Skip to main content

Advertisement

Log in

Molecular mechanisms underlining the role of metformin as a therapeutic agent in lung cancer

  • Review
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

Metformin, a first-line therapeutic for type 2 diabetes, has been studied for its potential use in cancer treatment following a number of epidemiological studies that have demonstrated reduced cancer incidence and mortality rates among patients treated with the drug. As yet, however, there remains significant uncertainty about the molecular mechanisms by which metformin exerts its anti-cancer effects. Herein, we summarize the evidence surrounding the anti-lung cancer effects of metformin.

Conclusions

Specifically, we explore protein targets of metformin, including AMPK, PP2A, IRF-1/YAP and HGF and we outline the proposed mechanisms of action for metformin in lung cancer, with particular attention given to apoptosis and autophagy. We also closely examine the synergistic activity of metformin with existing cancer treatment regimens, such as TKI’s, platinum-based agents and immune therapeutics. In addition to considering preclinical and clinical studies, we also dissect and contextualize the limitations and inconsistencies of the current literature, especially those of epidemiological studies. Finally, we offer a potential trajectory for future research in this rapidly evolving area of basic and clinical oncology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Z. Luo, W. Wu, C. Wang, M. Li, Metformin promotes survivin degradation through AMPK / PKA / GSK - 3 β ‐ axis in non – small cell lung cancer. J. Cell. Biochem. (2019). https://doi.org/10.1002/jcb.28470

  2. M. Pawałowska, A. Markowska, The influence of metformin in the etiology of selected cancers. Contemp. Oncol. 16, 223–229 (2012)

    Google Scholar 

  3. A. DeCensi, M. Puntoni, P. Goodwin, M. Cazzaniga, A. Gennari, B. Bonanni, S. Gandini, Metformin and cancer risk in diabetic patients: a systematic review and meta-analysis. Cancer Prev. Res.3, 1451–1461 (2010)

    CAS  Google Scholar 

  4. J. Evans, L. Donnelly, A. Emslie-Smith, D. Alessi, A. Morris, Metformin and reduced risk of cancer in diabetic patients. BMJ 330, 1304–1305 (2005)

    PubMed  PubMed Central  Google Scholar 

  5. G. Landman, N. Kleefstra, K. van Hateren, K. Groenier, R. Gans, H. Bilo, Metformin associated with lower cancer mortality in type 2 diabetes: ZODIAC-16. Diabetes Care 33, 322–326 (2010)

    CAS  PubMed  Google Scholar 

  6. B.J. Quinn, H. Kitagawa, R.M. Memmott, J.J. Gills, P.A. Dennis, Repositioning metformin for cancer prevention and treatment. Trends Endocrinol. Metab. 24, 469–480 (2013)

    CAS  PubMed  Google Scholar 

  7. M. C. Bradley, A. Ferrara, N.Achacoso, S. F. Ehrlich, C. P. Quesenberry, L. A. Habel, A cohort study ofmetformin and colorectal cancer risk among patients with diabetes mellitus.Cancer Epidemiol. Biomarkers Prev. 27, 525 LP–530 (2018)

  8. Y.-L. Tang, L.-Y. Zhu, Y. Li, J. Yu, J. Wang, X.-X. Zeng, K.-X. Hu, J.-Y. Liu, J.-X. Xu, Metformin use is associated with reduced incidence and improved survival of endometrial cancer: A meta-analysis. Biomed Res. Int. 2017, 5905384 (2017)

  9. B.M. Heckman-Stoddard, A. DeCensi, V.V. Sahasrabuddhe, L.G. Ford, Repurposing metformin for the prevention of cancer and cancer recurrence. Diabetologia 60, 1639–1647 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  10. D. Chu, J. Wu, K. Wang, M. Zhao, C. Wang, L. Li, R. Guo, Effect of metformin use on the risk and prognosis of endometrial cancer: a systematic review and meta-analysis. BMC Cancer 18, 438 (2018)

    PubMed  PubMed Central  Google Scholar 

  11. D. Jin, J. Guo, D. Wang, Y. Wu, X. Wang, Y. Gao, C. Shao, X. Xu, S. Tan, The antineoplastic drug metformin downregulates YAP by interfering with IRF-1 binding to the YAP promoter in NSCLC. EBioMedicine 37, 188–204 (2018)

    PubMed  PubMed Central  Google Scholar 

  12. M. Yousef, E. Tsiani, Metformin in lung cancer: review of in vitro and in vivo animal studies. Cancers (Basel). 9, 1–16 (2017)

    Google Scholar 

  13. Y. Wang, B. Lin, J.U.N. Wu, H. Zhang, B.I.N. Wu, Metformin inhibits the proliferation of A549 / CDDP cells by activating p38 mitogen-activated protein kinase. Oncol. Lett. 8, 1269–1274 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Y.Q. Chen, G. Chen, Combined therapeutic effect and molecular mechanisms of metformin and cisplatin in human lung cancer xenografts in nude mice. J. Cancer Res. Ther. 11, 324–330 (2015)

    CAS  PubMed  Google Scholar 

  15. B. Bin Lee, Y. Kim, D. Kim, E. Yoon, C. Joungho, H. Kwan, K. Young, M. Shim, D. Hwan, Metformin and tenovin - 6 synergistically induces apoptosis through LKB1 ‐ independent SIRT1 down ‐ regulation in non ‐ small cell lung cancer cells. J. Cell. Mol. Med. 23, 2872–2889 (2019)

    Google Scholar 

  16. Y. Zhang, X. Feng, T. Li, E. Yi, Y. Li, Metformin synergistic pemetrexed suppresses non- small- cell lung cancer cell proliferation and invasion in vitro. Cancer Med. 6, 1965–1975 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Q. Guo, Z. Liu, L. Jiang, M. Liu, J. Ma, Metformin inhibits growth of human non – small cell lung cancer cells via liver kinase B-1-independent activation of adenosine monophosphate-activated protein kinase. Mol. Med. Rep. 13, 2590–2596 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Y. Storozhuk, S.N. Hopmans, T. Sanli, C. Barron, E. Tsiani, J. Cutz, G. Pond, J. Wright, G. Singh, T. Tsakiridis, Metformin inhibits growth and enhances radiation response of non-small cell lung cancer (NSCLC) through ATM and AMPK. Br. J. Cancer 108, 2021–2032 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  19. H. Ashinuma, Y. Takiguchi, S. Kitazono, M. Kitazono-saitoh, A. Kitamura, T. Chiba, Y. Tada, A. Iwama, O. Yokosuka, K. Tatsumi, Antiproliferative action of metformin in human lung cancer cell lines. Oncol. Rep. 28, 8–14 (2012)

    CAS  PubMed  Google Scholar 

  20. D.B. Shackelford, E. Abt, L. Gerken, D.S. Vasquez, A. Seki, M. Leblanc, L. Wei, M.C. Fishbein, J. Czernin, P.S. Mischel, R.J. Shaw, LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin. Cancer Cell 23, 143–158 (2014)

    Google Scholar 

  21. M. Moro, E. Caiola, M. Ganzinelli, E. Zulato, E. Rulli, M. Marabese, G. Centonze, A. Busico, U. Pastorino, F.G. De Braud, C. Vernieri, M. Simbolo, E. Bria, A. Scarpa, S. Indraccolo, M. Broggini, G. Sozzi, Garassino, metformin enhances cisplatin-induced apoptosis and prevents resistance to cisplatin in co-mutated KRAS/LKB1 NSCLC. J. Thorac. Oncol. 13, 1692–1704 (2018)

    PubMed  Google Scholar 

  22. F. Morgillo, F.C. Sasso, C. Maria, D. Corte, D. Vitagliano, E.D. Aiuto, T. Troiani, E. Martinelli, F. De Vita, M. Orditura, R. De Palma, Synergistic effects of metformin treatment in combination with gefitinib, a selective EGFR tyrosine kinase inhibitor, in LKB1 wild-type NSCLC cell lines. Cancer Ther. Preclin. 19, 3508–3520 (2013)

    CAS  Google Scholar 

  23. H. Cao, W. Dong, H. Shen, X. Jun, L. Zhu, Q. Liu, J. Du, Combinational therapy enhances the effects of anti-IGF-1R mAb figitumumab to target small cell lung cancer. PLoS One 10, 1–17 (2015)

    Google Scholar 

  24. H. Cao, W. Dong, H. Shen, X. Jun, L. Zhu, Q. Liu, J. Du, Metformin enhances the therapy effects of anti-IGF-1R mAb figitumumab to NSCLC. Sci. Rep. 6, 31072 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  25. R. Kurimoto, S. Iwasawa, T. Ebata, T. Ishiwata, I. Sekine, Y. Tada, K. Tatsumi, S. Koide, A. Iwama, Y. Takiguchi, Drug resistance originating from a TGF-β/FGF-2-driven epithelial-to-mesenchymal transition and its reversion in human lung adenocarcinoma cell lines harboring an EGFR mutation. Int. J. Oncol. 48, 1825–1836 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  26. J. Dong, H. Peng, X. Yang, W. Wu, Y. Zhao, D. Chen, L. Chen, J. Liu, Metformin mediated microRNA-7 upregulation inhibits growth, migration, and invasion of non-small cell lung cancer A549 cells. Anticancer Drugs 31, 345–352 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  27. B. Kefas, J. Godlewski, L. Comeau, Y. Li, R. Abounader, M. Hawkinson, E. Al, Microrna-7 inhibits the epidermal growth factor receptor and the akt pathway and is down-regulated in glioblastoma. Cancer Res. 68, 3566–3572 (2008)

    CAS  PubMed  Google Scholar 

  28. S. Xiong, Y. Zheng, P. Jiang, R. Liu, X. Liu, Y. Chu, Microrna-7 inhibits the growth of human non-small cell lung cancer A549 cells through targeting BCL-2. Int. J. Biol. Sci. 7, 805–814 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  29. X. Zhao, W. Dou, L. He, S. Liang, J. Tie, C. Liu, E. Al. Microrna-7 functions as an anti-metastatic microrna in gastric cancer by targeting insulin-like growth factor-1 receptor. Oncogene 32, 1363–1372 (2013)

    CAS  PubMed  Google Scholar 

  30. X. Zhou, S. Liu, X. Lin, L. Xu, X. Mao, J. Liu, Z. Zhang, W. Jiang, H. Zhou, Metformin inhibit lung cancer cell growth and invasion in vitro as well as tumor formation in vivo partially by activating PP2A. Med. Sci. Monit. 25, 836–846 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  31. D. Jin, J. Guo, Y. Wu, W. Chen, J. Du, L. Yang, X. Wang, K. Gong, J. Dai, S. Miao, X. Li, G. Su, Metformin-repressed miR-381-YAP-snail axis activity disrupts NSCLC growth and metastasis. J. Exp. Clin. Cancer Res. 39, 6 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Y. Xue, W. Xu, W. Zhao, W. Wang, D. Zhang, P. Wu, miR-381 inhibited breast cancer cells proliferation, epithelial-to-mesenchymal transition and metastasis by targeting CXCR4. Biomed. Pharmacother. 86, 426–433 (2017)

    CAS  PubMed  Google Scholar 

  33. G. Qiao, J. Li, J. Wang, Z. Wang, W. Bian, miR381 functions as a tumor suppressor by targeting ETS1 in pancreatic cancer. Int. J. Mol. Med. 44, 593–607 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  34. C. Liu, X. Tian, J. Zhang, L. Jiang, Long non-coding RNA DLEU1 promotes proliferation and invasion by interacting with miR-381 and enhancing HOXA13 expression in cervical Cancer. Front. Genet. 9, 629 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  35. B. Xia, H. Li, S. Yang, T. Liu, G. Lou, MiR-381 inhibits epithelial ovarian cancer malignancy via YY1 suppression. Tumour Biol. 37, 9157–9167 (2016)

    CAS  PubMed  Google Scholar 

  36. C. Birchmeier, W. Birchmeier, E. Gherardi, G.F. Vande Woude, Met, metastasis, motility and more. Nat. Rev. Mol. Cell Biol. 4, 915–925 (2003)

    CAS  PubMed  Google Scholar 

  37. A. Gentile, L. Trusolino, P. Comoglio, The Met tyrosine kinase receptor in development and cancer. Cancer Metastasis Rev. 27, 85–94 (2008)

    CAS  PubMed  Google Scholar 

  38. Y. Zhang, Y. Su, O. Volpert, G. Vande, Woude, Hepatocyte growth factor/scatter factor mediates angiogenesis through positive VEGF and negative thrombospondin 1 regulation. Proc. Natl. Acad. Sci. U.S.A. 100, 12718–12723 (2003)

  39. M. Olivero, M. Rizzo, R. Madeddu, C. Casadio, S. Pennacchietti, M. Nicotra, M. Prat, G. Maggi, N. Arena, P. Natali, P. Comoglio, M. Di Renzo, Overexpression and activation of hepatocyte growth factor/scatter factor in human non-small-cell lung carcinomas. Br. J. Cancer 74, 1862–1868 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  40. P. Ma, M. Tretiakova, A. MacKinnon, N. Ramnath, C. Johnson, S. Dietrich, T. Seiwert, J. Christensen, R. Jagadeeswaran, T. Krausz, E. Vokes, A. Husain, R. Salgia, Expression and mutational analysis of MET in human solid cancers. Genes Chromosom. Cancer 47, 1025–1037 (2008)

    CAS  PubMed  Google Scholar 

  41. J. Christensen, H. Zou, M. Arango, Q. Li, J. Lee, S. McDonnell, S. Yamazaki, G. Alton, B. Mroczkowski, G. Los, Cytoreductive antitumor activity of PF-2341066, a novel inhibitor of anaplastic lymphoma kinase and c-Met, in experimental models of anaplastic large-cell lymphoma. Mol. Cancer Ther. 6, 3314–3322 (2007)

    CAS  PubMed  Google Scholar 

  42. J. Christensen, J. Burrows, R. Salgia, c-Met as a target for human cancer and characterization of inhibitors for therapeutic intervention. Cancer Lett. 225, 1–26 (2005)

    CAS  PubMed  Google Scholar 

  43. J. Bean, C. Brennan, J.-Y. Shih, G. Riely, A. Viale, L. Wang, D. Chitale, N. Motoi, J. Szoke, S. Broderick, M. Balak, W.-C. Chang, C.-J. Yu, A. Gazdar, H. Pass, V. Rusch, W. Gerald, S.-F. Huang, P.-C. Yang, V. Miller, M. Ladanyi, C.-H. Yang, W. Pao, MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc. Natl. Acad. Sci. U.S.A. 104, 20932–20937 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  44. J. Engelman, K. Zejnullahu, T. Mitsudomi, Y. Song, C. Hyland, J. Park, N. Lindeman, C. Gale, X. Zhao, J. Christensen, T. Kosaka, A. Holmes, A. Rogers, F. Cappuzzo, T. Mok, C. Lee, B. Johnson, L. Cantley, P. Jänne, MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316, 1039–1043 (2007)

  45. J. Wu, J. Savooji, D. Liu, Second- and third- generation ALK inhibitors for non-small cell lung cancer. J. Hematol. Oncol. 9, 9–19 (2016)

    Google Scholar 

  46. S. Salvi, P.A. Canessa, M.P. Pistillo, P. Ferro et al., FISH analysis of crizotinib target genes ROS1/ALK/MET in malignant mesotheliom. J. Thorac. Oncol. 12, e116–e118 (2017)

    PubMed  Google Scholar 

  47. B.J. Solomon, T. Mok, D.-W. Kim, Y.-L. Wu, K. Nakagawa, T. Mekhail, E. Felip, F. Cappuzzo, J. Paolini, T. Usari, S. Iyer, A. Reisman, K.D. Wilner, J. Tursi, F. Blackhall, P. 1014 Investigators, First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N. Engl. J. Med. 371, 2167–2177 (2014)

  48. Y.-L. Wu, S. Lu, Y. Lu, J. Zhou, Y.-K. Shi, V. Sriuranpong, J.C.M. Ho, C.K. Ong, C.-M. Tsai, C.-H. Chung, K.D. Wilner, I. Tang, E.T. Masters, P. Selaru, T. S. Mok, Results of PROFILE 1029, a phase III comparison of first-line crizotinib versus chemotherapy in East Asian patients with ALK-positive advanced non-small cell lung cancer. J. Thorac. Oncol. 13, 1539–1548 (2018)

    PubMed  Google Scholar 

  49. S. Peters, D.R. Camidge, A.T. Shaw, S. Gadgeel, J.S. Ahn, D.-W. Kim, S.-H.I. Ou, M. Pérol, R. Dziadziuszko, R. Rosell, A. Zeaiter, E. Mitry, S. Golding, B. Balas, J. Noe, P.N. Morcos, T. Mok, ALEX Trial Investigators, Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung cancer. N. Engl. J. Med. 377, 829–838 (2017)

    CAS  PubMed  Google Scholar 

  50. L. Li, Y. Wang, T. Peng, K. Zhang, C. Lin, R. Han, C. Lu, Y. He, Metformin restores crizotinib sensitivity in crizotinib-resistant human lung cancer cells through inhibition of IGF1-R signaling pathway. Oncotarget 7, 34442–34452 (2016)

    PubMed  PubMed Central  Google Scholar 

  51. H. Chen, C. Lin, T. Peng, C. Hu, C. Lu, L. Li, Y. Wang, R. Han, M. Feng, F. Sun, Y. He, Metformin reduces HGF-induced resistance to alectinib via the inhibition of Gab1. Cell Death Dis. 11, 111 (2020)

  52. N. Wu, C. Gu, H. Gu, H. Hu, Y. Han, Q. Li, Metformin induces apoptosis of lung cancer cells through activating JNK / p38 MAPK pathway and GADD153. Neoplasma 58, 482–490 (2011)

    CAS  PubMed  Google Scholar 

  53. Y. Kang, W. Hsu, C. Wu, I. Hsin, P. Wu, Metformin alleviates nickel-induced autophagy and apoptosis via inhibition of hexokinase-2, activating lipocalin-2, in human bronchial epithelial cells. Oncotarget 8, 105536–105552 (2017)

    PubMed  PubMed Central  Google Scholar 

  54. H. Chen, C. Lin, C. Lu, Y. Wang, R. Han, L. Li, S. Hao, Y. He, Metformin-sensitized NSCLC cells to osimertinib via AMPK-dependent autophagy inhibition. Clin. Respir. J. 13, 781–790 (2019)

  55. Y.H. Pan, L. Jiao, C.Y. Lin, C.H. Lu, H.-Y. Chen, Y.B. Wang, Combined treatment with metformin and gefitinib overcomes primary resistance to EGFR-TKIs with EGFR mutation via targeting IGF-1R signaling pathway. Biologics 12, 75–86 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  56. H. Chen, Y. Wang, C. Lin, C. Lu, R. Han, L. Jiao, L. Li, Vorinostat and metformin sensitize EGFR-TKI resistant NSCLC cells via BIM-dependent apoptosis induction. Oncotarget 8, 93825–93838 (2017)

    PubMed  PubMed Central  Google Scholar 

  57. Z. Xiao, S. Gaertner, A. Morresi-hauf, R. Genzel, Metformin triggers autophagy to attenuate drug-induced apoptosis in NSCLC cells, with minor effects on tumors of diabetic patients. Neoplasia 19, 385–395 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  58. X. Wang, K. Chen, Y. Yu, Y. Xiang, J.H. Kim, W. Gong, J. Huang, G. Shi, Q. Li, M. Zhou, T. Sayers, P. Tewary, B. Gao, J.M. Wang, Metformin sensitizes lung cancer cells to treatment by the tyrosine kinase inhibitor erlotinib. Oncotarget 8, 109068–109078 (2017)

    PubMed  PubMed Central  Google Scholar 

  59. Y.H. Pan, H.Y. Chen, C.Y. Lin, C.H. Lu, Y.B. Wang, Metformin synergistically enhances the antitumor activity of the third-generation EGFR-TKI CO-1686 in lung cancer cells through suppressing NF‐κB signaling. Clin. Respir. J. 12, 2642–2652 (2018)

    CAS  PubMed  Google Scholar 

  60. M.A. Riaz, A. Sak, Y.B. Erol, M. Groneberg, J. Thomale, M. Stuschke, Metformin enhances the radiosensitizing effect of cisplatin in non-small cell lung cancer cell lines with different cisplatin sensitivities. Sci. Rep. 9, 1282 (2019)

    PubMed  PubMed Central  Google Scholar 

  61. Y. Liu, C. He, X. Huang, Metformin partially reverses the carboplatin-resistance in NSCLC by inhibiting glucose metabolism. Oncotarget 8, 75206–75216 (2017)

    PubMed  PubMed Central  Google Scholar 

  62. I. Vujic, M. Sanlorenzo, C. Posch, R. Esteve-puig, J. Yen, A. Kwong, A. Tsumura, R. Murphy, K. Rappersberger, S. Ortiz-urda, Metformin and trametinib have synergistic effects on cell viability and tumor growth in NRAS mutant cancer. Oncotarget 6, 969–978 (2014)

    PubMed Central  Google Scholar 

  63. X. Hou, T. Li, Z. Ren, Y. Liu, Combination of 2-deoxy D -glucose and metformin for synergistic inhibition of non-small cell lung cancer: A reactive oxygen species and P-p38 mediated mechanism. Biomed. Pharmacother. 84, 1575–1584 (2016)

    CAS  PubMed  Google Scholar 

  64. J.S. Yakisich, N. Azad, V. Kaushik, A.K.V. Iyer, The biguanides metformin and buformin in combination with 2-deoxy-glucose or WZB-117 inhibit the viability of highly resistant human lung cancer cells. Stem Cells Int. 2019, 6254269 (2019)

    PubMed  PubMed Central  Google Scholar 

  65. C. Yu, Y. Jiao, J. Xue, Q. Zhang, H. Yang, L. Xing, G. Chen, Metformin sensitizes non-small cell lung cancer cells to an epigallocatechin-3-Gallate (EGCG) treatment by suppressing the Nrf2 / HO-1 signaling pathway. Int. J. Biol. Sci. 13, 1560–1569 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  66. M.T. Do, H.G. Kim, T. Khanal, J.H. Choi, D.H. Kim, T.C. Jeong, H.G. Jeong, Metformin inhibits heme oxygenase-1 expression in cancer cells through inactivation of Raf-ERK-Nrf2 signaling and AMPK-independent pathways. Toxicol. Appl. Pharmacol. 271, 229–238 (2013)

    CAS  PubMed  Google Scholar 

  67. M.Z. Afzal, K. Dragnev, T. Sarwar, K. Shirai, Clinical outcomes in non-small-cell lung cancer patients receiving concurrent metformin and immune checkpoint inhibitors. Lung Cancer Manag. 8, LMT11 (2019)

  68. A. Freeman, M. Lesperance, E. Wai, N. Croteau, L. Fiorino, G. Geller, E. Brooks, Z. Poonja, D. Fenton, S. Irons, D. Ksienski, Treatment of non-small-cell lung cancer after progression on nivolumab or pembrolizumab. Curr. Oncol. 27, 76–82 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  69. N.J. Myall, M. Das, Advances in the treatment of stage III non-small cell lung cancer. Clin. Chest. Med. 41, 211–222 (2020)

    PubMed  Google Scholar 

  70. K. Onoi, Y. Chihara, J. Uchino, T. Shimamoto, Y. Morimoto, M. Iwasaku, Y. Kaneko, T. Yamada, K. Takayama, Immune checkpoint inhibitors for lung cancer treatment: a review. J. Clin. Med. 9, 1362 (2020)

    CAS  PubMed Central  Google Scholar 

  71. L. Paz-Ares, A. Spira, D. Raben, D. Planchard, B.C. Cho, M. Özgüroğlu, D. Daniel, A. Villegas, D. Vicente, R. Hui, S. Murakami, D. Spigel, S. Senan, C.J. Langer, B.A. Perez, A.-M. Boothman, H. Broadhurst, C. Wadsworth, Outcomes with durvalumab by tumour PD-L1 expression in unresectable, stage III non-small-cell lung cancer in the PACIFIC trial. Ann. Oncol. 31, 798–806 (2020)

    CAS  PubMed  Google Scholar 

  72. S. Eikawa, M. Nishida, S. Mizukami, C. Yamazaki, E. Nakayama, H. Udono, Immune-mediated antitumor effect by type 2 diabetes drug, metformin. Proc. Natl. Acad. Sci. U.S.A. 112, 1809 LP–1814 (2015)

  73. A. Levy, J. Doyen, Metformin for non-small cell lung cancer patients: Opportunities and pitfalls. Crit. Rev. Oncol. Hematol. 125, 41–47 (2018)

    PubMed  Google Scholar 

  74. K. Xiao, F. Liu, J. Liu, J. Xu, Q. Wu, X. Li, The effect of metformin on lung cancer risk and survival in patients with type 2 diabetes mellitus: A meta-analysis. J. Clin. Pharm. Ther. 00, 1–10 (2020)

    Google Scholar 

  75. C. Currie, C. Poole, S. Jenkins-Jones, E. Gale, J. Johnson, C. Morgan, Mortality after incident cancer in people with and without type 2 diabetes: impact of metformin on survival. Diabetes Care 35, 299–304 (2012)

    PubMed  PubMed Central  Google Scholar 

  76. O. Arrieta, E. Varela-Santoyo, E. Soto-Perez-de-Celis, R. Sanchez-Reyes, M. De la Torre-Vallejo, S. Muniz-Hernandez, A.F. Cardona, Metformin use and its effect on survival in diabetic patients with advanced non-small cell lung cancer. BMC Cancer 16, 633 (2016)

    PubMed  PubMed Central  Google Scholar 

  77. J. Lin, E. Gallagher, K. Sigel, G. Mhango, M. Galsky, C. Smith, E. Al, Survival of patients with stage IV lung cancer with diabetes treated with metformin. Am. J. Respir. Crit. Care Med. 191, 448–454 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  78. B. Tan, W. Yao, J. Ge, X. Peng, X. Du, R. Zhang, E. Al, Prognostic influence of metformin as first-line chemotherapy for advanced nonsmall cell lung cancer in patients with type 2 diabetes. Cancer 117, 5103–5111 (2011)

    CAS  PubMed  Google Scholar 

  79. H. Chen, W. Yao, Q. Chu, R. Han, Y. Wang, J. Sun, E. Al. Synergistic effects of metformin in combination with EGFR-TKI in the treatment of patients with advanced non-small cell lung cancer and type 2 diabetes. Cancer Lett. 369, 97–102 (2015)

    CAS  PubMed  Google Scholar 

  80. M.-S. Hung, M.-C. Chuang, Y.-C. Chen, C.-P. Lee, T.-M. Yang, P.-C. Chen, Y.-H. Tsai, Y.-H. Yang, Metformin prolongs survival in type 2 diabetes lung cancer patients with EGFR-TKIs. Integr. Cancer Ther. 18, 1534735419869491 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  81. K. Wink, J. Belderbos, E. Dieleman, M. Rossi, C. Rasch, R. Damhuis, Improved progression free survival for patients with diabetes and locally advanced non-small cell lung cancer (NSCLC) using metformin during concurrent chemoradiotherapy. Radiother. Oncol. 118, 453–459 (2016)

    PubMed  Google Scholar 

  82. I. Ahmed, A. Ferro, A. Cohler, J. Langenfeld, S. Surakanti, J. Aisner, E. Al., Impact of metformin use on survival in locally-advanced, inoperable non-small cell lung cancer treated with definitive chemoradiation. J. Thorac. Dis. 7, 346–355 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  83. B. Kowall, A. Stang, W. Rathmann, K. Kostev, No reduced risk of overall, colorectal, lung, breast, and prostate cancer with metformin therapy in diabetic patients: database analyses from Germany and the UK. Pharmacoepidemiol. Drug Saf. 24, 865–874 (2015)

    CAS  PubMed  Google Scholar 

  84. L. Li, L. Jiang, Y. Wang, Y. Zhao, X. Zhang, G. Wu, E. Al., Combination of metformin and gefitinib as first-line therapy for nondiabetic advanced NSCLC patients with EGFR mutations: a randomized, double-blind phase II trial . Clin. Cancer Res. 25, 6967–6975 (2019)

    PubMed  Google Scholar 

  85. O. Arrieta, F. Barron, M. Padilla, E. Al., Effect of metformin plus tyrosine kinase inhibitors compared with tyrosine kinase inhibitors alone in patients with epidermal growth factor receptor-mutated lund adenocarcinoma. JAMA Oncol. 5, e192553 (2019)

  86. S.G. Chun, Z. Liao, M.D. Jeter, J.Y. Chang, S.H. Lin, R.U. Komaki, T.M. Guerrero, R.C. Mayo, B.M. Korah, S.M. Koshy, J.V. Heymach, A.C. Koong, H.D. Skinner, Metabolic responses to metformin in inoperable early-stage non-small cell lung cancer treated with stereotactic radiotherapy: results of a randomized phase II clinical trial. Am. J. Clin. Oncol. 43, 231–235 (2020)

    CAS  PubMed  Google Scholar 

  87. A.B. Parikh, K.A. Marrone, D.J. Becker, J.R. Brahmer, D.S. Ettinger, B.P. Levy, A pooled analysis of two phase II trials evaluating metformin plus platinum-based chemotherapy in advanced non-small cell lung cancer. Cancer Treat. Res. Commun. 20, 100150 (2019)

    PubMed  Google Scholar 

  88. J. Wang, X. Zhizhen, Synergistic effect of phenformin in Non-Small Cell Lung Cancer (NSCLC) ionizing radiation treatment. Cell Biochem. Biophys. 71, 513–518 (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Fatehi Hassanabad.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethics

No cell lines or human tissues were used for this manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fatehi Hassanabad, A., MacQueen, K.T. Molecular mechanisms underlining the role of metformin as a therapeutic agent in lung cancer. Cell Oncol. 44, 1–18 (2021). https://doi.org/10.1007/s13402-020-00570-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-020-00570-0

Keywords

Navigation