Skip to main content

Advertisement

Log in

Plasma carnitine, choline, γ-butyrobetaine, and trimethylamine-N-oxide, but not zonulin, are reduced in overweight/obese patients with pre/diabetes or impaired glycemia

  • Original Article
  • Published:
International Journal of Diabetes in Developing Countries Aims and scope Submit manuscript

Abstract

Background and aims

Zonulin, carnitine, choline, γ-butyrobetaine (γ-BB), and trimethylamine-N-oxide (TMAO) are intricately involved in metabolic anomalies and type 2 diabetes mellitus (T2D). This study aimed to compare and correlate the plasma levels of zonulin, carnitine, choline, γ-butyrobetaine, and TMAO, along with the adiposity, atherogenicity, surrogate insulin resistance (sIR), and proinflammatory hematological indices of newly diagnosed drug-naive prediabetic and diabetic patients vs. apparently healthy normoglycemic controls.

Methods

In a cross-sectional study, 30 normoglycemic subjects (controls) and 16 prediabetic (preDM) and 14 type 2 diabetes (T2D) cases, that were gender and age-matched, were enrolled. Zonulin, carnitine, choline, γ-BB, and TMAO plasma levels were appraised using colorimetric assays. A comparison between the study groups was conducted by ANOVA while Spearman rank correlations between the metabolic risk biomarkers and between the risk markers and adiposity, sIR, atherogenicity, and proinflammatory hematological indices were also examined.

Results

Significant intergroup discrepancies in plasma carnitine, choline, γ-BB, and TMAO (but not zonulin) could be recognized in the cases vs. controls. Fasting blood glucose (FPG), glycated hemoglobin (A1C), triglycerides (TGs), body mass index (BMI), lipid accumulation product (LAP), visceral adiposity index (VAI), atherogenic index of plasma (AIP), and all sIR were outstandingly higher in the cases vs. controls. Blood indices lacked a scoring value to discriminate cases from controls. Inadvertently, no relation was found between plasma carnitine, choline, γ-BB, TMAO, or zonulin in cases. Among the rest of the markers and sIR indices, the triglyceride glucose-body mass index (TyG*BMI) related reciprocally to zonulin. Noticeably, among adiposity indices, TyG*BMI, triglyceride glucose-waist circumference (TyG*WC), and metabolic score for insulin resistance (MetS-IR) positively associated with waist circumference (WC), hip circumference (HC), BMI, body adiposity index (BAI), and waist-to-height ratio (WHtR). Exceptionally, LAP proportionally correlated with all sIR. TyG*WC and MetS-IR correlated directly with the conicity index (CI). WHR directly associated with triglyceride glucose (TyG) index and TyG*WC. Remarkably, the TyG index (but not TyG*BMI, TyG*WC, or MetS-IR) positively associated with all atherogenicity indices and RDW (but none of other blood indices). TMAO correlated inversely (p < 0.05) and moderately with choline. Distinctively, carnitine associated negatively with TC (p < 0.05). Both choline and carnitine related similarly and directly with PLR but inversely with lymphocytes (p<.05). Effectively, γ-butyrobetaine associated with both WC and the TyG-WC index equally negatively (p < 0.05). Substantially, γ-butyrobetaine correlated inversely with both atherogenic LDL-C/HDL-C ratio and MPV (p < 0.05). No pronounced relations were detected between the five microbiome signature determinants and glycemic control parameters (FBG and A1C%), sIR (TyG, TyG-BMI, or MetS-IR), adiposity (WHR, WHtR, CI, BAI, LAP, or VAI), atherogenicity indices (TC/HDL-C ratio, non-HDL-C/HDL-C ratio, or AIP), or blood indices (NLR or MLR).

Conclusion

Given the intergroup discrepancies in sIR, plasma zonulin, carnitine, choline, γ-BB, and TMAO along with their elective correlations with indices and clinical parameters of metabolic dysregulations, our study cannot rule out any possible molecular crosstalk and interplay of the biomarkers studied with the pathophysiology of prediabetes/diabetes. All in all, plasma zonulin, carnitine, choline, γ-BB, and TMAO with sIR can be putative surrogates for molecular cardiometabolic risk biomarkers to use as prognostic/predictive tools for the diagnosis/prevention and potential targets for prediabetes/diabetes management modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Qin J, Li R, Raes J, Arumugam M, Burgdorf K, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Kamo T, Akazawa H, Suda W, Saga-Kamo A, Shimizu Y, Yagi H, Liu Q, Nomura S, Naito A, Takeda M, Harada M, Toko H, Kumagai H, Ikeda Y, Takimoto E, Suzuki JI, Honda K. Dysbiosis and compositional alterations with aging in the gut microbiota of patients with heart failure. PLoS ONE. 2017;12(3):e0174099.

    PubMed  PubMed Central  Google Scholar 

  3. Tang H, Kitai T, Hazen S. Gut microbiota in cardiovascular health and disease. Circ. Res. 2018;120(7):1183–96.

    Google Scholar 

  4. Trøseid M, Nestvold T, Rudi K, Thoresen H, Nielsen E, Lappegård K. Plasma lipopolysaccharide is closely associated with glycemic control and abdominal obesity. Diabetes Care. 2013;36:3627–32.

    PubMed  PubMed Central  Google Scholar 

  5. Bergeron N, Williams PT, Lamendella R, Faghihnia N, Grube A, Li X, Wang Z, Knight R, Jansson J, Hazen S, Krauss R. Diets high in resistant starch increase plasma levels of trimethylamine N-oxide, a gut microbiome metabolite associated with CVD risk. Br J Nutr. 2016;116(12):2020–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lynch S. Gut microbiota and allergic disease. New Insights. Ann Am Thorac Soc. 2016;13(1):S51–4.

    PubMed  PubMed Central  Google Scholar 

  7. Skye SM, Zhu W, Romano KA, Guo CJ, Wang Z, Jia X, Kirsop J, Haag B, Lang JM, DiDonato JA, Tang WHW, Lusis AJ, Rey FE, Fischbach MA, Hazen SL. Microbial transplantation with human gut commensals containing CutC is sufficient to transmit enhanced platelet reactivity and thrombosis potential. Circ Res. 2018a;123(10):1164–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano G, Gasbarrini A. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms. 2019;10:7(1).

    Google Scholar 

  9. Vojvodic A, Peric-Hajzler Z, Matovic D, Vojvodic P, Vlaskovic-Jovicevic T, Sijan G, Dimitrijevic S, Stepic N, Wollina U, Badr B, Badawi A, Goldust M, Tirant M, Nguyen V, Fioranelli M, Lotti T. Gut microbiota and the alteration of immune balance in skin diseases: from nutraceuticals to fecal transplantation. J Med Sci. 2019;7(18):3034–8.

    Google Scholar 

  10. Tsigalou C, Konstantinidis T, Stavropoulou E, Bezirtzoglou E, Tsakris A. Potential elimination of human gut resistome by exploiting the benefits of functional foods. Front Microbiol. 2020;11(50).

  11. Trøseid M, Hov J, Nestvold T, Thoresen H, Berge R, Svardal A, Lappegård K. Major increase in microbiota dependent proatherogenic metabolite TMAO one year after bariatric surgery. Metab Syndr Relat Disord. 2016;14:197–201.

    PubMed  PubMed Central  Google Scholar 

  12. Koeth A, Levison S, Culley K. Gamma butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of L-L-carnitine to TMAO. Cell Metab. 2014;20:799–812.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein A, Britt E, Fu X, Chung YM, Wu Y, Schauer PH, Smith J, Allayee H, Tang WH. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472:57–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Gruppen E, Garcia E, Connelly M, Jeyarajah E, Otvos J, Bakker S, Dullaart R. TMAO is associated with mortality: impact of modestly impaired renal function. Sci Rep. 2017;7:13781.

    PubMed  PubMed Central  Google Scholar 

  15. Al-Obaide M, Singh P, Rewers-Felkins K, Salguero V, Kottapalli K, Vasylyeva T. Gut microbiota-dependent trimethylamine-N-oxide and serum biomarkers in patients with T2D and advanced CKD. J Clin Med. 2017;6(9):86.

  16. Al Bataineh MT, Dash NR, Lassen PB, Banimfregf BH, Nada AM, Belda E, Clement K. Revealing links between gut microbiome and its fungal community in type 2 diabetes mellitus among Emirati subjects: a pilot study. Sci Rep. 2020;10:9624.

    PubMed  PubMed Central  Google Scholar 

  17. Gurung M, Li Z, You H, Rodrigues R, Jump DB, Morgun A, Shulzhenko N. Role of gut microbiota in type 2 diabetes pathophysiology. Lancet EBioMed. 2020;51:102590.

    Google Scholar 

  18. Li Q, Chang Y, Zhang K, Chen H, Tao S, Zhang Z. Implication of the gut microbiome composition of type 2 diabetic patients from northern China. Sci Rep. 2020;10:5450.

    PubMed  PubMed Central  Google Scholar 

  19. Vujkovic-Cvijin I, Sklar J, Jiang L, Natarajan L, Knight R, Belkaid Y. Host variables confound gut microbiota studies of human disease. Nature. 2020;587:448–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Skagen K, Trøseid M, Ueland T, Holm S, Abbas A, Gregersen I, Kummen M, Bjerkeli V, Reier-Nilsen F, Russell D, Svardal A, Karlsen TH, Aukrust P, Berge R, Hov E, Halvorsen B, Skjell M. The carnitine-butyrobetaine-trimethylamine-N-oxide pathway and its association with cardiovascular mortality in patients with carotid atherosclerosis. Atherosclerosis. 2016;247:64–9.

    CAS  PubMed  Google Scholar 

  21. Wu WK, Panyod S, Liu PY, et al. Characterization of TMAO productivity from carnitine challenge facilitates personalized nutrition and microbiome signatures discovery. Microbiome. 2020;8:162.

    PubMed  PubMed Central  Google Scholar 

  22. Ohlsson B, Roth B, Larsson E, Höglund P. Calprotectin in serum and zonulin in serum and feces are elevated after introduction of a diet with lower carbohydrate content and higher fiber, fat and protein contents. Biomed Rep. 2017;6:411–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sturgeon G, Fasano A. Zonulin, a regulator of epithelial and endothelial barrier functions, and its involvement in chronic inflammatory diseases. Tissue Barriers. 2016;4(4):e1251384.

    PubMed  PubMed Central  Google Scholar 

  24. Ajamian M, Steer D, Rosella G, Gibson PR. Serum zonulin as a marker of intestinal mucosal barrier function: may not be what it seems. PLoS ONE. 2019;14(1):e0210728.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Fasano A. All disease begins in the (leaky) gut: role of zonulin-mediated gut permeability in the pathogenesis of some chronic inflammatory diseases. F1000Res. 2020;9:F1000 Faculty Rev–69.

  26. Dorcely B, Katz K, Jagannathan R, Chiang S, Oluwadare B, Goldberg I, Bergman M. Novel biomarkers for prediabetes, diabetes, and associated complications. Diabetes Metab Syndr Obes. 2017;10:345–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lees T, Nassif N, Simpson A, Shad-Kaneez F, Martiniello-Wilks R, Lin Y, Jones A, Qu X, Lal S. Recent advances in molecular biomarkers for diabetes mellitus: a systematic review. Biomarkers. 2017;22(7):604–13.

    CAS  PubMed  Google Scholar 

  28. American Diabetes Association (ADA). Standards of medical care in diabetes. Diabetes Care. 2020;42(Supplement 1):S13–28.

    Google Scholar 

  29. American Diabetes Association. (ADA). Clin Diabetes J. 2020;38(1).

  30. Hameed I, Masoodi S, Mir S, Nabi M, Ghazanfar K, Ganai B. Type 2 diabetes mellitus: from a metabolic disorder to an inflammatory condition. World J Diabetes. 2015;6(4):598–612.

    PubMed  PubMed Central  Google Scholar 

  31. Ducarmon Q, Zwittink R, Hornung B, Schaik W, Young V, Kuijper E. Gut microbiota and colonization resistance against bacterial enteric infection. Microbiol Mol Biol Rev. 2019;83(3).

  32. Dobiasova M, Frohlich J. The plasma parameter log (TG/HDL-C) as an atherogenic index: correlation with lipoprotein particle size and esterification rate in apoB-lipoprotein-depleted plasma (FER(HDL)). Clin Biochem. 2001;34(7):583–8.

    CAS  PubMed  Google Scholar 

  33. Khanduker S, Ahmed R, Nazneen M, Alam A, Khondokar F. A comparative study of lipid profile and atherogenic index of plasma among the pre and post-menopausal women. Answer Khan Mod Med Coll J. 2018;9(1):44–9.

    Google Scholar 

  34. Pradhan A. Obesity, metabolic syndrome, and type 2 diabetes: inflammatory basis of glucose metabolic disorders. Nutr Rev. 2007;65:152–6.

    Google Scholar 

  35. Akour A, Kasabri V, Boulatova N, Bustanji Y, Naffa R, Hyasat D, Khawaja N, Bustanji H, Zayed A, Momani M. Levels of metabolic markers in drug-naive prediabetic and type 2 diabetic patients. Acta Diabetol. 2016;54(2):163–70.

    PubMed  Google Scholar 

  36. Tam Z, Ng S, Tan L, Lin C, Rothenbacher D, Klenk J, Boehm B. Metabolite profiling in identifying metabolic biomarkers in older people with late-onset type 2 diabetes mellitus. Sci Rep. 2017;7:4392.

    PubMed  PubMed Central  Google Scholar 

  37. Gedela S, Rao A, Medicher N. Identification of biomarkers for type 2 diabetes and its complications: a bioinformatic approach. Int J Biomed Sci. 2007;3(4):229–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. International Diabetes Foundation (IDF). Worldwide definition of the metabolic syndrome. The IDF consensus worldwide definition of the Metabolic Syndrome, 2006; 1-19.

  39. Janeiro M, Ramírez M, Milagro F, Martínez A, Solas M. Implication of trimethylamine N-oxide (TMAO) in disease: potential biomarker or new therapeutic target. Nutrients. 2018;10(10):1398.

    PubMed  PubMed Central  Google Scholar 

  40. Tabák AG, Herder C, Rathmann W, Brunner EJ, Kivimäki M. Prediabetes: a high-risk state for developing diabetes. Lancet. 2012;379(9833):2279–90.

    PubMed  PubMed Central  Google Scholar 

  41. Sh Z, Du T, Li M, Jia J, Lu H, Lin X, Yu X. Triglyceride glucose-body mass index is effective in identifying nonalcoholic fatty liver disease in nonobese subjects. Medicine. 2017;96:22.

    Google Scholar 

  42. Simental-Mendía L, Rodríguez-Morán M, Guerrero-Romero F. The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects. Metab Syndr Related Disord. 2008;6(4):299–304.

    Google Scholar 

  43. Navarro-González D, Sánchez-Íñigo L, Pastrana-Delgado J, Fernández-Montero A, Martinez J. Triglyceride–glucose index (TyG index) in comparison with fasting plasma glucose improved diabetes prediction in patients with normal fasting glucose: the vascular-metabolic CUN cohort. Prev Med. 2016;86:99–105.

    PubMed  Google Scholar 

  44. Kim M, Ahn C, Kang S, Nam J, Kim K, Park J. Relationship between the triglyceride glucose index and coronary artery calcification in Korean adults. Cardiovasc Diabetol. 2017;16(1):108.

    PubMed  PubMed Central  Google Scholar 

  45. Er LK, Wu S, Chou HH, Hsu LA, Teng MS, Sun YC, Ko YL. Triglyceride glucose-body mass index is a simple and clinically useful surrogate marker for insulin resistance in nondiabetic individuals. PLoS ONE. 2016;11(3):0149731.

    Google Scholar 

  46. Okosun IS, Okosun B, Lyn R, Airhihenbuwa C. Surrogate indexes of insulin resistance and risk of metabolic syndrome in non-Hispanic White, non-Hispanic Black and Mexican American. Diabetes Metab Syndr. 2020;14(1):3–9.

    PubMed  Google Scholar 

  47. Bello-Chavolla OY, Almeda-Valdes P, Gomez-Velasco D, Viveros-Ruiz T, Cruz-Bautista I, Romo-Romo A, Sánchez-Lázaro D, Meza-Oviedo D, Vargas-Vázquez A, Campos OA, MDR S-G, Martagón AJ, Hernández LM, Mehta R, Caballeros-Barragán CR, Aguilar-Salinas CA. METS-IR, a novel score to evaluate insulin sensitivity, is predictive of visceral adiposity. Eur J Endocrinol. 2018;178:533–44.

    CAS  PubMed  Google Scholar 

  48. Lockie R, Ruvalcaba T, Stierli M, Dulla J, Dawes J, Orr R. Waist circumference and waist-to-hip ratio in law enforcement agency recruits: relationship to performance in physical fitness tests. J Strength Cond Res. 2020;34(6):1666–75.

    PubMed  Google Scholar 

  49. Filgueiras MS, Vieira SA, Fonseca PCA, Pereira PF, Ribeiro AQ, Priore SE, Franceschini SDC. Waist circumference, waist-to-height ratio and conicity index to evaluate android fat excess in Brazilian children. Public Health Nutr. 2019;22(1):140–6.

    PubMed  Google Scholar 

  50. Cerqueira MS, Santos CAD, Silva DAS, Amorim P, Marins JCB, Franceschini S. Validity of the body adiposity index in predicting body fat in adults: a systematic review. Adv Nutr. 2018;9(5):617–24.

    PubMed  PubMed Central  Google Scholar 

  51. Mazidi M, Kengne AP, Katsiki N, Mikhailidis D, Banach M. Lipid accumulation product and triglycerides/glucose index are useful predictors of insulin resistance. J Diabetes Complicat. 2018;32(3):266–70.

    Google Scholar 

  52. Gupta G, Sharma P, Kumar P, Sharma R. Is cardiovascular risk associated with subclinical hypothyroidism: role of C reactive protein and interleukin-6. J Cardiovasc Dis Res. 2018;9(1):20–3.

    CAS  Google Scholar 

  53. Morikawa SY, Fujihara K, Hatta M, Osawa T, Ishizawa M, Yamamoto M, Furukawa K, Ishiguro H, Matsunaga S, Ogawa Y, Shimano H. Relationships among cardiorespiratory fitness, muscular fitness, and cardiometabolic risk factors in Japanese adolescents: Niigata screening for and preventing the development of non-communicable disease study-Agano(nice evidence study-agano) 2. Pediatr Diabetes. 2018;19(4):593–602.

    CAS  PubMed  Google Scholar 

  54. Chrom P, Stec R, Bodnar L, Szczylik C. Incorporating neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio in place of neutrophil count and platelet count improves prognostic accuracy of the international metastatic renal cell carcinoma database consortium model. Cancer Res Treat. 2018;50(1):103–10.

    CAS  PubMed  Google Scholar 

  55. Antwi-Baffour S, Kyeremeh R, Buabeng D, Adjei JK, Aryeh C, Kpentey G, Seidu MA. Correlation of malaria parasitaemia with peripheral blood monocyte to lymphocyte ratio as indicator of susceptibility to severe malaria in Ghanaian children. Malar J. 2018;17(1):419.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Arab GA, Zahedi M, Kazemi V, Sanagoo A, Azimi M. Correlation between hemoglobin A1C and serum lipid profile in type 2 diabetic patients referred to the diabetes clinic in Gorgan. Iran J Clin Basic Res. 2018;2:26–31.

    Google Scholar 

  57. Phapale Y, Badade Z, Kaul S, Rai S. Assessment of atherogenic indices section in type 2 diabetes mellitus. J Clin Diagn Res. 2019;13(12):10–3.

    CAS  Google Scholar 

  58. Mirmiran P, Bahadoran Z, Azizi F. Lipid Accumulation product is associated with insulin resistance, lipid peroxidation, and systemic inflammation in type 2 diabetic patients. Endocrinol Metab. 2014;29:443–9.

    Google Scholar 

  59. Van Mens T, Buller H, Nieuwdrop M. Targeted inhibition of gut microbiota proteins involved in TMAO production to reduce platelet aggregation and arterial thrombosis: a blueprint for drugging the microbiota in the treatment of cardiometabolic disease ? J Thromb Haemost. 2019;17(1):3–5.

    PubMed  Google Scholar 

  60. Demir E, Ozkan H, Seckin KD, Sahtiyancı B, Demir B, Tabak O, Kumbasar A, Uzun H. Plasma zonulin levels as a non-invasive biomarker of intestinal permeability in women with gestational diabetes mellitus. Biomolecules. 2019;9(1):24.

    PubMed  PubMed Central  Google Scholar 

  61. Hasslacher C, Kulozik F, Platten I, Kraft M, Siege EG. Serum zonulin as parameter of intestinal permeability in longstanding type 2 diabetes: correlations with metabolism parameter and renal function. J Diabetes Metab Dis Control (JDMDC). 2018;5(2):58–6.

    Google Scholar 

  62. Moreno-Navarrete J, Sabater M, Ortega F, Ricart W, Fernández-Real J. Circulating zonulin, a marker of intestinal permeability, is increased in association with obesity associated insulin resistance. PLoS ONE. 2012;7(5):e37160.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Lim J, Kim J, Koo S, Kwon G. Comparison of triglyceride glucose index, and related parameters to predict insulin resistance in Korean adults: an analysis of the 2007-2010 Korean National Health and Nutrition Examination Survey. PLoS ONE. 2019;14(3):e0212963.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Hameed E. TyG index a promising biomarker for glycemic control in type 2 diabetes mellitus. Diabetes Metab Syndr. 2018;13:560e563–3.

  65. Wang S, Ma W, Yuan Z, Wang S, Yi X, Jia H, Xue F. Association between obesity indices and type 2 diabetes mellitus among middle-aged and elderly people in Jinan, China: a cross-sectional study. Br Med J. 2016;6(11):e012742.

    Google Scholar 

  66. Bene J, Hadzsiev K, Melegh B. Role of carnitine and its derivatives in the development and management of type 2 diabetes. Nutr Diabetes. 2018;8:8.

    PubMed  PubMed Central  Google Scholar 

  67. Alipour B, Barzegar A, Panahi F, Safaeian A, Eshaghi M. Effect of L-carnitine supplementation on metabolic status in obese diabetic women with hypocaloric diet. Health Scope. 2014;3:e14615.

    Google Scholar 

  68. Fathizadeh H, Milajerdi A, Reiner Z, Kolahdooz F, Asemi Z. The effects of L-carnitine supplementation on glycemic control: a systematic review and meta-analysis of randomized controlled trials. Excli J. 2019;18:631–43.

    PubMed  PubMed Central  Google Scholar 

  69. Xu Y, Jiang W, Chen G, Zhu W, Ding W, Ge Z, Tan Y, Ma T, Cui G. L-carnitine treatment of insulin resistance: a systematic review and meta-analysis. Adv Clin Exp Med. 2017;26(2):333–8.

    PubMed  Google Scholar 

  70. Kerner J, Hoppel C. Fatty acid import into mitochondria. Biochim Biophys Acta. 2000;1486(1):1–17.

    CAS  PubMed  Google Scholar 

  71. Malaguarnera M, Vacante M, Avitabile T, Malaguarnera M, Cammalleri L, Motta M. L-carnitine supplementation reduces oxidized LDL cholesterol in patients with diabetes. Am J Clin Nutr. 2009;89(1):71–6.

    CAS  PubMed  Google Scholar 

  72. Walford GA, Ma Y, Clish C, Florez JC, Wang TJ, Gerszten RE, Diabetes Prevention Program Research Group. Metabolite profiles of diabetes incidence and intervention response in the diabetes prevention program. Diabetes. 2016;65(5):1424–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Li Y, Wang D, Chiuve S, Manson J, Willett W, Hu F, Qi L. Dietary phosphatidylcholine intake and type 2 diabetes in men and women. Diabetes Care. 2015;38(2):e13–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Karalis D, Karalis T, Karalis S, Kleisiari A. L-L-carnitine as a diet supplement in patients with type II diabetes. Cureus. 2020;12(5):e7982.

    PubMed  PubMed Central  Google Scholar 

  75. Ejaz A, Martinez-Guino L, Goldfine AB, Ribas-Aulinas F, De-Nigris V, Ribo S, Gonzalez-Franquesa A, Garcia-Roves PM, Li E, Dreyfuss JM, Gall W, Kim JK, Bottiglieri T, Villarroya F, Gerszten RE, Patti ME, Lerin C. Dietary betaine supplementation increases Fgf21 levels to improve glucose homeostasis and reduce hepatic lipid accumulation in mice. Diabetes. 2016;65(4):902–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Liepinsh E, Vilskersts R, Loca D, Kirjanova O, Pugovichs O, Kalvinsh I, Dambrova M. Inhibitor of carnitine biosynthesis, induces an increase in gamma-butyrobetaine contents and cardioprotection in isolated rat heart infarction. J Cardiovasc Pharmacol. 2006;6:314–9.

    Google Scholar 

  77. Du J, Shen L, Tan Z, Zhang P, Zhao X, Xu Y, Gan M, Yang Q, Ma J, Jiang A, Tang G, Jiang Y, Jin L, Li M, Bai L, Li X, Wang J, Zhang S, Zhu L. Betaine supplementation enhances lipid metabolism and improves insulin resistance in mice fed a high-fat diet. Nutrients. 2018;10(2):131.

    PubMed  PubMed Central  Google Scholar 

  78. Virtanen J, Tuomainen T, Voutilainen S. Dietary intake of choline and phosphatidylcholine and risk of type 2 diabetes in men: the Kuopio Ischaemic Heart Disease Risk Factor Study. Eur J Nutr. 2020;59:3857–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Malinowska A, Szwengiel A, Chmurzynska A. Dietary, anthropometric, and biochemical factors influencing plasma choline, L-carnitine, trimethylamine, and trimethylamine-N-oxide concentrations. Int J Food Sci Nutr. 2017;68(4):488–95.

    CAS  PubMed  Google Scholar 

  80. Barrea L, Annunziata G, Muscogiuri G, Somma C, Laudisio D, Maisto M, Alteriis G, Tenore G. Trimethylamine-N-oxide (TMAO) as novel potential biomarker of early predictors of metabolic syndrome. Nutrients. 2018;10:1971.

    PubMed  PubMed Central  Google Scholar 

  81. Blaak E, Canfora E. Increased circulating choline, L-carnitine and TMAO levels are related to changes in adiposity during weight loss: role of the gut microbiota? Ann Transl Med. 2018;6(Suppl 2):S92.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Mazidi M, Rezaie P, Kengne AP, Mobarhan MG, Ferns GA. Gut microbiome and metabolic syndrome. Diabetes Metab Syndr. 2016;10(2 Suppl 1):150–7.

    Google Scholar 

  83. Brunkwall L, Orho-Melander M. The gut microbiome as a target for prevention and treatment of hyperglycaemia in type 2 diabetes: from current human evidence to future possibilities. Diabetologia. 2017;60(6):943–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Trøseid M, Ueland T, Hov JR, Svardal A, Gregersen I, Dahl C, Aakhus S, Gude E, Bjørndal B, Halvorsen B, Karlsen T, Aukrust P, Gullestad L, Berge R, Yndestad A. Microbiota-dependent metabolite trimethylamine-N-oxide is associated with disease severity and survival of patients with chronic heart failure. J Intern Med. 2015;277:717–26.

    PubMed  Google Scholar 

Download references

Acknowledgments

We sincerely thank all patients who participated in the study.

Funding

The research was funded by the Deanship of Scientific Research, University of Jordan (4/2016-2017; grant number 1938).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Violet Kasabri.

Ethics declarations

Ethics approval

This article does not contain any studies with animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Ethics statement

Written informed consent was obtained from all subjects. The experimental protocol was reviewed and approved by the Ethical Committee of Jordan University. Approval for the study was obtained from the Institutional Review Board affiliated with the Jordan University Hospital (JUH; 7/2019/IRB) and King Hussein Medical City (KHMC; 271/2019/2) and was conducted according to the principles expressed in the Declaration of Helsinki (World Medical Association, 2008).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Snouper, A., Kasabri, V., Bulatova, N. et al. Plasma carnitine, choline, γ-butyrobetaine, and trimethylamine-N-oxide, but not zonulin, are reduced in overweight/obese patients with pre/diabetes or impaired glycemia. Int J Diabetes Dev Ctries 43, 592–605 (2023). https://doi.org/10.1007/s13410-022-01088-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13410-022-01088-x

Keywords

Navigation