Skip to main content
Log in

Ameliorative role of zinc on cypermethrin-induced changes in haematological parameters and oxidative stress biomarkers in rat erythrocytes

  • Research Article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Cypermethrin is an active pesticide that has been used for more than three decades which controls a wide variety of pests in agriculture. The present study designed to evaluate the protective role of zinc in attenuating cypermethrin induced haematological toxicity and oxidative stress in erythrocytes of male rat. Wistar male rats received oral cypermethrin at two dose levels and zinc alone or zinc pre-treatment with cypermethrin for consecutive 14 days. The toxic effects of cypermethrin were observed on various haematological parameters. Administration of cypermethrin resulted in enhanced malondialdehyde level, depletion of reduced glutathione content and antioxidant enzymes of rat erythrocytes. However pre-treatment of zinc in combination with cypermethrin improved haematological status and restored the oxidative markers to their normal levels. Based upon these data, the present study reveals that zinc treatment attenuates cypermethrin exposed haematotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shafer, T. J., Meyer, D. A. & Kroften, K. M. Developmental neurotoxicity of pyrethroid insecticides: Critical review and future research needs. Environ. Hlth. Persp. 113, 123–136 (2005).

    Article  CAS  Google Scholar 

  2. Hutson, D. H., Gaughan, L. C. & Casida, J. E. Metabolism of the cis-and trans-isomers of cypermethrin in mice. Pesticide Sci. 12, 385–398 (1981).

    Article  CAS  Google Scholar 

  3. El-Demerdash, F. M. Lambda-cyhalothrin-induced changes in oxidative stress biomarkers in rabbit erythrocytes and alleviation effect of some antioxidants. Toxicology in Vitro. 21, 392–397 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Shah, M. K., Khan, A., Rizvi, F., Siddique, M. & Rehman, S. U. Effect of cypermethrin on clinico-haematological parameters in rabbits. Pakistan Vet. J. 27, 171–175 (2007).

    CAS  Google Scholar 

  5. Sakr, S. A., El-Mesady, F. A. & El-Desouki, N. I. Pyrethroid Inhalation Induced Histochemical Changes in the liver of Albino Rats. The Science 2, 24–28 (2002).

    Google Scholar 

  6. Jee, J. H., Masroor, F. & Kang, J. C. Responses of cypermethrin-induced stress in haematological parameters of Korean rockfish, Sebastesschlegeli. Aquac. Res. 36, 898–905 (2005).

    Article  Google Scholar 

  7. Singh, V. K. & Saxena, P. N. Effect of cybil (cypermethrin 25EC) and cybil-sevin (carbaryl 50EC) combination on liver and serum phosphates in Wistar albino rats. J. Ecophysiol. Occup. Health. 1, 229–234 (2001).

    CAS  Google Scholar 

  8. Anwar, K. Toxic effects of cypermethrin on the development of muscle in chick embryo of Gallus domesticus. Int. J. Agricult. Biol. 6, 400–406 (2004).

    CAS  Google Scholar 

  9. Yavasoglu, A. et al. The pyrethroid cypermethrin induced biochemical and histological alterations in rat liver. J. Health Sci. 52, 774–780 (2006).

    Article  CAS  Google Scholar 

  10. Rana, N., Saxena, N., Sharma, H. N. & Saxena, P. N. Comparative genotoxicity of alpha-cyanopyrethroids on Drosophila melanogaster. Entamon. 33, 135–138 (2008).

    CAS  Google Scholar 

  11. Jagdale, G. B., Kamoun, S. & Grewal, P. S. Entomopathogenic nematodes induce components of systemic resistance in plants: Biochemical and molecular evidence. Biological Control. 51, 102–109 (2009).

    Article  CAS  Google Scholar 

  12. Muthuviveganandavel, V., Muthurama, P., Muthu, S. & Srikumar, K. S. Individual and combined biochemical and histological effect of cypermethrin and carbendazim in male albino rats. J. Appl. Pharmaceut. Sci. 1, 121–129 (2011).

    Google Scholar 

  13. Bhushan, B., Saxena, P. N. & Saxena, N. Biochemical and histological changes in rat liver caused by cypermethrin and beta-cyfluthrin. Arh. Hig. Rada. Toksikol. 64, 57–67 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Sangha, G. K., Kaur, K. & Khera, K. S. Cypermethrin induced pathological and biochemical changes in reproductive organs of female rats. J. Environ. Biol. 34, 99–105 (2013).

    CAS  PubMed  Google Scholar 

  15. Kale, M., Rathore, N., John, S. & Bhatnagar, D. Lipid peroxidative damage on pyrethroid exposure and alterations in antioxidant status in rat erythrocytes: a possible involvement of reactive oxygen species. Toxicology Letters 105, 197–205 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Durak, D. et al. Mercury chloride-induced oxidative stress in human erythrocytes and the effect of vitamins C and E in vitro. Afr. J. Biotechnol. 9, 488–495 (2010).

    CAS  Google Scholar 

  17. Goel, A., Danni, V. & Dhawan, D. K. Role of Zinc in mitigating toxic effects of chlorpyrifos on haematological alterations and electron microscopic observations in rat blood. BioMetals 19, 483–492 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Atessahin, A. et al. The Effects of Vitamin E and Selenium on Cypermethrin-Induced Oxidative Stress in Rats. Turk. J. Vet. Anim. Sci. 29, 385–391 (2005).

    CAS  Google Scholar 

  19. Saxena, R. & Garg, P. Vitamin E provides protection against in vitro oxidative stress due to pesticide (Chlorpyrifos and Endosulfan) in goat RBC. GERF Bulletin of Biosciences 1, 1–6 (2010).

    Google Scholar 

  20. Hymavathi, V. & Rao, L. M. Effect of sublethal concentrations of lead on the haematology and biochemical constituents of Channapunctatus. Bull. Pure Appl. Sci. 19, 1–5 (2000).

    Google Scholar 

  21. Calabrese, A. L., Thurberg, F.P., Dawson, M. A. & Wenzl, D. R. in Sublethal physiological stress induced by cadmium and mercury in winter flounder Pseudopleuronectes americanus. In sublethal effect of toxic chemicals (eds Koeman, J.H. & Strik, J.J.T.W.A.) 15-21 (Elsevier, Scientific Co. Amsterdam, 1975).

  22. Tan, D. X., Reiter, R. J. & Chen, L. D. Both physiological and pharmacological levels of melatonin reduce DNA adduct formation induced by the carcinogen safrole. Carcinogenesis 15, 215–18 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Suganya, M., Karthi, S. & Shivakumar, M. S. Effect of Cadmium and Lead Exposure on Tissue Specific Antioxidant Response in Spodopteralitura. Free Radicals and Antioxidants 6, 90–100 (2015).

    Article  Google Scholar 

  24. Simsek, F. et al. Oxidant and antioxidant status in beta thalassaemia major patients. J. Ankara Univ. Faculty Med. 58, 34–38 (2005).

    Google Scholar 

  25. Clemens, M. R. & Waller, H. D. Lipid peroxidation in erythrocytes. Chem. Phys. Lipids 45, 251–268 (1987).

    Article  CAS  PubMed  Google Scholar 

  26. Stern, A. Red cell oxidative damage. in Oxidative Stress (ed Sies, H.) 331-349 (Academic Press, New York, 1985).

    Google Scholar 

  27. Nasuti, C., Cantalamessa, F., Falcioni, G. & Gabbianelli, R. Different effects of type I and type II pyrethroids on erythrocyte plasma membrane properties and enzymatic activity in rats. Toxicology 191, 233–244 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Prasanthi, K. Muralidhara & Rajini, P. S. Morphological and biochemical perturbations in rat erythrocytes following in vitro exposure to fenvalerate and its metabolite. Toxicology in Vitro 19, 449–456 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Xiu, Y. M. Trace elements in health and diseases. Biomed. Environ. Sci. 9, 130–136 (1996).

    CAS  PubMed  Google Scholar 

  30. Kang, Y. J. & Zhou, Z. Zinc prevention and treatment of alcoholic liver disease. Mol. Aspects. Med. 26, 391–404 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Zhou, Z. et al. Zinc supplementation prevents alcoholic liver injury in mice through attenuation of oxidative stress. Am. J. Pathol. 166, 1681–1690 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Prasad, A. S. Zinc in human health: effect of zinc on immune cells. Mol. Med. 14, 353 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cagen, S. Z. & Klaassen, C. D. Protection of carbon tetrachloride-induced hepatotoxicity by zinc: role of metallothionein. Toxicol. Appl. Pharmacol. 51, 107–116 (1979).

    Article  CAS  PubMed  Google Scholar 

  34. Cabre, M. et al. Inhibition of hepatic cell nuclear DNA fragmentation by zinc in carbon tetrachloride treated rats. J. Hepatol. 31, 228–234 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Prasad, A. S. Clinical, immunological, anti-inflammatory and antioxidant roles of zinc. Exp Gerontology 43, 370–377 (2008).

    Article  CAS  Google Scholar 

  36. Kazi, T. G. et al. Effects of Mineral Supplementation on Liver Cirrhotic/Cancer Male Patients. Biol. Trace Elem. Res. 150, 81–90 (2012).

    Article  PubMed  Google Scholar 

  37. Mandal, A., Chakraborty, S. & Lahiri, P. Hematological changes produced by lindane (-HCH) in six species of birds. Toxicology 40, 103–111 (1986).

    Article  CAS  PubMed  Google Scholar 

  38. Shakoori, A. R., Aslam, F. & Sabir, M. Effect of prolonged administration of insecticide (cyhalothrin/karate) on the blood and liver of rabbits. Folia Biol. 40, 91–99 (1992).

    CAS  Google Scholar 

  39. Morgan, D. P., Stockdale, E. M., Roberts, R. J. & Walter, H. W. Anaemia associated with exposure to’ lindane. Arc. Environ. Hlth. 35, 307–310 (1980).

    Article  CAS  Google Scholar 

  40. Rahman, M. F., Siddiqui, M. K. J., Mahaboob, M. & Mustafa, M. J. Hematological and hepatotoxic effects of isoprocrab in chicken. J. Appl. Toxicol. 10, 187–92 (1990).

    Article  CAS  PubMed  Google Scholar 

  41. Yousef, M. I., El-Deerdash, F. M., Kamel, K. I. & Al-Salhen, K. S. Changes in some haematological and biochemical indices of rabbits induced by isoflavones and cypermethrin. Toxicol. 189, 223–234 (2003).

    Article  CAS  Google Scholar 

  42. Latimer, K. S., Mahaffey, E. A. & Prasse, K. W. in Clinical Pathology. Veterinary Laboratory Medicine. 4th Edn. (Iowa State Univ. Press, USA., 2004).

    Google Scholar 

  43. Kobayashi, S. D., Voyich, J. M. & DeLeo, F. R. Regulation of the neutrophil-mediated inflammatory response to infection. Microbes Infect. 5, 1337–1344 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Goel, A., Dani, V. & Dhawan, D. K. Protective effects of zinc on lipd peroxidation, antioxidant enzymes and hepatic histo architecture in chlorpyrifos-induced toxicity. Chem. Biol Interact. 156, 131–140 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Prasad, A. S. Clinical, biochemical and nutritional spectrum of zinc deficiency in human subjects: an update. Nutr. Rev. 41, 197–208 (1983).

    Article  CAS  PubMed  Google Scholar 

  46. Commercial and Experimental Organic Insecticides, http://aesa.oxfordjournals.org/content/54/4/518 (1985).

  47. Barger, A. M. The complete blood cell count: a powerful diagnostic tool. Vet. Clin. Small Anim. 33, 1207–22 (2003).

    Article  Google Scholar 

  48. Schara, M. et al. The action of mercury on cell membranes. Cell Mol. Biol. Lett. 6, 299–304 (2001).

    CAS  PubMed  Google Scholar 

  49. Brandão, R. et al. Hemolytic effects of sodium selenite and mercuric chloride in human blood. Drug Chem. Toxicol. 28, 397–407 (2005).

    Article  PubMed  Google Scholar 

  50. Wang, Y., Fang, J., Leonard, S. S. & Rao, K. M. Cadmium inhibits the electron transfer chain and induces reactive oxygen species. Free Radic. Biol. Med. 36, 1434–1443 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Panda, S., Gupta, P. & Kar, A. Protective role of ashwagandha in cadmium-induced hepatotoxicity and nephrotoxicity in male mouse. Curr. Sci. 72, 546–547 (1997).

    Google Scholar 

  52. Sandrini, J. Z. et al. Short term responses to cadmium exposure in the estuarine polychaete Laeonereisacuta (Polychaeta, Nereididae): subcellular distribution and oxidative stress generation. Environ. Toxicol. Chem. 25, 1337–1344 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Environmental Health Criteria 95 (1990).

  54. Banerjee, B. D. et al. Biochemical effectsof some pesticides on lipid peroxidation and freeradical scavengers. Toxicol. Lett. 107, 33–47 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Gultekin, F., Delibas, N., Yasar, S. & Kilinc, I. In vivo changes in antioxidant systems andprotective role of melatonin and a combinationof vitamin C and vitamin E on oxidative damagein erythrocytes induced by chlorpyrifos-ethyl in rats. Arch. Toxicol. 75, 88–96 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Goel, A., Dani, V. & Dhawan, D. K. Protective effects of zinc on lipid peroxidation, antioxidant enzymes and hepatic histoarchitecture inchlorpyrifos induced toxicity. Chem. Biol. Interact. 156, 131–140 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Chvapil, M., Ryan, J. N. & Zukoski, C. F. Effect of zinc on lipid peroxidation in liver microsomes and mitochondria. Proc. Soc. Exp. Biol. Med. 141, 150–153 (1972).

    Article  CAS  PubMed  Google Scholar 

  58. Nicotera, P. & Orrenius, S. Role of thiols in protection against biological reactive intermediates. Adv. Exp. Med. Biol. 197, 41–49 (1986).

    Article  CAS  PubMed  Google Scholar 

  59. Schaffer, S., Azuma, J., Takahashi, K. & Mozaffari, M. Why is taurine cytoprotective? Adv. Exp. Med. Biol. 526, 307–321 (2003).

    Article  CAS  Google Scholar 

  60. Flohe, B. R. Tissue specific function of individual glutathione peroxidases. Free Radic. Biomed. 27, 951–965 (1999).

    Article  Google Scholar 

  61. Kyle, M. E., Miccadei, S., Nakae, D. & Farber, J. L. Superoxide dismutase and catalase protect cultured hepatocytes from the cytotoxicity of acetaminophen. Biochem. Biophys. Res. Commun. 149, 889–896 (1987).

    Article  CAS  PubMed  Google Scholar 

  62. Jalaili, S., Farshid, A. A. & Heydari, R. Histopathological observation on protective effect of vitamin E on endosulfan induced cardiotoxicity in rat. Pak. J. Biol. Sci. 10, 1922–1925 (2007).

    Article  Google Scholar 

  63. Hayes, J. D. & Pulford, D. The glutathione-S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit. Rev. Biochem. Mol. Biol. 30, 445–600 (1995).

    Article  CAS  PubMed  Google Scholar 

  64. Erdem, A. et al. The protective effect of taurine against gentamicin-induced acute tubular necrosis in rats. Nephrol. Dial. Transplant. 15, 1175–1182 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Deisseroth, A. & Dounce, A. L. Catalase: Physical and chemical properties, mechanism of catalase, and physiological role. Phsiol. Rev. 50, 319–375 (1970).

    CAS  Google Scholar 

  66. Jacob, R. A. The integrated antioxidant system. Nutr. Res. 15, 755–766 (1995).

    Article  CAS  Google Scholar 

  67. Skhra, J., Hodinar, A., Kvosnicka, J. & Hilgertova, J. Relationship of oxidative stress and fibrinolysis in diabetes mellitus. Diab. Med. 13, 800–805 (1996).

    Article  Google Scholar 

  68. FAO specifications and evaluations for agricultural pesticides (Food and Agriculture Organization of the United Nations, http://www.fao.org/fileadmin/templates/ agphome/documents/Pests_Pesticides/Specs/ chlors04.pdf (2006).

  69. Wintrobe, M. M. in Clinical hematology 6th Edn (Lea and Febiger, USA, 1967).

    Google Scholar 

  70. Dacie, J. V. & Lewis, S. M. in Practical Haematology 5th. Edn (Churchill Livingstone, London, 1975).

    Google Scholar 

  71. Mgbenka, B. O., Oluah, N. S. & Umeike, I. Effect of Gammalin 20 (Linndane) on differential white blood cells count of the African catfish Clariasalbo punctatus. Bull. Environ. Contam. Toxicol. 71, 248–254 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Benjamin, M. M. in Outline of Veterinary Clinical Pathology 3rd Edn (University Press, USA, 1978).

    Google Scholar 

  73. Becton-Dickinson. Unopette WBC/Platelet determination for manual methods. Rutherford, N.J.: Becton, Dickinson, and Company (1996).

    Google Scholar 

  74. Ohkawa, H., Onishi, N. & Yagi, K. Assay for lipid peroxidation in animal tissue by thiobarbituric acid reaction. Anal. Biochem. 95, 351–358 (1979).

    Article  CAS  PubMed  Google Scholar 

  75. Griffith, O. W. Glutathione turnover in human erythrocytes. J. Biochem. 256, 4900–4904 (1981).

    CAS  Google Scholar 

  76. Griffith, O. W. Determination of glutathione and glutathione disulphide using glutathione reductase and 2-vinylpyridine. Anal. Biochem. 106, 207–212 (1980).

    Article  CAS  PubMed  Google Scholar 

  77. Rotruck, J. T. et al. Selenium: Biochemical role as a component of glutathione peroxidise. Sci. 179, 588–590 (1973).

    Article  CAS  Google Scholar 

  78. Habig, W. H., Pabst, M. J. & Jakoby, W. B. Glutathione-S-Transferase: the first enzymatic step in mercapturic acid formation. J. Biolchem. 249, 7130–7139 (1974).

    CAS  Google Scholar 

  79. Aebi, H. Catalase. in Method of enzymetic analysis (ed Bergmeyer, H.U.) 674-684 (Academic Press, NewYork, 1974).

  80. Marklund, S. & Marklund, G. Involvement of superoxide anion radical in the auto oxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47, 469–474 (1974).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujata Maiti Choudhury.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, T., Pradhan, A., Paramanik, A. et al. Ameliorative role of zinc on cypermethrin-induced changes in haematological parameters and oxidative stress biomarkers in rat erythrocytes. Toxicol. Environ. Health Sci. 8, 234–246 (2016). https://doi.org/10.1007/s13530-016-0280-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-016-0280-2

Keywords

Navigation