubMed  Google Scholar 

  41. Niemuth NJ, Jordan R, Crago J, Blanksma C, Johnson R, Klaper RD (2015) Metformin exposure at environmentally relevant concentrations causes potential endocrine disruption in adult male fish. Environ Toxicol Chem 34:291–296

    Article  CAS  PubMed  Google Scholar 

  42. Niemuth NJ, Klaper RD (2018) Low-dose metformin exposure causes changes in expression of endocrine disruption-associated genes. Aquat Toxicol 195:33–40

    Article  CAS  PubMed  Google Scholar 

  43. Nimmo IA (1987) The glutathione S-transferases of fish. Fish Physiol Biochem 3(4):163–172. https://doi.org/10.1007/BF02180277

    Article  CAS  PubMed  Google Scholar 

  44. Nishikimi M, Rao NA, Yagi K (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Commun 46:849–854

    Article  CAS  PubMed  Google Scholar 

  45. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  PubMed  Google Scholar 

  46. Parra-Saldivar R, Castillo-Zacarías C, Bilal M, Iqbal HMN, Barceló D (2021) Sources of pharmaceuticals in water. In: Perez Solsona S, Montemurro N, Chiron S, Barceló D (eds) Interaction and fate of pharmaceuticals in soil-crop systems: the impact of reclaimed wastewater. Springer International Publishing, Cham

    Google Scholar 

  47. Parrott JL, Restivo VE, Kidd KA, Zhu J, Shires K, Clarence S, Khan H, Sullivan C, Pacepavicius G, Alaee M (2022) Chronic embryo-larval exposure of fathead minnows to the pharmaceutical drug metformin: survival, growth, and microbiome responses. Environ Toxicol Chem 41:635–647

    Article  CAS  PubMed  Google Scholar 

  48. Patel M, Kumar R, Kishor K, Mlsna T, Pittman CU Jr, Mohan D (2019) Pharmaceuticals of emerging concern in aquatic systems: chemistry, occurrence, effects, and removal methods. Chem Rev 119:3510–3673

    Article  CAS  PubMed  Google Scholar 

  49. Pereira A, Silva L, Laranjeiro C, Lino C, Pena A (2020) Selected pharmaceuticals in different aquatic compartments: part II-toxicity and environmental risk assessment. Molecules 25(8):1796. https://doi.org/10.3390/molecules25081796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Reis JS, Amaral CAV, Volpe CMO, Fernandes JS, Borges EA, Isoni CA, Anjos PMFD, Machado JAN (2012) Oxidative stress and interleukin-6 secretion during the progression of type 1 diabetes. Arq Bras de Endocrinol& Metabol 56:441–448

    Article  Google Scholar 

  51. Rena G, Hardie DG, Pearson ER (2017) The mechanisms of action of metformin. Diabetologia 60:1577–1585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rojas LBA, Gomes MB (2013) Metformin: an old but still the best treatment for type 2 diabetes. Diabetol Metab Syndr 5:1–15

    Article  Google Scholar 

  53. Sayed AH, Hamed M et al (2021) Spirulina platensis alleviated the hemotoxicity, oxidative damage and histopathological alterations of hydroxychloroquine in catfish (Clarias gariepinus). Front Physiol 12. https://doi.org/10.3389/fphys.2021.683669

  54. Shabalina IG, Petrovic N, Kramarova TV, Hoeks J, Cannon B, Nedergaard J (2006) UCP1 and defense against oxidative stress: 4-hydroxy-2-nonenal effects on brown fat mitochondria are uncoupling protein 1-independent. J Biol Chem 281:13882–13893

    Article  CAS  PubMed  Google Scholar 

  55. Sookoian S, Pirola CJ (2012) Alanine and aspartate aminotransferase and glutamine-cycling pathway: their roles in pathogenesis of metabolic syndrome. World J Gastroenterol: WJG 18:3775–3781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Stevens JP (2013) Intermediate statistics: a modern approach. Routledge

    Book  Google Scholar 

  57. Tripathi SS, Singh S, Garg G, Kumar R, Verma AK, Singh AK, Bissoyi A, Rizvi SI (2022) Metformin ameliorates acetaminophen-induced sub-acute toxicity via antioxidant property. Drug Chem Toxicol 45:52–60

    Article  CAS  PubMed  Google Scholar 

  58. Uppal NN, Workeneh BT, Rondon-Berrios H, Jhaveri KD (2022) Electrolyte and acid-base disorders associated with cancer immunotherapy. Clin J Am Soc Nephrol 17:922–933

    Article  CAS  PubMed  Google Scholar 

  59. Yimer EM, Surur A et al (2019) The effect of metformin in experimentally induced animal models of epileptic seizure. Behav Neurol 2019:6234758. https://doi.org/10.1155/2019/6234758

    Article  PubMed  PubMed Central  Google Scholar 

  60. Younus H (2018) Therapeutic potentials of superoxide dismutase. Int J Health Sci 12:88

    CAS  Google Scholar 

  61. Goonoo MS, Morris R, Raithatha A, Creagh F (2020) Metformin-associated lactic acidosis: reinforcing learning points. BMJ Case Rep 13(9):e235608. https://doi.org/10.1136/bcr-2020-235608

    Article  PubMed  PubMed Central  Google Scholar 

  62. Blough B, Moreland A, Mora A (2017) Metformin-induced lactic acidosis with emphasis on the anion gap. Bayl Univ Med Cent Proc 28(1):31–33. https://doi.org/10.1080/08998280.2015.11929178

    Article  Google Scholar 

  63. Habig WH, Pabst MJ et al (1974) Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. J Biol Chem 249(22):7130–7139

    Article  CAS  PubMed  Google Scholar 

  64. Jacob S, Dötsch A, Knoll S, Köhler H-R, Rogall E, Stoll D, Tisler S, Huhn C, Schwartz T, Zwiener C, Triebskorn R (2018) Does the antidiabetic drug metformin affect embryo development and the health of brown trout (Salmo trutta f. fario)? Environ Sci Eur 30(1):48. https://doi.org/10.1186/s12302-018-0179-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaa El-Din H. Sayed.

Ethics declarations

Conflict of interest

Hesham Taher, Mahmoud S. Sabra, Alaa El-Din Salah El-Din, Alaa El-Din H. Sayed declare that we have no conflict of interest.

Ethical statement

Assiut University's Faculty of Science, Zoology Department, Research, Ethical Committee approved the experimental setup and fish handling.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taher, H., Sabra, M.S., Salah El-Din, A.ED. et al. Hemato-biochemical indices alteration, oxidative stress, and immune suppression in the African catfish (Clarias gariepinus) exposed to metformin. Toxicol. Environ. Health Sci. 14, 361–369 (2022). https://doi.org/10.1007/s13530-022-00150-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-022-00150-9

Keywords

Navigation