Skip to main content

Advertisement

Log in

Association Between Homocysteine and Type 2 Diabetes Mellitus: a Systematic Review and Meta-analysis

  • Original Article
  • Published:
International Journal of Diabetes in Developing Countries Aims and scope Submit manuscript

Abstract

Background

Several studies have been performed to assess the relationship between hyperhomocysteinemia and type 2 diabetes mellitus (T2DM). However, inconsistent results have been obtained. Therefore, we performed this meta-analysis to address this knowledge gap.

Methods

We searched PubMed, Cochrane library, and EMBASE database for studies that evaluated the relationship between blood homocysteine (HCY) level and T2DM from inception to Jun 2019. The quality of all included studies was assessed by the Newcastle Ottawa Scale (NOS) and the Agency for Healthcare Research Quality (AHRQ). RevMan5.3 and Stata12.0 were used for data analyses.

Results

Twenty-five studies (including 1881 cases and 2868 controls) on blood HCY level in T2DM were pooled in our meta-analysis. The blood HCY level in the T2DM patients was significantly higher than in the healthy individuals (SMD = 0.63, 95% CI = 0.43–0.84, and p < 0.001, I2 = 89%, p < 0.001), ignores the effects of age, sex, cardiovascular and cerebrovascular disease conditions, and other comorbidity. Additionally, in T2DM patients with nephropathy or retinopathy, blood HCY level was also significantly higher than in those with only T2DM (SMD = 1.17, 95% CI = 0.76–1.58, p < 0.001; I2 = 90%, p < 0.001 and SMD = 0.91, 95% CI = 0.39–1.44, p <0.001; I2 = 82%, p <0.001, respectively).

Conclusion

Our meta-analysis revealed the HCY level in the blood of T2DM patients was significantly higher than those of the health subjects, especially in patients with diabetic nephropathy (DN) and diabetic retinopathy (DR).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract. 2014;103:137–49.

    Article  CAS  PubMed  Google Scholar 

  2. World Health Organization. Definition, diagnosis and classification of diabetes mellitus and its complications. Part1: Diagnosisand Classification of Diabetes Mellitus. 1999.

  3. Diagnosis and Classification of Diabetes Mellitus. American Diabetes Association. Diabetes Care. 2014;37.

  4. Selhub J. Homocysteine metabolism. Annu Rev Nutr. 1999;19:217–46.

    Article  CAS  PubMed  Google Scholar 

  5. Davies L, Wilmshurst EG, Mcelduff A, Gunton J, Clifton-Bligh P, Fulcher GR. The relationship among homocysteine, creatinine clearance, and albuminuria in patients with type 2 diabetes. Diabetes Care. 2001;24:1805–9.

    Article  CAS  PubMed  Google Scholar 

  6. Finkelstein JD. The metabolism of homocysteine: pathways and regulation. Eur J Pediatr. 1998;157:S40–4.

    Article  CAS  PubMed  Google Scholar 

  7. Meigs JB, Jacques PF, Selhub J, Singer DE, Nathan DM, Rifai N, et al. Fasting plasma homocysteine level in the insulin resistance syndrome - the Framingham offspring study. Diabetes Care. 2001;24:1403–10.

    Article  CAS  PubMed  Google Scholar 

  8. Chico A, Perez A, Cordoba A, Arcelus R, Carreras G, Leiva A, et al. Plasma homocysteine is related to albumin excretion rate in patients with diabetes mellitus: a new link between diabetic nephropathy and cardiovascular disease? Diabetologia. 1998;41:684–93.

    Article  CAS  PubMed  Google Scholar 

  9. Boushey CJ, Beresford SA, Omenn GS, Motulsky AG. A quantitative assessment of plasma homocysteine as a risk factor for vascular disease. Probable benefits of increasing folic acid intakes. JAMA. 1995;274:1049–57.

    Article  CAS  PubMed  Google Scholar 

  10. Lewington S. Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis. JAMA. 2002;288:2015–22.

    Article  Google Scholar 

  11. Emoto M, Kanda H, Shoji T, Kawagishi T, Komatsu M, Mori K, et al. Impact of insulin resistance and nephropathy on homocysteine in type 2 diabetes. Diabetes Care. 2001;24:533–8.

    Article  CAS  PubMed  Google Scholar 

  12. Srivastav K, Saxena S, Mahdi AA, Shukla RK, Meyer CH, Akduman L, et al. Increased serum level of homocysteine correlates with retinal nerve fiber layer thinning in diabetic retinopathy. Mol Vis. 2016;22:1352–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Okada E, Oida K, Tada H, Asazuma K, Eguchi K, Tohda G, et al. Hyperhomocysteinemiais a risk factor for coronary arteriosclerosis in Japanese patients with type 2 diabetes. Diabetes Care. 1999;22:484–90.

    Article  CAS  PubMed  Google Scholar 

  14. Das S, Reynolds T, Patnaik A, Rais N, Fink LM, Fonseca VA. Plasma homocysteine concentrations in type II diabetic patients in India: relationship to body weight. J Diabetes Complicat. 1999;13:200–3.

    Article  CAS  Google Scholar 

  15. Ozmen B, Ozmen D, Turgan N, Habif S, Mutaf I, Bayindir O. Association between homocysteinemia and renal function in patients with type 2 diabetes mellitus. Ann Clin Lab Sci. 2002;32:279–86.

    CAS  PubMed  Google Scholar 

  16. Aso Y, Okumura K, Takebayashi K, Wakabayashi S, Inukai T. Relationships of plasma interleukin-18 concentrations to hyperhomocysteinemia and carotid intimal-media wall thickness in patients with type 2 diabetes. Diabetes Care. 2003;26:2622–7.

    Article  PubMed  Google Scholar 

  17. Sandhu JS, Singh I, Aggarwal SP, Narang AP, Sandhu P. Plasma homocysteine and insulin in diabetic nephropathy: relationship to body mass index. Ren Fail. 2004;26:689–93.

    Article  CAS  PubMed  Google Scholar 

  18. Ozdemir G, Ozden M, Maral H, Kuskay S, Cetinalp P, Tarkun I. Malondialdehyde, glutathione, glutathione peroxidase and homocysteine level in type 2 diabetic patients with and without microalbuminuria. Ann Clin Biochem. 2005;42:99–104.

    Article  CAS  PubMed  Google Scholar 

  19. Helfenstein T, Fonseca FA, Relvas WG, Santos AO, Dabela ML, Matheus SC, et al. Prevalence of myocardial infarction is related to hyperhomocysteinemia but not influenced by C677T methylenetetrahydrofolate reductase and A2756G methionine synthase polymorphisms in diabetic and non-diabetic subject. Clin.Chim.Acta. 2005;355:0–172.

    Article  CAS  Google Scholar 

  20. Dominguez RO, Marschoff ER, Guareschi EM, Famulari AL, Pagano MA, Serra JA. Homocysteine, vitamin B 12 and folate in Alzheimer’s and vascular dementias: the paradoxical effect of the superimposed type II diabetes mellitus condition. Clin.Chim.Acta. 2005;359:163–70.

    Article  CAS  PubMed  Google Scholar 

  21. Huang EJ, Kuo WW, Chen YJ, Chen TH, Chang MH, Lu MC, et al. Homocysteine and other biochemical parameters in type 2 diabetes mellitus with different diabetic duration or diabetic retinopathy. Clin.Chim.Acta. 2006;366:293–8.

    Article  CAS  PubMed  Google Scholar 

  22. Soares AL, Fernandes AP, Cardoso JE, Sousa MO, Lasmar MC, Novelli BA, et al. Plasma total homocysteine level and methylenetetrahydrofolate reductase gene polymorphism in patients with type 2 diabetes mellitusHCY. Pathophysiol.haemost.thromb. 2008;36:275–81.

    Article  PubMed  Google Scholar 

  23. Masuda Y, Kubo A, Kokaze A, Yoshida M, Fukuhara N, Takashima Y. Factors associated with serum total homocysteine level in type 2 diabetes. Environ Health Prev Med. 2008;13:148–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Al-Maskari MY, Waly MI, Ali A, Al-Shuaibi YS, Ouhtit A. Folate and vitamin B12 deficiency and hyperhomocysteinemia promote oxidative stress in adult type 2 diabetes. Nutrition. 2012;28:e23–6.

    Article  CAS  PubMed  Google Scholar 

  25. Ebesunun MO, Obajobi EO. Elevated plasma homocysteine in type 2 diabetes mellitus: a risk factor for cardiovascular diseases. Pan Afr Med J. 2012;12:48.

    PubMed  PubMed Central  Google Scholar 

  26. Huang T, Asimi S, Lou D, Li D. Plasma phospholipid polyunsaturated fatty acids and homocysteine in Chinese type 2 diabetes patients. Asia Pac J Clin Nutr. 2012, 2:394–9.

  27. Amrane M, Houcher Z, Begag S, Houcher B, Benlatreche C, Touabti A, et al. Influence of retinopathy on plasma concentrations of total homocysteine and other biochemical parameters in Algerian patients with type 2 diabetes mellitus. Pteridines. 2012;23:96–103.

    Article  CAS  Google Scholar 

  28. Wang T, Wang Q, Wang Z, Xiao Z, Liu L. Diagnostic value of the combined measurement of serum hcy, serum cys C, and urinary microalbumin in type 2 diabetes mellitus with early complicating diabetic nephropathy. ISRN Endocrinol. 2013;2013:407452.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Alis R, Sanchis-Gomar F, Pareja-Galeano H, Hernandez-Mijares A, Romagnoli M, Victor VM, et al. Association between irisin and homocysteine in euglycemic and diabetic subjects. Clin Biochem. 2014;47:333–5.

    Article  CAS  PubMed  Google Scholar 

  30. Wang H, Cui K, Xu K, Xu S. Association between plasma homocysteine and progression of early nephropathy in type 2 diabetic patients. Int J Clin Exp Med. 2015;8:11174–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Fekih-Mrissa N, Mrad M, Ibrahim H, Akremi I, Sayeh A, Jaidane A, et al. Methylenetetrahydrofolate reductase (MTHFR) (C677T and A1298C) polymorphisms and vascular complications in patients with type 2 diabetes. Can J Diabetes. 2017;41:366–71.

    Article  PubMed  Google Scholar 

  32. Dong N, Shi H, Tang X. Plasma homocysteine level are associated with macular thickness in type 2 diabetes without diabetic macular edema. Int Ophthalmol. 2017;38:737–46.

    Article  PubMed  Google Scholar 

  33. Mtiraoui N, Ezzidi I, Chaieb M, Marmouche H, Aouni Z, et al. MTHFR C677Tand A1298C gene polymorphisms and hyperhomocysteinemia as riskfactors of diabeticnephropathyin type 2 diabetes patients. Diabetes Res Clin Pract. 2007;75:99–106.

    Article  CAS  PubMed  Google Scholar 

  34. Agullo-Ortuno MT, Albaladejo MD, Parra S, Rodriguez-Manotas M, Fenollar M. Plasmatic homocysteine concentration and its relationship with complications associated to diabetes mellitus. Clin Chim Acta. 2002;326:105–12.

    Article  CAS  PubMed  Google Scholar 

  35. Sharaf SM, Gawish HH, Elsherbiny EM. Methylenetetrahydrofolate Reductase (Mthfr C677t) Gene polymorphism effect on development of diabetic nephropathy in Egyptien patients with type 2 diabetes mellitus. Life Sci J-Acta Zhengzhou Univ Overseas Ed. 2012;9:874–80.

    Google Scholar 

  36. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339.

  37. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25:603–5.

    Article  PubMed  Google Scholar 

  38. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistencyin meta-analyses. BMJ. 2003;327:557–60.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Begg CB. A measure to aid in the interpretation of published clinical trials. Stat Med. 1985;4:1–9.

    Article  CAS  PubMed  Google Scholar 

  40. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xu C, Wu Y, Liu G, Liu X, Wang F, Yu J. Relationship between homocysteine level and diabetic retinopathy: a systematic review and meta-analysis. Diagn Pathol. 2014;9(1):167.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Meng Y, Chen X, Peng Z, Liu X, Sun Y, Dai S. Association between high serum homocysteine level and biochemical characteristics in women with polycystic ovarian syndrome: a systematic review and Meta-Analysis. PLoS ONE. 2016;11:e0157389.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ebrahimpour A, Vaghari-Tabari M, Qujeq D, Moein S, Moazezi Z, et al. Direct correlation between serum homocysteine level and insulin resistance indexin patients with subclinical hypothyroidism: Does subclinical hypothyroidismincrease the risk of diabetes and cardio vascular disease together? Diabetes Metab Syndr. 2018;12:863–7.

    Article  PubMed  Google Scholar 

  44. Li Y, Zhang H, Jiang C, Xu M, Pang Y, Feng J, et al. Hyperhomocysteinemia promotes insulin resistance by inducing endoplasmic reticulum stress in adipose tissue. J Biol Chem. 2013;288(14):9583–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gallistl S, Sudi K, Mangge H, Erwa W, Borkenstein M. Insulin is an independent correlate of plasma homocysteine levels in obese children and adolescents. Diabetes Care. 2000;23(9):1348–52.

    Article  CAS  PubMed  Google Scholar 

  46. Yu X, Huang Y, Hu Q, Ma L. Hyperhomocysteinemia stimulates hepatic glucose output and PEPCK expression. Acta Biochim Biophys Sin. 2009;41:1027–32.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang Y, Wang G, Liu J, Yuan X. Impact of hyperhomocysteinemia on insulin resistance in patients with H-type hypertension. Clin Exp Hypertens. 2017;40(12):1–4.

    CAS  Google Scholar 

  48. Patterson S, Flatt PR, McClenaghan NH. Homocysteine and other structurally-diverse amino thiols can alter pancreatic beta cell function without evoking cellular damage. Biochim Biophys Acta. 1760;2006:1109–14.

    Google Scholar 

  49. Weiss N. Mechanisms of increased vascular oxidant stress in hyperhomocys-teinemia and its impact on endothelial function. Curr Drug Metab. 2005;6:27–36.

    Article  CAS  PubMed  Google Scholar 

  50. Huang T, Ren J, Huang J, Li D. Association of homocysteine with type 2 diabetes: a meta-analysis implementing Mendelian randomization approach. BMC Genomics. 2013;14:867.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wall RT, Harlan JM, Harker LA, Striker GE. Homocysteine-induced endothelial cell injury in vitro: a model for the study of vascular injury. Thromb Res. 1980;18:113–21.

    Article  CAS  PubMed  Google Scholar 

  52. House JD, Brosnan ME, Brosnan JT. Renal uptake and excretion of homocysteine in rats with acute hyperhomocysteinemia. Kidney Int. 1998;54:1601–7.

    Article  PubMed  Google Scholar 

  53. Dudman NP, Guo XW, Gordon RB, Dawson PA, Wilcken DE, Dawson PA. Human homocysteine catabolism: three major pathways and their relevance to development of arterial occlusive disease. J Nutr. 1996;126:1295S–300S.

    Article  CAS  PubMed  Google Scholar 

  54. Chen J, Li G, Xu Z, Zhang C, Wang Y, Xie H, et al. Elevated plasma homocysteine level increased the risk of early renal impairment in acute ischemic stroke patients. Cell Mol Neurobiol. 2017;37:1399–405.

    Article  CAS  PubMed  Google Scholar 

  55. Fotiou P, Raptis AE, Apergis G, Dimitriadis G, Vergados I, Theodossiadis P. Vitamin status as a determinant of serum homocysteine concentration in type 2 diabetic retinopathy. J Diabetes Res. 2015;2014:807209.

    Google Scholar 

  56. Alleboena S, Nagalla B, Sujatha P, Yadagiri RP, Sivaprasad M, Pratti L, et al. Status of B-vitamins and homocysteine in diabetic retinopathy: association with vitamin-B12 deficiency and hyperhomocysteinemia. PLoS ONE. 2011;6:e26747.

    Article  Google Scholar 

  57. Ayata A, Yildirim Y, Özcan Ö. Comment on: Plasma, aqueous and vitreous homocysteine level in proliferativediabetic retinopathy'. Br J Ophthalmol. 2012;96:1155.

    Article  PubMed  Google Scholar 

  58. Sofia F, Marcucci R, Bolli P, Giambene B, Sodi A, Fedi S, et al. Low vitamin B6 and folic acid level are associated with retinal vein occlusion independently of homocysteine level. Atherosclerosis. 2008;198:223–7.

    Article  Google Scholar 

  59. Pastore A, Noce A, Di Giovamberardino G, Stefano AD, Cinzia C, Zenobi R, et al. Homocysteine, cysteine, folate and vitamin B12 status in type 2 diabetic patients with chronic kidney disease. J Nephrol. 2015;28:571–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (Grants No: 81760108, No: 81560099, and No: 81660545); the Applied Basic Research Key Projects of Yunnan Province (Grant No: 2018FA039); Yunnan Provincial Fund Project (Grant No: 2016ZZX096), and the Joint Special Fund Project of Applied Basic Research of Kunming Medical University, Department of Science and Technology of Yunnan Province (Grant No: 2017FE468 (-013)).

Author information

Authors and Affiliations

Authors

Contributions

Jin-Xiang Wang and Rui Liao designed the study, conducted the literature search and screening, as well the data extraction and analyses. Jin-Xiang Wang wrote the first draft of the manuscript. Ding-Yun You analyzed the statistical data. All the authors revised the subsequent drafts for important intellectual content, read, and approved the final version of the manuscript.

Corresponding authors

Correspondence to Xue Yu, Rui Liao or Lan-Qing Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supporting information

ESM 1

Fig. A1 Forest plot for HCY level in T2DM patients VS controls stratified by BMI. Fig. A2 Forest plot for HCY levels in T2DM patients VS controls stratified by ethnicity. Fig. A3 Begg’s funnel plot of the included studies. (DOCX 218 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, JX., You, DY., Wang, HP. et al. Association Between Homocysteine and Type 2 Diabetes Mellitus: a Systematic Review and Meta-analysis. Int J Diabetes Dev Ctries 41, 553–562 (2021). https://doi.org/10.1007/s13410-021-00933-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13410-021-00933-9

Keywords

Navigation