Skip to main content

Advertisement

Log in

Crosstalk between oxidative phosphorylation and immune escape in cancer: a new concept of therapeutic targets selection

  • Review
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

Cancer is increasingly recognized as a metabolic disease, with evidence suggesting that oxidative phosphorylation (OXPHOS) plays a significant role in the progression of numerous cancer cells. OXPHOS not only provides sufficient energy for tumor tissue survival but also regulates conditions for tumor proliferation, invasion, and metastasis. Alterations in OXPHOS can also impair the immune function of immune cells in the tumor microenvironment, leading to immune evasion. Therefore, investigating the relationship between OXPHOS and immune escape is crucial in cancer-related research. This review aims to summarize the effects of transcriptional, mitochondrial genetic, metabolic regulation, and mitochondrial dynamics on OXPHOS in different cancers. Additionally, it highlights the role of OXPHOS in immune escape by affecting various immune cells. Finally, it concludes with an overview of recent advances in antitumor strategies targeting both immune and metabolic processes and proposes promising therapeutic targets by analyzing the limitations of current targeted drugs.

Conclusions

The metabolic shift towards OXPHOS contributes significantly to tumor proliferation, progression, metastasis, immune escape, and poor prognosis. A thorough investigation of concrete mechanisms of OXPHOS regulation in different types of tumors and the combination usage of OXPHOS-targeted drugs with existing immunotherapies could potentially uncover new therapeutic targets for future antitumor therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

References

  1. L.A. Broadfield, A.A. Pane, A. Talebi, J.V. Swinnen, S.M. Fendt, Lipid metabolism in cancer: new perspectives and emerging mechanisms. Dev. Cell. 56, 1363–1393 (2021). https://doi.org/10.1016/j.devcel.2021.04.013

    Article  CAS  PubMed  Google Scholar 

  2. U.E. Martinez-Outschoorn, M. Peiris-Pagés, R.G. Pestell, F. Sotgia, M.P. Lisanti, Cancer metabolism: a therapeutic perspective. Nat. Rev. Clin. Oncol. 14, 11–31 (2017). https://doi.org/10.1038/nrclinonc.2016.60

    Article  CAS  PubMed  Google Scholar 

  3. M. Reina-Campos, J. Moscat, M. Diaz-Meco, Metabolism shapes the tumor microenvironment. Curr. Opin. Cell. Biol. 48, 47–53 (2017). https://doi.org/10.1016/j.ceb.2017.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. L. Xia, L. Oyang, J. Lin, S. Tan, Y. Han, N. Wu, P. Yi, L. Tang, Q. Pan, S. Rao, J. Liang, Y. Tang, M. Su, X. Luo, Y. Yang, Y. Shi, H. Wang, Y. Zhou, Q. Liao, The cancer metabolic reprogramming and immune response. Mol. Cancer 20, 28 (2021). https://doi.org/10.1186/s12943-021-01316-8

    Article  PubMed  PubMed Central  Google Scholar 

  5. H. Xu, S. Zhou, Q. Tang, H. Xia, F. Bi, Cholesterol metabolism: new functions and therapeutic approaches in cancer. Biochim. Biophys. Acta Rev. Cancer 1874, 188394 (2020). https://doi.org/10.1016/j.bbcan.2020.188394

    Article  CAS  PubMed  Google Scholar 

  6. O. Warburg, On the origin of cancer cells. Science 123, 309–314 (1956). https://doi.org/10.1126/science.123.3191.309

    Article  CAS  PubMed  Google Scholar 

  7. O. Warburg, On the metabolism of cancer cells. Naturwissenschaften 12, 1131–1137 (1924). https://doi.org/10.1007/bf01504608

    Article  CAS  Google Scholar 

  8. D. Johar, A.O. Elmehrath, R.M. Khalil, M.H. Elberry, S. Zaky, S.A. Shalabi, L.H. Bernstein, Protein networks linking Warburg and reverse Warburg effects to cancer cell metabolism. BioFactors 47, 713–728 (2021). https://doi.org/10.1002/biof.1768

    Article  CAS  PubMed  Google Scholar 

  9. S. Pavlides, D. Whitaker-Menezes, R. Castello-Cros, N. Flomenberg, A.K. Witkiewicz, P.G. Frank, M.C. Casimiro, C. Wang, P. Fortina, S. Addya, R.G. Pestell, U.E. Martinez-Outschoorn, F. Sotgia, M.P. Lisanti, The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell. Cycle 8, 3984–4001 (2009). https://doi.org/10.4161/cc.8.23.10238

    Article  CAS  PubMed  Google Scholar 

  10. P.E. Porporato, N. Filigheddu, J.M.B. Pedro, G. Kroemer, L. Galluzzi, Mitochondrial metabolism and cancer. Cell. Res. 28, 265–280 (2018). https://doi.org/10.1038/cr.2017.155

    Article  CAS  PubMed  Google Scholar 

  11. W.T. Wang, W.L. Jin, X. Li, Intercellular communication in the tumour microecosystem: mediators and therapeutic approaches for hepatocellular carcinoma. Biochim. Biophys. Acta Mol. Basis Dis. 1868, 166528 (2022). https://doi.org/10.1016/j.bbadis.2022.166528

    Article  CAS  PubMed  Google Scholar 

  12. K.E. Allison, B.L. Coomber, B.W. Bridle, Metabolic reprogramming in the tumour microenvironment: a hallmark shared by cancer cells and T lymphocytes. Immunology 152, 175–184 (2017). https://doi.org/10.1111/imm.12777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. X. Li, M. Wenes, P. Romero, S.C. Huang, S.M. Fendt, P.C. Ho, Navigating metabolic pathways to enhance antitumour immunity and immunotherapy. Nat. Rev. Clin. Oncol. 16, 425–441 (2019). https://doi.org/10.1038/s41571-019-0203-7

    Article  CAS  PubMed  Google Scholar 

  14. G. Andrejeva, J.C. Rathmell, Similarities and distinctions of Cancer and Immune metabolism in inflammation and tumors. Cell. Metab. 26, 49–70 (2017). https://doi.org/10.1016/j.cmet.2017.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Z. Wu, M. Zuo, L. Zeng, K. Cui, B. Liu, C. Yan, L. Chen, J. Dong, F. Shangguan, W. Hu, H. He, B. Lu, Z. Song, OMA1 reprograms metabolism under hypoxia to promote colorectal cancer development. EMBO Rep. 22, e50827 (2021). https://doi.org/10.15252/embr.202050827

    Article  CAS  PubMed  Google Scholar 

  16. L. Liu, X. Zhang, H. Ding, X. Liu, D. Cao, Y. Liu, J. Liu, C. Lin, N. Zhang, G. Wang, J. Hou, B. Huang, Y. Zhang, J. Lu, Arginine and lysine methylation of MRPS23 promotes breast cancer metastasis through regulating OXPHOS. Oncogene 40, 3548–3563 (2021). https://doi.org/10.1038/s41388-021-01785-7

    Article  CAS  PubMed  Google Scholar 

  17. H.J. Kim, P. Maiti, A. Barrientos, Mitochondrial ribosomes in cancer. Semin. Cancer Biol 47, 67–81 (2017). https://doi.org/10.1016/j.semcancer.2017.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. V.R. Fantin, J. St-Pierre, P. Leder, Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell. 9, 425–434 (2006). https://doi.org/10.1016/j.ccr.2006.04.023

    Article  CAS  PubMed  Google Scholar 

  19. R. Moreno-Sánchez, S. Rodríguez-Enríquez, A. Marín-Hernández, E. Saavedra, Energy metabolism in tumor cells. FEBS J. 274, 1393–1418 (2007). https://doi.org/10.1111/j.1742-4658.2007.05686.x

    Article  CAS  PubMed  Google Scholar 

  20. M. Wu, A. Neilson, A.L. Swift, R. Moran, J. Tamagnine, D. Parslow, S. Armistead, K. Lemire, J. Orrell, J. Teich, S. Chomicz, D.A. Ferrick, Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am. J. Physiol. Cell. Physiol. 292, C125–C136 (2007). https://doi.org/10.1152/ajpcell.00247.2006

    Article  CAS  PubMed  Google Scholar 

  21. C.H. Chao, C.Y. Wang, C.H. Wang, T.W. Chen, H.Y. Hsu, H.W. Huang, C.W. Li, R.T. Mai, Mutant p53 attenuates oxidative phosphorylation and facilitates Cancer Stemness through Downregulating miR-200c-PCK2 Axis in basal-like breast Cancer. Mol. Cancer Res. 19, 1900–1916 (2021). https://doi.org/10.1158/1541-7786.Mcr-21-0098

    Article  CAS  PubMed  Google Scholar 

  22. A. Cruz-Bermúdez, R. Laza-Briviesca, R.J. Vicente-Blanco, A. García-Grande, M.J. Coronado, S. Laine-Menéndez, C. Alfaro, J.C. Sanchez, F. Franco, V. Calvo, A. Romero, P. Martin-Acosta, C. Salas, J.M. Garcia, M. Provencio, Cancer-associated fibroblasts modify lung cancer metabolism involving ROS and TGF-β signaling. Free Radic. Biol. Med 130, 163–173 (2019). https://doi.org/10.1016/j.freeradbiomed.2018.10.450

    Article  CAS  PubMed  Google Scholar 

  23. E. Reznik, M.L. Miller, Y. Şenbabaoğlu, N. Riaz, J. Sarungbam, S.K. Tickoo, H.A. Al-Ahmadie, W. Lee, V.E. Seshan, A.A. Hakimi, C. Sander, Mitochondrial DNA copy number variation across human cancers. Elife 5, (2016). https://doi.org/10.7554/eLife.10769

  24. E. Zacksenhaus, M. Shrestha, J.C. Liu, I. Vorobieva, P.E.D. Chung, Y. Ju, U. Nir, Z. Jiang, Mitochondrial OXPHOS Induced by RB1 Deficiency in breast Cancer: implications for anabolic metabolism, stemness, and Metastasis. Trends Cancer 3, 768–779 (2017). https://doi.org/10.1016/j.trecan.2017.09.002

    Article  CAS  PubMed  Google Scholar 

  25. M. Bajzikova, J. Kovarova, A.R. Coelho, S. Boukalova, S. Oh, K. Rohlenova, D. Svec, S. Hubackova, B. Endaya, K. Judasova, A. Bezawork-Geleta, K. Kluckova, L. Chatre, R. Zobalova, A. Novakova, K. Vanova, Z. Ezrova, G.J. Maghzal, S. Magalhaes Novais, M. Olsinova, L. Krobova, Y.J. An, E. Davidova, Z. Nahacka, M. Sobol, T. Cunha-Oliveira, C. Sandoval-Acuña, H. Strnad, T. Zhang, T. Huynh, T.L. Serafim, P. Hozak, V.A. Sardao, W.J.H. Koopman, M. Ricchetti, P.J. Oliveira, F. Kolar, M. Kubista, J. Truksa, K. Dvorakova-Hortova, K. Pacak, R. Gurlich, R. Stocker, Y. Zhou, M.V. Berridge, S. Park, L. Dong, J. Rohlena, J. Neuzil, Reactivation of Dihydroorotate dehydrogenase-driven pyrimidine biosynthesis restores Tumor Growth of respiration-deficient Cancer cells. Cell. Metab. 29, 399–416.e310 (2019). https://doi.org/10.1016/j.cmet.2018.10.014

    Article  CAS  PubMed  Google Scholar 

  26. S. Rao, L. Mondragón, B. Pranjic, T. Hanada, G. Stoll, T. Köcher, P. Zhang, A. Jais, A. Lercher, A. Bergthaler, D. Schramek, K. Haigh, V. Sica, M. Leduc, N. Modjtahedi, T.P. Pai, M. Onji, I. Uribesalgo, R. Hanada, I. Kozieradzki, R. Koglgruber, S.J. Cronin, Z. She, F. Quehenberger, H. Popper, L. Kenner, J.J. Haigh, O. Kepp, M. Rak, K. Cai, G. Kroemer, J.M. Penninger, AIF-regulated oxidative phosphorylation supports lung cancer development. Cell. Res. 29, 579–591 (2019). https://doi.org/10.1038/s41422-019-0181-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. C. Gao, Y. Shen, F. Jin, Y. Miao, X. Qiu, Cancer Stem cells in small cell Lung Cancer Cell Line H446: higher dependency on oxidative phosphorylation and mitochondrial substrate-level phosphorylation than Non-Stem Cancer cells. PLoS One 11, e0154576 (2016). https://doi.org/10.1371/journal.pone.0154576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. C. Wu, Y. Liu, W. Liu, T. Zou, S. Lu, C. Zhu, L. He, J. Chen, L. Fang, L. Zou, P. Wang, L. Fan, H. Wang, H. You, J. Chen, J.Y. Fang, C. Jiang, Y. Shi, NNMT-DNMT1 Axis is Essential for Maintaining Cancer Cell Sensitivity to Oxidative Phosphorylation Inhibition. Advanced science (Weinheim, Baden-Wurttemberg, Germany) 10, e2202642 (2022). https://doi.org/10.1002/advs.202202642

  29. K. Ishikawa, K. Takenaga, M. Akimoto, N. Koshikawa, A. Yamaguchi, H. Imanishi, K. Nakada, Y. Honma, J. Hayashi, ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science 320, 661–664 (2008). https://doi.org/10.1126/science.1156906

    Article  CAS  PubMed  Google Scholar 

  30. P. Sancho, E. Burgos-Ramos, A. Tavera, T. Bou Kheir, P. Jagust, M. Schoenhals, D. Barneda, K. Sellers, R. Campos-Olivas, O. Graña, C.R. Viera, M. Yuneva, B. Sainz Jr., C. Heeschen, MYC/PGC-1α balance determines the metabolic phenotype and plasticity of pancreatic Cancer stem cells. Cell. Metab. 22, 590–605 (2015). https://doi.org/10.1016/j.cmet.2015.08.015

    Article  CAS  PubMed  Google Scholar 

  31. S. Alcalá, P. Sancho, P. Martinelli, D. Navarro, C. Pedrero, L. Martín-Hijano, S. Valle, J. Earl, M. Rodríguez-Serrano, L. Ruiz-Cañas, K. Rojas, A. Carrato, L. García-Bermejo, M. Fernández-Moreno, P.C. Hermann, B. Sainz, Jr., ISG15 and ISGylation is required for pancreatic cancer stem cell mitophagy and metabolic plasticity. Nat. Commun. 11, 2682 (2020). https://doi.org/10.1038/s41467-020-16395-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. R.K. Nimmakayala, S. Rauth, R. Chirravuri Venkata, S. Marimuthu, P. Nallasamy, R. Vengoji, S.M. Lele, S. Rachagani, K. Mallya, M.P. Malafa, M.P. Ponnusamy, S.K. Batra, PGC1α-Mediated metabolic reprogramming drives the stemness of pancreatic precursor lesions. Clin. Cancer Res. 27, 5415–5429 (2021). https://doi.org/10.1158/1078-0432.Ccr-20-5020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. K.W. Evans, E. Yuca, S.S. Scott, M. Zhao, N. Paez Arango, C.X. Cruz Pico, T. Saridogan, M. Shariati, C.A. Class, C.A. Bristow, C.P. Vellano, X. Zheng, A.M. Gonzalez-Angulo, X. Su, C. Tapia, K. Chen, A. Akcakanat, B. Lim, D. Tripathy, T.A. Yap, M.E.D. Francesco, G.F. Draetta, P. Jones, T.P. Heffernan, J.R. Marszalek, and F. Meric-Bernstam, oxidative phosphorylation is a metabolic vulnerability in chemotherapy-resistant triple-negative breast Cancer. Cancer Res. 81, 5572–5581 (2021). https://doi.org/10.1158/0008-5472.Can-20-3242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Y. Hu, W. Xu, H. Zeng, Z. He, X. Lu, D. Zuo, G. Qin, W. Chen, OXPHOS-dependent metabolic reprogramming prompts metastatic potential of breast cancer cells under osteogenic differentiation. Br. J. Cancer 123, 1644–1655 (2020). https://doi.org/10.1038/s41416-020-01040-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. K.M. Lee, J.M. Giltnane, J.M. Balko, L.J. Schwarz, A.L. Guerrero-Zotano, K.E. Hutchinson, M.J. Nixon, M.V. Estrada, V. Sánchez, M.E. Sanders, T. Lee, H. Gómez, A. Lluch, J.A. Pérez-Fidalgo, M.M. Wolf, G. Andrejeva, J.C. Rathmell, S.W. Fesik, C.L. Arteaga, MYC and MCL1 cooperatively promote chemotherapy-resistant breast Cancer stem cells via regulation of mitochondrial oxidative phosphorylation. Cell. Metab. 26, 633–647.e637 (2017). https://doi.org/10.1016/j.cmet.2017.09.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. N. Schömel, L. Gruber, S.J. Alexopoulos, S. Trautmann, E.M. Olzomer, F.L. Byrne, K.L. Hoehn, R. Gurke, D. Thomas, N. Ferreirós, G. Geisslinger, M.S. Wegner, UGCG overexpression leads to increased glycolysis and increased oxidative phosphorylation of breast cancer cells. Sci. Rep. 10, 8182 (2020). https://doi.org/10.1038/s41598-020-65182-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. T. Li, J. Han, L. Jia, X. Hu, L. Chen, Y. Wang, PKM2 coordinates glycolysis with mitochondrial fusion and oxidative phosphorylation. Protein Cell. 10, 583–594 (2019). https://doi.org/10.1007/s13238-019-0618-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. C.L. Chen, S.C. Hsu, T.Y. Chung, C.Y. Chu, H.J. Wang, P.W. Hsiao, S.D. Yeh, D.K. Ann, Y. Yen, H.J. Kung, Arginine is an epigenetic regulator targeting TEAD4 to modulate OXPHOS in prostate cancer cells. Nat. Commun. 12, 2398 (2021). https://doi.org/10.1038/s41467-021-22652-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. D.B. Rivadeneira, M.C. Caino, J.H. Seo, A. Angelin, D.C. Wallace, L.R. Languino, D.C. Altieri, Survivin promotes oxidative phosphorylation, subcellular mitochondrial repositioning, and tumor cell invasion. Sci. Signal. 8, ra80 (2015). https://doi.org/10.1126/scisignal.aab1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Y. Yang, J. He, B. Zhang, Z. Zhang, G. Jia, S. Liu, T. Wu, X. He, N. Wang, SLC25A1 promotes tumor growth and survival by reprogramming energy metabolism in colorectal cancer. Cell. Death Dis. 12, 1108 (2021). https://doi.org/10.1038/s41419-021-04411-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. C. Ge, Y. Wang, Y. Feng, S. Wang, K. Zhang, X. Xu, Z. Zhang, Y. Zhao, Y. Wang, L. Gao, F. Dai, S. Xie, C. Wang, Suppression of oxidative phosphorylation and IDH2 sensitizes colorectal cancer to a naphthalimide derivative and mitoxantrone. Cancer Lett. 519, 30–45 (2021). https://doi.org/10.1016/j.canlet.2021.06.015

    Article  CAS  PubMed  Google Scholar 

  42. J. Zhao, Y. Wang, Y. Wang, J. Gao, H. Yang, X. Wu, H. Li, Transcription Factor FXR Activates DHRS9 to Inhibit the Cell Oxidative Phosphorylation and Suppress Colon Cancer Progression. Anal. Cell. Pathol. (Amst.) 2022, 8275574 (2022). https://doi.org/10.1155/2022/8275574

  43. N.M. Anderson, X. Qin, J.M. Finan, A. Lam, J. Athoe, R. Missiaen, N. Skuli, A. Kennedy, A.S. Saini, T. Tao, S. Zhu, I. Nissim, A.T. Look, G. Qing, M.C. Simon, H. Feng, Metabolic enzyme DLST promotes Tumor Aggression and reveals a vulnerability to OXPHOS Inhibition in High-Risk Neuroblastoma. Cancer Res. 81, 4417–4430 (2021). https://doi.org/10.1158/0008-5472.Can-20-2153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. C. Raggi, M.L. Taddei, E. Sacco, N. Navari, M. Correnti, B. Piombanti, M. Pastore, C. Campani, E. Pranzini, J. Iorio, G. Lori, T. Lottini, C. Peano, J. Cibella, M. Lewinska, J.B. Andersen, L. di Tommaso, L. Viganò, G. Di Maira, S. Madiai, M. Ramazzotti, I. Orlandi, A. Arcangeli, P. Chiarugi, F. Marra, Mitochondrial oxidative metabolism contributes to a cancer stem cell phenotype in cholangiocarcinoma. J. Hepatol. 74, 1373–1385 (2021). https://doi.org/10.1016/j.jhep.2020.12.031

    Article  CAS  PubMed  Google Scholar 

  45. A. Vyas, R.A. Harbison, D.L. Faden, M. Kubik, D. Palmer, Q. Zhang, H.U. Osmanbeyoglu, K. Kiselyov, E. Méndez, U. Duvvuri, Recurrent human papillomavirus-related Head and Neck Cancer undergoes metabolic reprogramming and is driven by oxidative phosphorylation. Clin. Cancer Res. 27, 6250–6264 (2021). https://doi.org/10.1158/1078-0432.Ccr-20-4789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. X. Zhang, Y. Dong, M. Zhao, L. Ding, X. Yang, Y. Jing, Y. Song, S. Chen, Q. Hu, Y. Ni, ITGB2-mediated metabolic switch in CAFs promotes OSCC proliferation by oxidation of NADH in mitochondrial oxidative phosphorylation system. Theranostics 10, 12044–12059 (2020). https://doi.org/10.7150/thno.47901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. G.M. Fischer, A. Jalali, D.A. Kircher, W.C. Lee, J.L. McQuade, L.E. Haydu, A.Y. Joon, A. Reuben, M.P. de Macedo, F.C.L. Carapeto, C. Yang, A. Srivastava, C.R. Ambati, A. Sreekumar, C.W. Hudgens, B. Knighton, W. Deng, S.D. Ferguson, H.A. Tawbi, I.C. Glitza, J.E. Gershenwald, Y.N. Vashisht Gopal, P. Hwu, J.T. Huse, J.A. Wargo, P.A. Futreal, N. Putluri, A.J. Lazar, R.J. DeBerardinis, J.R. Marszalek, J. Zhang, S.L. Holmen, M.T. Tetzlaff, M.A. Davies, Molecular Profiling reveals Unique Immune and metabolic features of Melanoma Brain Metastases. Cancer Discov 9, 628–645 (2019). https://doi.org/10.1158/2159-8290.Cd-18-1489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Y. Yang, G. Zhang, F. Guo, Q. Li, H. Luo, Y. Shu, Y. Shen, J. Gan, L. Xu, H. Yang, Mitochondrial UQCC3 modulates Hypoxia Adaptation by orchestrating OXPHOS and glycolysis in Hepatocellular Carcinoma. Cell. Rep. 33, 108340 (2020). https://doi.org/10.1016/j.celrep.2020.108340

    Article  CAS  PubMed  Google Scholar 

  49. J.L. Tan, F. Li, J.Z. Yeo, K.J. Yong, M.A. Bassal, G.H. Ng, M.Y. Lee, C.Y. Leong, H.K. Tan, C.S. Wu, B.H. Liu, T.H. Chan, Z.H. Tan, Y.S. Chan, S. Wang, Z.H. Lim, T.B. Toh, L. Hooi, K.N. Low, S. Ma, N.R. Kong, A.J. Stein, Y. Wu, M.T. Thangavelu, A. Suzuki, G. Periyasamy, J.M. Asara, Y.Y. Dan, G.K. Bonney, E.K. Chow, G.D. Lu, H.H. Ng, Y. Kanagasundaram, S.B. Ng, W.L. Tam, D.G. Tenen, and L. Chai, New High-Throughput Screening identifies Compounds that reduce viability specifically in Liver Cancer cells that express high levels of SALL4 by inhibiting oxidative phosphorylation. Gastroenterology 157, 1615–1629.e1617 (2019). https://doi.org/10.1053/j.gastro.2019.08.022

    Article  CAS  PubMed  Google Scholar 

  50. T. La, S. Chen, T. Guo, X.H. Zhao, L. Teng, D. Li, M. Carnell, Y.Y. Zhang, Y.C. Feng, N. Cole, A.C. Brown, D. Zhang, Q. Dong, J.Y. Wang, H. Cao, T. Liu, R.F. Thorne, F.M. Shao, X.D. Zhang, L. Jin, Visualization of endogenous p27 and Ki67 reveals the importance of a c-Myc-driven metabolic switch in promoting survival of quiescent cancer cells. Theranostics 11, 9605–9622 (2021). https://doi.org/10.7150/thno.63763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. A. Salhi, A.C. Jordan, I.I. Bochaca, A. Izsak, F. Darvishian, Y. Houvras, K.M. Giles, I. Osman, Oxidative Phosphorylation Promotes Primary Melanoma Invasion. Am. J. Pathol 190, 1108–1117 (2020). https://doi.org/10.1016/j.ajpath.2020.01.012

    Article  CAS  PubMed  Google Scholar 

  52. G. Gentric, Y. Kieffer, V. Mieulet, O. Goundiam, C. Bonneau, F. Nemati, I. Hurbain, G. Raposo, T. Popova, M.H. Stern, V. Lallemand-Breitenbach, S. Müller, T. Cañeque, R. Rodriguez, A. Vincent-Salomon, H. de Thé, R. Rossignol, F. Mechta-Grigoriou, PML-Regulated mitochondrial metabolism enhances Chemosensitivity in Human ovarian cancers. Cell. Metab. 29, 156–173.e110 (2019). https://doi.org/10.1016/j.cmet.2018.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. S. Sriramkumar, R. Sood, T.D. Huntington, A.H. Ghobashi, T.T. Vuong, T.X. Metcalfe, W. Wang, K.P. Nephew, and H.M. O’Hagan, Platinum-induced mitochondrial OXPHOS contributes to cancer stem cell enrichment in ovarian cancer. J. Transl Med. 20, 246 (2022). https://doi.org/10.1186/s12967-022-03447-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Y. Huang, Y. Du, Y. Zheng, C. Wen, H. Zou, J. Huang, H. Zhou, H. Zhao, L. Wu, Ct-OATP1B3 promotes high-grade serous ovarian cancer metastasis by regulation of fatty acid beta-oxidation and oxidative phosphorylation. Cell. Death Dis. 13, 556 (2022). https://doi.org/10.1038/s41419-022-05014-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. H.J. Choi, Y.L. Jhe, J. Kim, J.Y. Lim, J.E. Lee, M.K. Shin, J.H. Cheong, FoxM1-dependent and fatty acid oxidation-mediated ROS modulation is a cell-intrinsic drug resistance mechanism in cancer stem-like cells. Redox Biol. 36, 101589 (2020). https://doi.org/10.1016/j.redox.2020.101589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. K. Birkenmeier, S. Dröse, I. Wittig, R. Winkelmann, V. Käfer, C. Döring, S. Hartmann, T. Wenz, A.S. Reichert, U. Brandt, M.L. Hansmann, Hodgkin and Reed-Sternberg cells of classical Hodgkin lymphoma are highly dependent on oxidative phosphorylation. Int. J. Cancer 138, 2231–2246 (2016). https://doi.org/10.1002/ijc.29934

    Article  CAS  PubMed  Google Scholar 

  57. E.D. Lagadinou, A. Sach, K. Callahan, R.M. Rossi, S.J. Neering, M. Minhajuddin, J.M. Ashton, S. Pei, V. Grose, K.M. O’Dwyer, J.L. Liesveld, P.S. Brookes, M.W. Becker, C.T. Jordan, BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell. Stem Cell. 12, 329–341 (2013). https://doi.org/10.1016/j.stem.2012.12.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. G. Petrella, G. Ciufolini, R. Vago, D.O. Cicero, The interplay between oxidative phosphorylation and glycolysis as a potential marker of bladder Cancer progression. Int. J. Mol. Sci. 21, (2020). https://doi.org/10.3390/ijms21218107

  59. L. Huang, Y. Xie, W. Han, S. Jiang, L. Zeng, Oxidative Phosphorylation-Related Signature Participates in Cancer Development, and PTPRG Overexpression Suppresses the Cancer Progression in Clear Cell Renal Cell Carcinoma. J Immunol Res 2022, 8300187 (2022). https://doi.org/10.1155/2022/8300187

  60. J. van den Ameele, A.H. Brand, Neural stem cell temporal patterning and brain tumour growth rely on oxidative phosphorylation. Elife 8, (2019). https://doi.org/10.7554/eLife.47887

  61. C.L. Chen, C.Y. Lin, H.J. Kung, Targeting mitochondrial OXPHOS and their Regulatory signals in prostate cancers. Int. J. Mol. Sci. 22, (2021). https://doi.org/10.3390/ijms222413435

  62. P.J. Fernandez-Marcos, J. Auwerx, Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis. Am. J. Clin. Nutr. 93, 884s–890 (2011). https://doi.org/10.3945/ajcn.110.001917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. R.P. Kumar, S. Ray, P. Home, B. Saha, B. Bhattacharya, H.M. Wilkins, H. Chavan, A. Ganguly, J. Milano-Foster, A. Paul, P. Krishnamurthy, R.H. Swerdlow, S. Paul, Regulation of energy metabolism during early mammalian development: TEAD4 controls mitochondrial transcription. Development 145, (2018). https://doi.org/10.1242/dev.162644

  64. J. Liang, R. Cao, X. Wang, Y. Zhang, P. Wang, H. Gao, C. Li, F. Yang, R. Zeng, P. Wei, D. Li, W. Li, W. Yang, Mitochondrial PKM2 regulates oxidative stress-induced apoptosis by stabilizing Bcl2. Cell. Res. 27, 329–351 (2017). https://doi.org/10.1038/cr.2016.159

    Article  CAS  PubMed  Google Scholar 

  65. C.L. Jones, B.M. Stevens, A. D’Alessandro, J.A. Reisz, R. Culp-Hill, T. Nemkov, S. Pei, N. Khan, B. Adane, H. Ye, A. Krug, D. Reinhold, C. Smith, J. DeGregori, D.A. Pollyea, C.T. Jordan, Inhibition of amino acid metabolism selectively targets human leukemia stem cells. Cancer Cell. 34, 724–740.e724 (2018). https://doi.org/10.1016/j.ccell.2018.10.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. P. Kaur, S. Nagar, M. Bhagwat, M. Uddin, Y. Zhu, I. Vancurova, A. Vancura, Activated heme synthesis regulates glycolysis and oxidative metabolism in breast and ovarian cancer cells. PLoS One 16, e0260400 (2021). https://doi.org/10.1371/journal.pone.0260400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Y. Sugiyama, Y. Hagiya, M. Nakajima, M. Ishizuka, T. Tanaka, S. Ogura, The heme precursor 5-aminolevulinic acid disrupts the Warburg effect in tumor cells and induces caspase-dependent apoptosis. Oncol. Rep. 31, 1282–1286 (2014). https://doi.org/10.3892/or.2013.2945

    Article  CAS  PubMed  Google Scholar 

  68. R. Filograna, M. Mennuni, D. Alsina, N.G. Larsson, Mitochondrial DNA copy number in human disease: the more the better? FEBS Lett. 595, 976–1002 (2021). https://doi.org/10.1002/1873-3468.14021

    Article  CAS  PubMed  Google Scholar 

  69. M. Brandon, P. Baldi, D.C. Wallace, Mitochondrial mutations in cancer. Oncogene 25, 4647–4662 (2006). https://doi.org/10.1038/sj.onc.1209607

    Article  CAS  PubMed  Google Scholar 

  70. J.B. Nunes, J. Peixoto, P. Soares, V. Maximo, S. Carvalho, S.S. Pinho, A.F. Vieira, J. Paredes, A.C. Rego, I.L. Ferreira, M. Gomez-Lazaro, M. Sobrinho-Simoes, K.K. Singh, J. Lima, OXPHOS dysfunction regulates integrin-β1 modifications and enhances cell motility and migration. Hum. Mol. Genet. 24, 1977–1990 (2015). https://doi.org/10.1093/hmg/ddu612

    Article  CAS  PubMed  Google Scholar 

  71. D. Grasso, L.X. Zampieri, T. Capelôa, J.A. Van de Velde, P. Sonveaux, Mitochondria in cancer. Cell Stress 4, 114–146 (2020). https://doi.org/10.15698/cst2020.06.221

    Article  CAS  PubMed  Google Scholar 

  72. A.S. Tan, J.W. Baty, L.F. Dong, A. Bezawork-Geleta, B. Endaya, J. Goodwin, M. Bajzikova, J. Kovarova, M. Peterka, B. Yan, E.A. Pesdar, M. Sobol, A. Filimonenko, S. Stuart, M. Vondrusova, K. Kluckova, K. Sachaphibulkij, J. Rohlena, P. Hozak, J. Truksa, D. Eccles, L.M. Haupt, L.R. Griffiths, J. Neuzil, M.V. Berridge, Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell. Metab. 21, 81–94 (2015). https://doi.org/10.1016/j.cmet.2014.12.003

    Article  CAS  PubMed  Google Scholar 

  73. L. Ippolito, A. Morandi, M.L. Taddei, M. Parri, G. Comito, A. Iscaro, M.R. Raspollini, F. Magherini, E. Rapizzi, J. Masquelier, G.G. Muccioli, P. Sonveaux, P. Chiarugi, E. Giannoni, Cancer-associated fibroblasts promote prostate cancer malignancy via metabolic rewiring and mitochondrial transfer. Oncogene 38, 5339–5355 (2019). https://doi.org/10.1038/s41388-019-0805-7

    Article  CAS  PubMed  Google Scholar 

  74. J.L. Spees, S.D. Olson, M.J. Whitney, D.J. Prockop, Mitochondrial transfer between cells can rescue aerobic respiration. Proc. Natl. Acad. Sci. U. S. A. 103, 1283–1288 (2006). https://doi.org/10.1073/pnas.0510511103

  75. L.F. Dong, J. Kovarova, M. Bajzikova, A. Bezawork-Geleta, D. Svec, B. Endaya, K. Sachaphibulkij, A.R. Coelho, N. Sebkova, A. Ruzickova, A.S. Tan, K. Kluckova, K. Judasova, K. Zamecnikova, Z. Rychtarcikova, V. Gopalan, L. Andera, M. Sobol, B. Yan, B. Pattnaik, N. Bhatraju, J. Truksa, P. Stopka, P. Hozak, A.K. Lam, R. Sedlacek, P.J. Oliveira, M. Kubista, A. Agrawal, K. Dvorakova-Hortova, J. Rohlena, M.V. Berridge, J. Neuzil, Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells. Elife 6, (2017). https://doi.org/10.7554/eLife.22187

  76. D. Torralba, F. Baixauli, F. Sánchez-Madrid, Mitochondria Know No Boundaries: mechanisms and functions of intercellular mitochondrial transfer. Front. Cell. Dev. Biol. 4, 107 (2016). https://doi.org/10.3389/fcell.2016.00107

    Article  PubMed  PubMed Central  Google Scholar 

  77. D.C. Wallace, Mitochondria and cancer. Nat. Rev. Cancer 12, 685–698 (2012). https://doi.org/10.1038/nrc3365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. P. Dey, A. Kundu, R. Sachan, J.H. Park, M.Y. Ahn, K. Yoon, J. Lee, N.D. Kim, I.S. Kim, B.M. Lee, H.S. Kim, PKM2 Knockdown induces autophagic cell death via AKT/mTOR pathway in human prostate Cancer cells. Cell. Physiol. Biochem. 52, 1535–1552 (2019). https://doi.org/10.33594/000000107

    Article  CAS  PubMed  Google Scholar 

  79. L. de Bari, L. Moro, S. Passarella, Prostate cancer cells metabolize d-lactate inside mitochondria via a D-lactate dehydrogenase which is more active and highly expressed than in normal cells. FEBS Lett. 587, 467–473 (2013). https://doi.org/10.1016/j.febslet.2013.01.011

    Article  CAS  PubMed  Google Scholar 

  80. Q. Liu, Y. Sun, Z. Fei, Z. Yang, K. Duan, J. Zi, Q. Cui, M. Yu, W. Xiong, Leptin promotes fatty acid oxidation and OXPHOS via the c-Myc/PGC-1 pathway in cancer cells. Acta Biochim. Biophys. Sin (Shanghai) 51, 707–714 (2019). https://doi.org/10.1093/abbs/gmz058

    Article  CAS  PubMed  Google Scholar 

  81. B.N. Whitley, E.A. Engelhart, S. Hoppins, Mitochondrial dynamics and their potential as a therapeutic target. Mitochondrion 49, 269–283 (2019). https://doi.org/10.1016/j.mito.2019.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. F. Bonnay, A. Veloso, V. Steinmann, T. Köcher, M.D. Abdusselamoglu, S. Bajaj, E. Rivelles, L. Landskron, H. Esterbauer, R.P. Zinzen, J.A. Knoblich, Oxidative metabolism drives immortalization of neural stem cells during tumorigenesis. Cell 182, 1490–1507.e1419 (2020). https://doi.org/10.1016/j.cell.2020.07.039

    Article  CAS  PubMed  Google Scholar 

  83. K. Saito, Q. Zhang, H. Yang, K. Yamatani, T. Ai, V. Ruvolo, N. Baran, T. Cai, H. Ma, R. Jacamo, V. Kuruvilla, J. Imoto, S. Kinjo, K. Ikeo, K. Moriya, K. Suzuki, T. Miida, Y.M. Kim, C.P. Vellano, M. Andreeff, J.R. Marszalek, Y. Tabe, M. Konopleva, Exogenous mitochondrial transfer and endogenous mitochondrial fission facilitate AML resistance to OxPhos inhibition. Blood Adv. 5, 4233–4255 (2021). https://doi.org/10.1182/bloodadvances.2020003661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. S. Maertin, J.M. Elperin, E. Lotshaw, M. Sendler, S.D. Speakman, K. Takakura, B.M. Reicher, O.A. Mareninova, P.J. Grippo, J. Mayerle, M.M. Lerch, A.S. Gukovskaya, Roles of autophagy and metabolism in pancreatic cancer cell adaptation to environmental challenges. Am. J. Physiol. Gastrointest. Liver Physiol. 313, G524–Gg536 (2017). https://doi.org/10.1152/ajpgi.00138.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. J. Franco, U. Balaji, E. Freinkman, A.K. Witkiewicz, E.S. Knudsen, Metabolic reprogramming of pancreatic Cancer mediated by CDK4/6 inhibition elicits unique vulnerabilities. Cell. Rep. 32, 107793 (2020). https://doi.org/10.1016/j.celrep.2020.107793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. S. Kitajima, E. Ivanova, S. Guo, R. Yoshida, M. Campisi, S.K. Sundararaman, S. Tange, Y. Mitsuishi, T.C. Thai, S. Masuda, B.P. Piel, L.M. Sholl, P.T. Kirschmeier, C.P. Paweletz, H. Watanabe, M. Yajima, D.A. Barbie, Suppression of STING Associated with LKB1 loss in KRAS-Driven Lung Cancer. Cancer Discov 9, 34–45 (2019). https://doi.org/10.1158/2159-8290.Cd-18-0689

    Article  CAS  PubMed  Google Scholar 

  87. G. Wang, J. Xu, J. Zhao, W. Yin, D. Liu, W. Chen, S.X. Hou, Arf1-mediated lipid metabolism sustains cancer cells and its ablation induces anti-tumor immune responses in mice. Nat. Commun. 11, 220 (2020). https://doi.org/10.1038/s41467-019-14046-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. N. Jiang, B. Xie, W. Xiao, M. Fan, S. Xu, Y. Duan, Y. Hamsafar, A.C. Evans, J. Huang, W. Zhou, X. Lin, N. Ye, S. Wanggou, W. Chen, D. Jing, R.C. Fragoso, B.N. Dugger, P.F. Wilson, M.A. Coleman, S. Xia, X. Li, L.Q. Sun, A.M. Monjazeb, A. Wang, W.J. Murphy, H.J. Kung, K.S. Lam, H.W. Chen, J.J. Li, Fatty acid oxidation fuels glioblastoma radioresistance with CD47-mediated immune evasion. Nat. Commun. 13, 1511 (2022). https://doi.org/10.1038/s41467-022-29137-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. J. Li, Y. Ye, Z. Liu, G. Zhang, H. Dai, J. Li, B. Zhou, Y. Li, Q. Zhao, J. Huang, J. Feng, S. Liu, P. Ruan, J. Wang, J. Liu, M. Huang, X. Liu, S. Yu, Z. Liang, L. Ma, X. Gou, G. Zhang, N. Chen, Y. Lu, C. Di, Q. Xia, J. Pan, R. Feng, Q. Cai, S. Su, Macrophage mitochondrial fission improves cancer cell phagocytosis induced by therapeutic antibodies and is impaired by glutamine competition. Nat. cancer 3, 453–470 (2022). https://doi.org/10.1038/s43018-022-00354-5

    Article  CAS  PubMed  Google Scholar 

  90. P.S. Minhas, L. Liu, P.K. Moon, A.U. Joshi, C. Dove, S. Mhatre, K. Contrepois, Q. Wang, B.A. Lee, M. Coronado, D. Bernstein, M.P. Snyder, M. Migaud, R. Majeti, D. Mochly-Rosen, J.D. Rabinowitz, K.I. Andreasson, Macrophage de novo NAD(+) synthesis specifies immune function in aging and inflammation. Nat. Immunol. 20, 50–63 (2019). https://doi.org/10.1038/s41590-018-0255-3

    Article  CAS  PubMed  Google Scholar 

  91. J.M. Weiss, L.C. Davies, M. Karwan, L. Ileva, M.K. Ozaki, R.Y. Cheng, L.A. Ridnour, C.M. Annunziata, D.A. Wink, D.W. McVicar, Itaconic acid mediates crosstalk between macrophage metabolism and peritoneal tumors. J. Clin. Invest. 128, 3794–3805 (2018). https://doi.org/10.1172/jci99169

    Article  PubMed  PubMed Central  Google Scholar 

  92. C. Liu, M. Chikina, R. Deshpande, A.V. Menk, T. Wang, T. Tabib, E.A. Brunazzi, K.M. Vignali, M. Sun, D.B. Stolz, R.A. Lafyatis, W. Chen, G.M. Delgoffe, C.J. Workman, S.G. Wendell, D.A.A. Vignali, Treg cells promote the SREBP1-Dependent metabolic fitness of Tumor-Promoting macrophages via repression of CD8(+) T cell-derived Interferon-γ. Immunity 51, 381–397.e386 (2019). https://doi.org/10.1016/j.immuni.2019.06.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Y. Wang, F. Wang, L. Wang, S. Qiu, Y. Yao, C. Yan, X. Xiong, X. Chen, Q. Ji, J. Cao, G. Gao, D. Li, L. Zhang, Z. Guo, R. Wang, H. Wang, G. Fan, NAD(+) supplement potentiates tumor-killing function by rescuing defective TUB-mediated NAMPT transcription in tumor-infiltrated T cells. Cell. Rep. 36, 109516 (2021). https://doi.org/10.1016/j.celrep.2021.109516

    Article  CAS  PubMed  Google Scholar 

  94. B. Bengsch, A.L. Johnson, M. Kurachi, P.M. Odorizzi, K.E. Pauken, J. Attanasio, E. Stelekati, L.M. McLane, M.A. Paley, G.M. Delgoffe, E.J. Wherry, Bioenergetic insufficiencies due to metabolic alterations regulated by the inhibitory receptor PD-1 are an early driver of CD8(+) T cell exhaustion. Immunity 45, 358–373 (2016). https://doi.org/10.1016/j.immuni.2016.07.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. X. Zheng, Y. Qian, B. Fu, D. Jiao, Y. Jiang, P. Chen, Y. Shen, H. Zhang, R. Sun, Z. Tian, H. Wei, Mitochondrial fragmentation limits NK cell-based tumor immunosurveillance. Nat. Immunol. 20, 1656–1667 (2019). https://doi.org/10.1038/s41590-019-0511-1

    Article  CAS  PubMed  Google Scholar 

  96. X. Michelet, L. Dyck, A. Hogan, R.M. Loftus, D. Duquette, K. Wei, S. Beyaz, A. Tavakkoli, C. Foley, R. Donnelly, C. O’Farrelly, M. Raverdeau, A. Vernon, W. Pettee, D. O’Shea, B.S. Nikolajczyk, K.H.G. Mills, M.B. Brenner, D. Finlay, L. Lynch, Metabolic reprogramming of natural killer cells in obesity limits antitumor responses. Nat. Immunol. 19, 1330–1340 (2018). https://doi.org/10.1038/s41590-018-0251-7

    Article  CAS  PubMed  Google Scholar 

  97. H. Dong, N.M. Adams, Y. Xu, J. Cao, D.S.J. Allan, J.R. Carlyle, X. Chen, J.C. Sun, L.H. Glimcher, The IRE1 endoplasmic reticulum stress sensor activates natural killer cell immunity in part by regulating c-Myc. Nat. Immunol. 20, 865–878. https://doi.org/10.1038/s41590-019-0388-z

  98. F. Hossain, A.A. Al-Khami, D. Wyczechowska, C. Hernandez, L. Zheng, K. Reiss, L.D. Valle, J. Trillo-Tinoco, T. Maj, W. Zou, P.C. Rodriguez, A.C. Ochoa, Inhibition of fatty acid oxidation modulates immunosuppressive functions of myeloid-derived suppressor cells and enhances Cancer Therapies. Cancer Immunol. Res. 3, 1236–1247 (2015). https://doi.org/10.1158/2326-6066.Cir-15-0036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. C. Xu, S. Sun, T. Johnson, R. Qi, S. Zhang, J. Zhang, K. Yang, The glutathione peroxidase Gpx4 prevents lipid peroxidation and ferroptosis to sustain Treg cell activation and suppression of antitumor immunity. Cell. Rep. 35, 109235 (2021). https://doi.org/10.1016/j.celrep.2021.109235

    Article  CAS  PubMed  Google Scholar 

  100. G. Ercolano, A. Gomez-Cadena, N. Dumauthioz, G. Vanoni, M. Kreutzfeldt, T. Wyss, L. Michalik, R. Loyon, A. Ianaro, P.C. Ho, C. Borg, M. Kopf, D. Merkler, P. Krebs, P. Romero, S. Trabanelli, and C. Jandus, PPARɣ drives IL-33-dependent ILC2 pro-tumoral functions. Nat. Commun. 12, 2538 (2021). https://doi.org/10.1038/s41467-021-22764-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. T. Saha, C. Dash, R. Jayabalan, S. Khiste, A. Kulkarni, K. Kurmi, J. Mondal, P.K. Majumder, A. Bardia, H.L. Jang, S. Sengupta, Intercellular nanotubes mediate mitochondrial trafficking between cancer and immune cells. Nat. Nanotechnol 17, 98–106 (2022). https://doi.org/10.1038/s41565-021-01000-4

    Article  CAS  PubMed  Google Scholar 

  102. N.A. Bonekamp, B. Peter, H.S. Hillen, A. Felser, T. Bergbrede, A. Choidas, M. Horn, A. Unger, R. Di Lucrezia, I. Atanassov, X. Li, U. Koch, S. Menninger, J. Boros, P. Habenberger, P. Giavalisco, P. Cramer, M.S. Denzel, P. Nussbaumer, B. Klebl, M. Falkenberg, C.M. Gustafsson, N.G. Larsson, Small-molecule inhibitors of human mitochondrial DNA transcription. Nature 588, 712–716 (2020). https://doi.org/10.1038/s41586-020-03048-z

    Article  CAS  PubMed  Google Scholar 

  103. L. Testai, A. Martelli, L. Flori, A.F.G. Cicero, A. Colletti, Coenzyme Q(10): clinical applications beyond Cardiovascular Diseases. Nutrients 13, (2021). https://doi.org/10.3390/nu13051697

  104. J.J. Shen, Y.C. Zhan, H.Y. Li, Z. Wang, Ouabain impairs cancer metabolism and activates AMPK-Src signaling pathway in human cancer cell lines. Acta Pharmacol. Sin 41, 110–118 (2020). https://doi.org/10.1038/s41401-019-0290-0

    Article  CAS  PubMed  Google Scholar 

  105. Q. Zhou, H. Li, Y. Li, M. Tan, S. Fan, C. Cao, F. Meng, L. Zhu, L. Zhao, M.X. Guan, H. Jin, Y. Sun, Inhibiting neddylation modification alters mitochondrial morphology and reprograms energy metabolism in cancer cells. JCI Insight 4, (2019). https://doi.org/10.1172/jci.insight.121582

  106. S. Rodríguez-Enríquez, S.C. Pacheco-Velázquez, Á Marín-Hernández, J.C. Gallardo-Pérez, D.X. Robledo-Cadena, I. Hernández-Reséndiz, J.D. García-García, J. Belmont-Díaz, R. López-Marure, L. Hernández-Esquivel, R. Sánchez-Thomas, and R. Moreno-Sánchez, Resveratrol inhibits cancer cell proliferation by impairing oxidative phosphorylation and inducing oxidative stress. Toxicol. Appl. Pharmacol. 370, 65–77 (2019). https://doi.org/10.1016/j.taap.2019.03.008

    Article  CAS  PubMed  Google Scholar 

  107. V. Chen, R.E. Staub, S. Fong, M. Tagliaferri, I. Cohen, E. Shtivelman, Bezielle selectively targets mitochondria of cancer cells to inhibit glycolysis and OXPHOS. PLoS One 7, e30300 (2012). https://doi.org/10.1371/journal.pone.0030300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. M.H. Cheng, H.L. Huang, Y.Y. Lin, K.H. Tsui, P.C. Chen, S.Y. Cheng, I.W. Chong, P.J. Sung, M.H. Tai, Z.H. Wen, N.F. Chen, H.M. Kuo, BA6 Induces Apoptosis via Stimulation of Reactive Oxygen Species and Inhibition of Oxidative Phosphorylation in Human Lung Cancer Cells. Oxid. Med. Cell. Longev. 2019, 6342104 (2019). https://doi.org/10.1155/2019/6342104

  109. A.M. Stevens, M. Xiang, L.N. Heppler, I. Tošić, K. Jiang, J.O. Munoz, A.S. Gaikwad, T.M. Horton, X. Long, P. Narayanan, E.L. Seashore, M.C. Terrell, R. Rashid, M.J. Krueger, A.E. Mangubat-Medina, Z.T. Ball, P. Sumazin, S.R. Walker, Y. Hamada, S. Oyadomari, M.S. Redell, D.A. Frank, Atovaquone is active against AML by upregulating the integrated stress pathway and suppressing oxidative phosphorylation. Blood Adv. 3, 4215–4227 (2019). https://doi.org/10.1182/bloodadvances.2019000499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. D. Xue, Y. Xu, A. Kyani, J. Roy, L. Dai, D. Sun, N. Neamati, Discovery and lead optimization of Benzene-1,4-disulfonamides as oxidative phosphorylation inhibitors. J. Med. Chem. 65, 343–368 (2022). https://doi.org/10.1021/acs.jmedchem.1c01509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. J.S. Lee, H. Lee, H. Jang, S.M. Woo, J.B. Park, S.H. Lee, J.H. Kang, H.Y. Kim, J. Song, S.Y. Kim, Targeting oxidative phosphorylation reverses Drug Resistance in Cancer cells by blocking Autophagy Recycling. Cells 9, (2020). https://doi.org/10.3390/cells9092013

  112. K. Kuramoto, M. Yamamoto, S. Suzuki, T. Sanomachi, K. Togashi, S. Seino, C. Kitanaka, M. Okada, Verteporfin inhibits oxidative phosphorylation and induces cell death specifically in glioma stem cells. FEBS J. 287, 2023–2036 (2020). https://doi.org/10.1111/febs.15187

    Article  CAS  PubMed  Google Scholar 

  113. S. Thakur, B. Daley, K. Gaskins, V.V. Vasko, M. Boufraqech, D. Patel, C. Sourbier, J. Reece, S.Y. Cheng, E. Kebebew, S. Agarwal, J. Klubo-Gwiezdzinska, Metformin Targets Mitochondrial Glycerophosphate Dehydrogenase to Control Rate of Oxidative Phosphorylation and Growth of Thyroid Cancer In Vitro and In Vivo. Clin. Cancer. Res. 24, 4030–4043 (2018). https://doi.org/10.1158/1078-0432.Ccr-17-3167

  114. V. Pasquale, G. Ducci, G. Campioni, A. Ventrici, C. Assalini, S. Busti, M. Vanoni, R. Vago, E. Sacco, Profiling and targeting of Energy and Redox Metabolism in Grade 2 bladder Cancer cells with different Invasiveness Properties. Cells 9, (2020). https://doi.org/10.3390/cells9122669

  115. Y. Liu, Y. Sun, Y. Guo, X. Shi, X. Chen, W. Feng, L.L. Wu, J. Zhang, S. Yu, Y. Wang and Y. Shi, An Overview: The Diversified Role of Mitochondria in Cancer Metabolism. Int. J. Biol. Sci. 19, 897-915 (2023). https://doi.org/10.7150/ijbs.81609

  116. P.V. Raninga, A. Lee, D. Sinha, L.F. Dong, K.K. Datta, X. Lu, P. Kalita-de Croft, M. Dutt, M. Hill, N. Pouliot, H. Gowda, M. Kalimutho, J. Neuzil, K.K. Khanna, Marizomib suppresses triple-negative breast cancer via proteasome and oxidative phosphorylation inhibition. Theranostics 10, 5259–5275 (2020). https://doi.org/10.7150/thno.42705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. C. Zhang, T. Liu, P. Luo, L. Gao, X. Liao, L. Ma, Z. Jiang, D. Liu, Z. Yang, Q. Jiang, Y. Wang, X. Tan, S. Luo, Y. Wang, C. Shi, Near-infrared oxidative phosphorylation inhibitor integrates acute myeloid leukemia-targeted imaging and therapy. Sci. Adv. 7, (2021). https://doi.org/10.1126/sciadv.abb6104

  118. Y. Shi, S.K. Lim, Q. Liang, S.V. Iyer, H.Y. Wang, Z. Wang, X. Xie, D. Sun, Y.J. Chen, V. Tabar, P. Gutin, N. Williams, J.K. De Brabander, L.F. Parada, Gboxin is an oxidative phosphorylation inhibitor that targets glioblastoma. Nature 567, 341–346 (2019). https://doi.org/10.1038/s41586-019-0993-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. J.R. Molina, Y. Sun, M. Protopopova, S. Gera, M. Bandi, C. Bristow, T. McAfoos, P. Morlacchi, J. Ackroyd, A.A. Agip, G. Al-Atrash, J. Asara, J. Bardenhagen, C.C. Carrillo, C. Carroll, E. Chang, S. Ciurea, J.B. Cross, B. Czako, A. Deem, N. Daver, J.F. de Groot, J.W. Dong, N. Feng, G. Gao, J. Gay, M.G. Do, J. Greer, V. Giuliani, J. Han, L. Han, V.K. Henry, J. Hirst, S. Huang, Y. Jiang, Z. Kang, T. Khor, S. Konoplev, Y.H. Lin, G. Liu, A. Lodi, T. Lofton, H. Ma, M. Mahendra, P. Matre, R. Mullinax, M. Peoples, A. Petrocchi, J. Rodriguez-Canale, R. Serreli, T. Shi, M. Smith, Y. Tabe, J. Theroff, S. Tiziani, Q. Xu, Q. Zhang, F. Muller, R.A. DePinho, C. Toniatti, G.F. Draetta, T.P. Heffernan, M. Konopleva, P. Jones, M.E. Di Francesco and J.R. Marszalek, an inhibitor of oxidative phosphorylation exploits cancer vulnerability. Nat. Med. 24, 1036–1046 (2018). https://doi.org/10.1038/s41591-018-0052-4

    Article  CAS  PubMed  Google Scholar 

  120. M. Quintela-Fandino, S. Morales, A. Cortés-Salgado, L. Manso, J.V. Apala, M. Muñoz, A. Gasol Cudos, J. Salla Fortuny, M. Gion, A. Lopez-Alonso, J. Cortés, J. Guerra, D. Malón, E. Caleiras, F. Mulero, S. Mouron, Randomized phase 0/I trial of the mitochondrial inhibitor ME-344 or placebo added to Bevacizumab in Early HER2-Negative breast Cancer. Clinical cancer research: an official journal of the American Association for Cancer Research 26, 35–45. https://doi.org/10.1158/1078-0432.CCR-19-2023

  121. L. Zhang, J. Zhang, Z. Ye, Y. Manevich, L.E. Ball, J.R. Bethard, Y.-L. Jiang, A.-M. Broome, A.C. Dalton, G.Y. Wang, D.M. Townsend, K.D. Tew, Isoflavone ME-344 disrupts Redox Homeostasis and mitochondrial Function by Targeting Heme Oxygenase 1. Cancer Res. 79, 4072–4085. https://doi.org/10.1158/0008-5472.CAN-18-3503

  122. J.L. Carter, K. Hege, H.A. Kalpage, H. Edwards, M. Hüttemann, J.W. Taub, Y. Ge, Targeting mitochondrial respiration for the treatment of acute myeloid leukemia. Biochem. Pharmacol. 182, 114253. https://doi.org/10.1016/j.bcp.2020.114253

  123. J. Zhang, L. Yan, P. Wei, R. Zhou, C. Hua, M. Xiao, Y. Tu, Z. Gu, T. Wei, PEG-GO@XN nanocomposite suppresses breast cancer metastasis via inhibition of mitochondrial oxidative phosphorylation and blockade of epithelial-to-mesenchymal transition. Eur. J. Pharmacol. 895, 173866 (2021). https://doi.org/10.1016/j.ejphar.2021.173866

    Article  CAS  PubMed  Google Scholar 

  124. G.A. Vitiello, B.D. Medina, S. Zeng, T.G. Bowler, J.Q. Zhang, J.K. Loo, N.J. Param, M. Liu, A.J. Moral, J.N. Zhao, F. Rossi, C.R. Antonescu, V.P. Balachandran, J.R. Cross, R.P. DeMatteo, Mitochondrial inhibition augments the efficacy of Imatinib by resetting the metabolic phenotype of gastrointestinal stromal tumor. Clin. Cancer Res. 24, 972–984 (2018). https://doi.org/10.1158/1078-0432.Ccr-17-2697

    Article  CAS  PubMed  Google Scholar 

  125. A.W. Jakobsson, S. Kundu, J. Guo, A. Chowdhury, M. Zhao, E. Lindell, P. Bergsten, F.J. Swartling, T. Sjöblom, X. Zhang, Iron Chelator VLX600 inhibits mitochondrial respiration and promotes sensitization of Neuroblastoma cells in Nutrition-Restricted conditions. Cancers (Basel) 14, (2022). https://doi.org/10.3390/cancers14133225

  126. X. Zhang, M. Fryknäs, E. Hernlund, W. Fayad, A. De Milito, M.H. Olofsson, V. Gogvadze, L. Dang, S. Påhlman, L.A. Schughart, L. Rickardson, P. D’Arcy, J. Gullbo, P. Nygren, R. Larsson, S. Linder, Induction of mitochondrial dysfunction as a strategy for targeting tumour cells in metabolically compromised microenvironments. Nat. Commun. 5, 3295 (2014). https://doi.org/10.1038/ncomms4295

    Article  CAS  PubMed  Google Scholar 

  127. F. Basit, L.M. van Oppen, L. Schöckel, H.M. Bossenbroek, S.E. van Emst-de, J.C. Vries, S. Hermeling, C. Grefte, M. Kopitz, P. Heroult, Hgm Willems, W.J. Koopman, Mitochondrial complex I inhibition triggers a mitophagy-dependent ROS increase leading to necroptosis and ferroptosis in melanoma cells. Cell. Death Dis. 8, e2716 (2017). https://doi.org/10.1038/cddis.2017.133

  128. P. Ellinghaus, I. Heisler, K. Unterschemmann, M. Haerter, H. Beck, S. Greschat, A. Ehrmann, H. Summer, I. Flamme, F. Oehme, K. Thierauch, M. Michels, H. Hess-Stumpp, K. Ziegelbauer, BAY 87-2243, a highly potent and selective inhibitor of hypoxia-induced gene activation has antitumor activities by inhibition of mitochondrial complex I. Cancer Med. 2, 611–624 (2013). https://doi.org/10.1002/cam4.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. R.J. Kishton, M. Sukumar, N.P. Restifo, Metabolic regulation of T cell longevity and function in Tumor Immunotherapy. Cell. Metab. 26, 94–109 (2017). https://doi.org/10.1016/j.cmet.2017.06.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. I. Hamaidi, L. Zhang, N. Kim, M.H. Wang, C. Iclozan, B. Fang, M. Liu, J.M. Koomen, A.E. Berglund, S.J. Yoder, J. Yao, R.W. Engelman, B.C. Creelan, J.R. Conejo-Garcia, S.J. Antonia, J.J. Mulé, S. Kim, Sirt2 inhibition enhances metabolic fitness and effector functions of Tumor-Reactive T cells. Cell. Metab. 32, 420–436.e412 (2020). https://doi.org/10.1016/j.cmet.2020.07.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. M. Luo, H. Wang, Z. Wang, H. Cai, Z. Lu, Y. Li, M. Du, G. Huang, C. Wang, X. Chen, M.R. Porembka, J. Lea, A.E. Frankel, Y.X. Fu, Z.J. Chen, J. Gao, A STING-activating nanovaccine for cancer immunotherapy. Nat. Nanotechnol 12, 648–654 (2017). https://doi.org/10.1038/nnano.2017.52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. L. Guerra, L. Bonetti, D. Brenner, Metabolic modulation of immunity: a New Concept in Cancer Immunotherapy. Cell. Rep. 32, 107848 (2020). https://doi.org/10.1016/j.celrep.2020.107848

    Article  CAS  PubMed  Google Scholar 

  133. R.I. Klein Geltink, J. Edwards-Hicks, P. Apostolova, D. O’Sullivan, D.E. Sanin, A.E. Patterson, D.J. Puleston, N.A.M. Ligthart, J.M. Buescher, K.M. Grzes, A.M. Kabat, M. Stanczak, J.D. Curtis, F. Hässler, F.M. Uhl, M. Fabri, R. Zeiser, E.J. Pearce, E.L. Pearce, Metabolic conditioning of CD8(+) effector T cells for adoptive cell therapy. Nat. Metab. 2, 703–716 (2020). https://doi.org/10.1038/s42255-020-0256-z

    Article  CAS  PubMed  Google Scholar 

  134. O.U. Kawalekar, R.S. O’Connor, J.A. Fraietta, L. Guo, S.E. McGettigan, A.D. Posey Jr., P.R. Patel, S. Guedan, J. Scholler, B. Keith, N.W. Snyder, I.A. Blair, M.C. Milone, C.H. June, Distinct signaling of Coreceptors regulates specific metabolism pathways and impacts Memory Development in CAR T cells. Immunity 44, 380–390 (2016). https://doi.org/10.1016/j.immuni.2016.01.021

    Article  CAS  PubMed  Google Scholar 

  135. W. Li, S. Qiu, J. Chen, S. Jiang, W. Chen, J. Jiang, F. Wang, W. Si, Y. Shu, P. Wei, G. Fan, R. Tian, H. Wu, C. Xu, H. Wang, Chimeric Antigen receptor designed to prevent ubiquitination and downregulation showed durable Antitumor Efficacy. Immunity 53, 456–470.e456 (2020). https://doi.org/10.1016/j.immuni.2020.07.011

    Article  CAS  PubMed  Google Scholar 

  136. D. Alizadeh, R.A. Wong, X. Yang, D. Wang, J.R. Pecoraro, C.F. Kuo, B. Aguilar, Y. Qi, D.K. Ann, R. Starr, R. Urak, X. Wang, S.J. Forman, C.E. Brown, IL15 enhances CAR-T cell antitumor activity by reducing mTORC1 activity and preserving their stem cell memory phenotype. Cancer Immunol. Res. 7, 759–772 (2019). https://doi.org/10.1158/2326-6066.Cir-18-0466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. C.R. Funk, S. Wang, K.Z. Chen, A. Waller, A. Sharma, C.L. Edgar, V.A. Gupta, S. Chandrakasan, J.T. Zoine, A. Fedanov, S.S. Raikar, J.L. Koff, C.R. Flowers, S. Coma, J.A. Pachter, S. Ravindranathan, H.T. Spencer, M. Shanmugam, E.K. Waller, PI3Kδ/γ inhibition promotes human CART cell epigenetic and metabolic reprogramming to enhance antitumor cytotoxicity. Blood 139, 523–537 (2022). https://doi.org/10.1182/blood.2021011597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. V. Verma, N. Jafarzadeh, S. Boi, S. Kundu, Z. Jiang, Y. Fan, J. Lopez, R. Nandre, P. Zeng, F. Alolaqi, S. Ahmad, P. Gaur, S.T. Barry, V.E. Valge-Archer, P.D. Smith, J. Banchereau, M. Mkrtichyan, B. Youngblood, P.C. Rodriguez, S. Gupta, S.N. Khleif, MEK inhibition reprograms CD8(+) T lymphocytes into memory stem cells with potent antitumor effects. Nat. Immunol. 22, 53–66 (2021). https://doi.org/10.1038/s41590-020-00818-9

    Article  CAS  PubMed  Google Scholar 

  139. D. Chen, H.B. Barsoumian, G. Fischer, L. Yang, V. Verma, A.I. Younes, Y. Hu, F. Masropour, K. Klein, C. Vellano, J. Marszalek, M. Davies, M.A. Cortez, J. Welsh, Combination treatment with radiotherapy and a novel oxidative phosphorylation inhibitor overcomes PD-1 resistance and enhances antitumor immunity. J. Immunother Cancer 8, (2020). https://doi.org/10.1136/jitc-2019-000289

  140. D.S. Vinay, E.P. Ryan, G. Pawelec, W.H. Talib, J. Stagg, E. Elkord, T. Lichtor, W.K. Decker, R.L. Whelan, H. Kumara, E. Signori, K. Honoki, A.G. Georgakilas, A. Amin, W.G. Helferich, C.S. Boosani, G. Guha, M.R. Ciriolo, S. Chen, S.I. Mohammed, A.S. Azmi, W.N. Keith, A. Bilsland, D. Bhakta, D. Halicka, H. Fujii, K. Aquilano, S.S. Ashraf, S. Nowsheen, X. Yang, B.K. Choi, B.S. Kwon, Immune evasion in cancer: mechanistic basis and therapeutic strategies. Semin. Cancer Biol 35(Suppl), 185–s198 (2015). https://doi.org/10.1016/j.semcancer.2015.03.004

    Article  CAS  Google Scholar 

  141. P. Jin, J. Jiang, L. Zhou, Z. Huang, E.C. Nice, C. Huang, L. Fu, Mitochondrial adaptation in cancer drug resistance: prevalence, mechanisms, and management. J. Hematol. Oncol. 15, 97 (2022). https://doi.org/10.1186/s13045-022-01313-4

    Article  PubMed  PubMed Central  Google Scholar 

  142. H. Tian, B. Zhang, L. Li, G. Wang, H. Li, J. Zheng, Manipulation of mitochondrial plasticity changes the metabolic competition between “Foe” and “Friend” during Tumor Malignant Transformation. Front. Oncol. 10, 1692 (2020). https://doi.org/10.3389/fonc.2020.01692

    Article  PubMed  PubMed Central  Google Scholar 

  143. J. Han, M. Won, J.H. Kim, E. Jung, K. Min, P. Jangili, J.S. Kim, Cancer stem cell-targeted bio-imaging and chemotherapeutic perspective. Chem. Soc. Rev. 49, 7856–7878 (2020). https://doi.org/10.1039/d0cs00379d

    Article  CAS  PubMed  Google Scholar 

  144. R.A. Burrell, N. McGranahan, J. Bartek, C. Swanton, The causes and consequences of genetic heterogeneity in cancer evolution. Nature 501, 338–345 (2013). https://doi.org/10.1038/nature12625

    Article  CAS  PubMed  Google Scholar 

  145. S. Turajlic, A. Sottoriva, T. Graham, C. Swanton, Resolving genetic heterogeneity in cancer. Nat. Rev. Genet. 20, 404–416 (2019). https://doi.org/10.1038/s41576-019-0114-6

    Article  CAS  PubMed  Google Scholar 

  146. I. Vitale, E. Shema, S. Loi, L. Galluzzi, Intratumoral heterogeneity in cancer progression and response to immunotherapy. Nat. Med. 27, 212–224 (2021). https://doi.org/10.1038/s41591-021-01233-9

    Article  CAS  PubMed  Google Scholar 

  147. V. Sica, J.M. Bravo-San Pedro, G. Stoll, G. Kroemer, Oxidative phosphorylation as a potential therapeutic target for cancer therapy. Int. J. Cancer 146, 10–17 (2020). https://doi.org/10.1002/ijc.32616

    Article  CAS  PubMed  Google Scholar 

  148. T.A. Yap, N. Daver, M. Mahendra, J. Zhang, C. Kamiya-Matsuoka, F. Meric-Bernstam, H.M. Kantarjian, F. Ravandi, M.E. Collins, M.E.D. Francesco, E.E. Dumbrava, S. Fu, S. Gao, J.P. Gay, S. Gera, J. Han, D.S. Hong, E.J. Jabbour, Z. Ju, D.D. Karp, A. Lodi, J.R. Molina, N. Baran, A. Naing, M. Ohanian, S. Pant, N. Pemmaraju, P. Bose, S.A. Piha-Paul, J. Rodon, C. Salguero, K. Sasaki, A.K. Singh, V. Subbiah, A.M. Tsimberidou, Q.A. Xu, M. Yilmaz, Q. Zhang, Y. Li, C.A. Bristow, M.B. Bhattacharjee, S. Tiziani, T.P. Heffernan, C.P. Vellano, P. Jones, C.J. Heijnen, A. Kavelaars, J.R. Marszalek, M. Konopleva, Complex I inhibitor of oxidative phosphorylation in advanced solid tumors and acute myeloid leukemia: phase I trials. Nat. Med. 29, 115–126 (2023). https://doi.org/10.1038/s41591-022-02103-8

    Article  CAS  PubMed  Google Scholar 

  149. X. Zhang, C.V. Dang, Time to hit pause on mitochondria-targeting cancer therapies. Nat. Med. 29, 29–30 (2023). https://doi.org/10.1038/s41591-022-02129-y

    Article  CAS  PubMed  Google Scholar 

  150. F. Janku, P. LoRusso, A.S. Mansfield, R. Nanda, A. Spira, T. Wang, A. Melhem-Bertrandt, J. Sugg, H.A. Ball, First-in-human evaluation of the novel mitochondrial complex I inhibitor ASP4132 for treatment of cancer. Invest. New. Drugs 39, 1348–1356 (2021). https://doi.org/10.1007/s10637-021-01112-7

    Article  CAS  PubMed  Google Scholar 

  151. Y. Xu, D. Xue, A. Bankhead, 3rd and N. Neamati, Why all the fuss about oxidative phosphorylation (OXPHOS)? J. Med. Chem. 63, 14276–14307 (2020). https://doi.org/10.1021/acs.jmedchem.0c01013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. K. DePeaux, G.M. Delgoffe, Metabolic barriers to cancer immunotherapy. Nat. Rev. Immunol. 21, 785–797 (2021). https://doi.org/10.1038/s41577-021-00541-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. K.C. Kao, S. Vilbois, C.H. Tsai, P.C. Ho, Metabolic communication in the tumour-immune microenvironment. Nat. Cell. Biol. (2022). https://doi.org/10.1038/s41556-022-01002-x

    Article  PubMed  Google Scholar 

  154. P. Ghosh, C. Vidal, S. Dey, L. Zhang, Mitochondria Targeting as an effective strategy for Cancer Therapy. Int. J. Mol. Sci. 21, (2020). https://doi.org/10.3390/ijms21093363

  155. X.T. Le, J. Lee, N.T. Nguyen, W.T. Lee, E.S. Lee, K.T. Oh, H.G. Choi, B.S. Shin, Y.S. Youn, Combined phototherapy with metabolic reprogramming-targeted albumin nanoparticles for treating breast cancer. Biomaterials Sci. 10, 7117–7132 (2022). https://doi.org/10.1039/d2bm01281b

    Article  CAS  Google Scholar 

  156. X. Lei, K. Li, Y. Liu, Z.Y. Wang, B.J. Ruan, L. Wang, A. Xiang, D. Wu, Z. Lu, Co-delivery nanocarriers targeting folate receptor and encapsulating 2-deoxyglucose and α-tocopheryl succinate enhance anti-tumor effect in vivo. Int. J. Nanomed 12, 5701–5715 (2017). https://doi.org/10.2147/ijn.S135849

    Article  CAS  Google Scholar 

Download references

Funding

Open Access funding enabled and organized by Projekt DEAL. This work was financially supported by the National Natural Science Foundation of China (Grant No. 82103460 and No. 81972546), the Fundamental Research Funds for Central Universities.

Author information

Authors and Affiliations

Authors

Contributions

X.T.Q: Writing - Original Draft; Y.L: Writing - Reviewing & Editing; Z.Y.Z: Conceptualization, Writing - Reviewing & Editing.

Corresponding author

Correspondence to Zhuoyuan Zhang.

Ethics declarations

Ethics approval

No potential ethical issues were disclosed.

Conflict of interest

No potential conflicts of interest were disclosed.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, X., Li, Y. & Zhang, Z. Crosstalk between oxidative phosphorylation and immune escape in cancer: a new concept of therapeutic targets selection. Cell Oncol. 46, 847–865 (2023). https://doi.org/10.1007/s13402-023-00801-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-023-00801-0

Keywords

Navigation