Skip to main content

Advertisement

Log in

Chlorogenic acid inhibits hypoxia-induced angiogenesis via down-regulation of the HIF-1α/AKT pathway

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

The hypoxia-inducible factor-1 (HIF-1) is known to play an important role in cellular responses to hypoxia, including the transcriptional activation of a number of genes involved in tumor angiogenesis. Chlorogenic acid (CGA), one of the most abundant polyphenols in the human diet, has been reported to inhibit cancer cell growth. The effect of CGA on tumor angiogenesis and its underlying mechanisms are, as yet, unknown.

Methods

The effect of CGA on HIF-1α expression was assessed by Western blot and reverse transcriptase-polymerase chain reaction (RT-PCR) assays in A549 lung cancer cells. The transcriptional activity of the HIF-1 complex was confirmed using a luciferase assay. To assess whether angiogenic factors are increased under hypoxic conditions in these cells, vascular endothelial growth factor (VEGF) expression levels were measured by RT-PCR and Western blotting. The direct effect of CGA on human vascular endothelial cells (HUVEC) under hypoxic conditions was analyzed using in vitro assays, including tube-formation, wound healing and Transwell invasion assays. To investigate the effect of CGA on angiogenesis in vivo, we performed a Matrigel plug assay in a mouse model. Finally, the effect of CGA on AKT and ERK activation (phosphorylation) as a putative mechanism underlying the effect of CGA on VEGF-mediated angiogenesis inhibition was assessed using Western blotting.

Results

We found that CGA significantly decreases the hypoxia-induced HIF-1α protein level in A549 cells, without changing its mRNA level. CGA was, however, found to suppress the transcriptional activity of HIF-1α under hypoxic conditions, leading to a decrease in the expression of its downstream target VEGF. We also found that CGA can block hypoxia-stimulated angiogenesis in vitro and VEGF-stimulated angiogenesis in vivo using HUVEC cells. In addition, we found that CGA can inhibit the HIF-1α/AKT signaling pathway, which plays an important role in VEGF activation and angiogenesis.

Conclusions

Our data indicate that CGA plays a role in the suppression of angiogenesis via inhibition of the HIF-1α/AKT pathway. CGA may represent a novel therapeutic option for the treatment of (lung) cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. O. Thews, T. Wolloscheck, W. Dillenburg, S. Kraus, D.K. Kelleher, M.A. Konerding, P. Vaupel, Microenvironmental adaptation of experimental tumours to chronic vs acute hypoxia. Br. J. Cancer 91, 1181–1189 (2004)

    PubMed Central  CAS  PubMed  Google Scholar 

  2. H.J. Lee, C.H. Jeong, J.H. Cha, K.W. Kim, PKC-delta inhibitors sustain self-renewal of mouse embryonic stem cells under hypoxia in vitro. Exp. Mol. Med. 42, 294–301 (2010)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. L. Ostergaard, A. Tietze, T. Nielsen, K.R. Drasbek, K. Mouridsen, S.N. Jespersen, M.R. Horsman, The relationship between tumor blood flow, angiogenesis, tumor hypoxia, and aerobic glycolysis. Cancer Res. 73, 5618–5624 (2013)

    Article  CAS  PubMed  Google Scholar 

  4. M. Hou, J. Cui, J. Liu, F. Liu, R. Jiang, K. Liu, Y. Wang, L. Yin, W. Liu, B. Yu, Angiopoietin-like 4 confers resistance to hypoxia/serum deprivation-induced apoptosis through PI3K/Akt and ERK1/2 signaling pathways in mesenchymal stem cells. PLoS One 9, e85808 (2014)

    Article  PubMed Central  PubMed  Google Scholar 

  5. Y. Zheng, Y. Ni, X. Huang, Z. Wang, W. Han, Overexpression of HIF-1alpha indicates a poor prognosis in tongue carcinoma and may be associated with tumour metastasis. Oncol. Lett. 5, 1285–1289 (2013)

    PubMed Central  CAS  PubMed  Google Scholar 

  6. M. Yan, M. Rayoo, E.A. Takano, K.C. Investigators, S.B. Fox, BRCA1 tumours correlate with a HIF-1alpha phenotype and have a poor prognosis through modulation of hydroxylase enzyme profile expression. Br. J. Cancer 101, 1168–1174 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. X.B. Wan, X.J. Fan, M.Y. Chen, J. Xiang, P.Y. Huang, L. Guo, X.Y. Wu, J. Xu, Z.J. Long, Y. Zhao, W.H. Zhou, H.Q. Mai, Q. Liu, M.H. Hong, Elevated Beclin 1 expression is correlated with HIF-1alpha in predicting poor prognosis of nasopharyngeal carcinoma. Autophagy 6, 395–404 (2010)

    Article  CAS  PubMed  Google Scholar 

  8. J.Y. Park, H.J. Jung, I. Seo, B.K. Jha, S.I. Suh, M.H. Suh, W.K. Baek, Translational suppression of HIF-1alpha by miconazole through the mTOR signaling pathway. Cell. Oncol. 37, 269–279 (2014)

  9. X.S. Huang, TLC densitometry of chlorogenic acid in granules of Artemisia capillaris in the treatment of jaundice. Zhong Yao Tong Bao 10, 30–32 (1985)

    CAS  PubMed  Google Scholar 

  10. A. Nugroho, S.C. Lim, S. Karki, J.S. Choi, H.J. Park, Simultaneous quantification and validation of new peroxynitrite scavengers from Artemisia iwayomogi. Pharm. Biol. 4, 1–9 (2014)

    Google Scholar 

  11. B.C. Cheng, X.Q. Ma, H.Y. Kwan, K.W. Tse, H.H. Cao, T. Su, X. Shu, Z.Z. Wu, Z.L. Yu, A herbal formula consisting of Rosae Multiflorae Fructus and Lonicerae Japonicae Flos inhibits inflammatory mediators in LPS-stimulated RAW 264.7 macrophages. J. Ethnopharmacol. 153, 922–927 (2014)

    Article  PubMed  Google Scholar 

  12. W.Y. Du, C. Chang, Y. Zhang, Y.Y. Liu, K. Sun, C.S. Wang, M.X. Wang, Y. Liu, F. Wang, J.Y. Fan, P.T. Li, J.Y. Han, High-dose chlorogenic acid induces inflammation reactions and oxidative stress injury in rats without implication of mast cell degranulation. J. Ethnopharmacol. 147, 74–83 (2013)

    Article  CAS  PubMed  Google Scholar 

  13. S. Bhattacharyya, S. Majhi, B.P. Saha, P.K. Mukherjee, Chlorogenic acid-phospholipid complex improve protection against UVA induced oxidative stress. J. Photochem. Photobiol. B 130, 293–298 (2014)

    Article  CAS  PubMed  Google Scholar 

  14. M. Teraoka, K. Nakaso, C. Kusumoto, S. Katano, N. Tajima, A. Yamashita, T. Zushi, S. Ito, T. Matsura, Cytoprotective effect of chlorogenic acid against α-synuclein-related toxicity in catecholaminergic PC12 cells. J. Clin. Biochem. Nutr. 51, 122–127 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. W. Shen, R. Qi, J. Zhang, Z. Wang, H. Wang, C. Hu, Y. Zhao, M. Bie, Y. Wang, Y. Fu, M. Chen, D. Lu, Chlorogenic acid inhibits LPS-induced microglial activation and improves survival of dopaminergic neurons. Brain Res. Bull. 88, 487–494 (2012)

    Article  CAS  PubMed  Google Scholar 

  16. S.J. Hwang, Y.W. Kim, Y. Park, H.J. Lee, K.W. Kim, Anti-inflammatory effects of chlorogenic acid in lipopolysaccharide-stimulated RAW 264.7 cells. Inflamm. Res. 63, 81–90 (2014)

    Article  CAS  PubMed  Google Scholar 

  17. L. Yang, J. Zhang, C. Wang, X. Qin, Q. Yu, Y. Zhou, J. Liu, Interaction between 8-hydroxyquinoline ruthenium(II) complexes and basic fibroblast growth factors (bFGF): inhibiting angiogenesis and tumor growth through ERK and AKT signaling pathways. Metallomics 6, 518–531 (2014)

    Article  CAS  PubMed  Google Scholar 

  18. G.D. Kim, J. Oh, L.S. Jeong, S.K. Lee, Thio-Cl-IB-MECA, a novel A(3) adenosine receptor agonist, suppresses angiogenesis by regulating PI3K/AKT/mTOR and ERK signaling in endothelial cells. Biochem. Biophys. Res. Commun. 437, 79–86 (2013)

    Article  CAS  PubMed  Google Scholar 

  19. D. Sun, Y. Liu, Q. Yu, Y. Zhou, R. Zhang, X. Chen, A. Hong, J. Liu, The effects of luminescent ruthenium(II) polypyridyl functionalized selenium nanoparticles on bFGF-induced angiogenesis and AKT/ERK signaling. Biomaterials 34, 171–180 (2013)

    Article  CAS  PubMed  Google Scholar 

  20. S. Kan, W.M. Cheung, Y. Zhou, W.S. Ho, Enhancement of doxorubicin cytotoxicity by tanshinone IIA in HepG2 human hepatoma cells. Planta Med. 80, 70–76 (2014)

    Article  CAS  PubMed  Google Scholar 

  21. S.R. Gundala, C. Yang, N. Lakshminarayana, G. Asif, M.V. Gupta, S. Shamsi, R. Aneja, Polar biophenolics in sweet potato greens extract synergize to inhibit prostate cancer cell proliferation and in vivo tumor growth. Carcinogenesis 34, 2039–2049 (2013)

    Article  CAS  PubMed  Google Scholar 

  22. Y.J. Liu, C.Y. Zhou, C.H. Qiu, X.M. Lu, Y.T. Wang, Chlorogenic acid induced apoptosis and inhibition of proliferation in human acute promyelocytic leukemia HL60 cells. Mol. Med. Rep. 8, 1106–1110 (2013)

    CAS  PubMed  Google Scholar 

  23. J.S. Yang, C.W. Liu, Y.S. Ma, S.W. Weng, N.Y. Tang, S.H. Wu, B.C. Ji, C.Y. Ma, Y.C. Ko, S. Funayama, C.L. Kuo, Chlorogenic acid induces apoptotic cell death in U937 leukemia cells through caspase- and mitochondria-dependent pathways. In Vivo 26, 971–978 (2012)

    CAS  PubMed  Google Scholar 

  24. E. Burgos-Moron, J.M. Calderon-Montano, M.L. Orta, N. Pastor, C. Perez-Guerrero, C. Austin, S. Mateos, M. Lopez-Lazaro, The coffee constituent chlorogenic acid induces cellular DNA damage and formation of topoisomerase I- and II-DNA complexes in cells. J. Agric. Food Chem. 60, 7384–7391 (2012)

    Article  CAS  PubMed  Google Scholar 

  25. Q. Wang, Q. Chen, M. He, P. Mir, J. Su, Q. Yang, Inhibitory effect of antioxidant extracts from various potatoes on the proliferation of human colon and liver cancer cells. Nutr. Cancer 63, 1044–1052 (2011)

    Article  CAS  PubMed  Google Scholar 

  26. C. Narayan, A. Kumar, Antineoplastic and immunomodulatory effect of polyphenolic components of Achyranthes aspera (PCA) extract on urethane induced lung cancer in vivo. Mol. Biol. Rep. 41, 179–191 (2014)

    Article  CAS  PubMed  Google Scholar 

  27. M. Cichocki, M. Dalek, M. Szamalek, W. Baer-Dubowska, Naturally occurring phenolic acids modulate TPA-induced activation of EGFR, AP-1, and STATs in mouse epidermis. Nutr. Cancer 66, 308–314 (2014)

    Article  CAS  PubMed  Google Scholar 

  28. S.D. Young, R.P. Hill, Effects of reoxygenation on cells from hypoxic regions of solid tumors: anticancer drug sensitivity and metastatic potential. J. Natl. Cancer Inst. 82, 371–380 (1990)

    Article  CAS  PubMed  Google Scholar 

  29. J.D. Chapman, The detection and measurement of hypoxic cells in solid tumors. Cancer 54, 2441–2449 (1984)

    Article  CAS  PubMed  Google Scholar 

  30. C. Kim, H.G. Yu, J. Sohn, The anti-angiogenic effect of chlorogenic acid on choroidal neovascularization. Korean J. Ophthalmol. 24, 163–168 (2010)

    Article  PubMed Central  PubMed  Google Scholar 

  31. J.Y. Shin, J. Sohn, K.H. Park, Chlorogenic acid decreases retinal vascular hyperpermeability in diabetic rat model. J. Korean Med. Sci. 28, 608–613 (2013)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. D. Bagdas, B. Cam Etoz, S. Inan Ozturkoglu, N. Cinkilic, M.O. Ozyigit, Z. Gul, N. Isbil Buyukcoskun, K. Ozluk, M.S. Gurun, Effects of systemic chlorogenic acid on random-pattern dorsal skin flap survival in diabetic rats. Biol. Pharm. Bull. 37, 361–370 (2014)

    Article  CAS  PubMed  Google Scholar 

  33. W.C. Chen, S.S. Liou, T.F. Tzeng, S.L. Lee, I.M. Liu, Effect of topical application of chlorogenic acid on excision wound healing in rats. Planta Med. 79, 616–621 (2013)

    Article  CAS  PubMed  Google Scholar 

  34. J. Fensterle, B. Aicher, I. Seipelt, M. Teifel, J. Engel, Current view on the mechanism of action of perifosine in cancer. Anti Cancer Agents Med. Chem. 14, 629–635 (2014)

    Article  CAS  Google Scholar 

  35. P. Bhoopathi, B. Gorantla, G.S. Sailaja, C.S. Gondi, M. Gujrati, J.D. Klopfenstein, J.S. Rao, SPARC overexpression inhibits cell proliferation in neuroblastoma and is partly mediated by tumor suppressor protein PTEN and AKT. PLoS One 7, e36093 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Y.J. Cheng, J.W. Tsai, K.C. Hsieh, Y.C. Yang, Y.J. Chen, M.S. Huang, S.S. Yuan, Id1 promotes lung cancer cell proliferation and tumor growth through Akt-related pathway. Cancer Lett. 307, 191–199 (2011)

    Article  CAS  PubMed  Google Scholar 

  37. S.L. Locatelli, A. Giacomini, A. Guidetti, L. Cleris, R. Mortarini, A. Anichini, A.M. Gianni, C. Carlo-Stella, Perifosine and sorafenib combination induces mitochondrial cell death and antitumor effects in NOD/SCID mice with Hodgkin lymphoma cell line xenografts. Leukemia 27, 1677–1687 (2013)

    Article  CAS  PubMed  Google Scholar 

  38. R. Voltan, C. Celeghini, E. Melloni, P. Secchiero, G. Zauli, Perifosine plus nutlin-3 combination shows a synergistic anti-leukaemic activity. Br. J. Haematol. 148, 957–961 (2010)

    Article  CAS  PubMed  Google Scholar 

  39. R.L. Vinall, K. Hwa, P. Ghosh, C.X. Pan, P.N. Lara Jr., R.W. de Vere White, Combination treatment of prostate cancer cell lines with bioactive soy isoflavones and perifosine causes increased growth arrest and/or apoptosis. Clin. Cancer Res. 13, 6204–6216 (2007)

    Article  CAS  PubMed  Google Scholar 

  40. P. Wang, L. Han, H. Shen, P. Wang, C. Lv, G. Zhao, J. Niu, L. Xue, Q.J. Wang, T. Tong, J. Chen, Protein kinase D1 is essential for Ras-induced senescence and tumor suppression by regulating senescence-associated inflammation. Proc. Natl. Acad. Sci. U. S. A. 111, 7683–7688 (2014)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. A.E. Harvey, L.M. Lashinger, D. Hays, L.M. Harrison, K. Lewis, S.M. Fischer, S.D. Hursting, Calorie restriction decreases murine and human pancreatic tumor cell growth, nuclear factor-kappaB activation, and inflammation-related gene expression in an insulin-like growth factor-1-dependent manner. PLoS One 9, e94151 (2014)

    Article  PubMed Central  PubMed  Google Scholar 

  42. H.J. Lee, B.J. Ahn, M.W. Shin, J.H. Choi, K.W. Kim, Ninjurin1: a potential adhesion molecule and its role in inflammation and tissue remodeling. Mol. Cells 29, 223–227 (2010)

    Article  CAS  PubMed  Google Scholar 

  43. J. Shan, J. Fu, Z. Zhao, X. Kong, H. Huang, L. Luo, Z. Yin, Chlorogenic acid inhibits lipopolysaccharide-induced cyclooxygenase-2 expression in RAW264.7 cells through suppressing NF-kappaB and JNK/AP-1 activation. Int. Immunopharmacol. 9, 1042–1048 (2009)

    Article  CAS  PubMed  Google Scholar 

  44. N. Yun, J.W. Kang, S.M. Lee, Protective effects of chlorogenic acid against ischemia/reperfusion injury in rat liver: molecular evidence of its antioxidant and anti-inflammatory properties. J. Nutr. Biochem. 23, 1249–1255 (2012)

    Article  CAS  PubMed  Google Scholar 

  45. Y. Sato, S. Itagaki, T. Kurokawa, J. Ogura, M. Kobayashi, T. Hirano, M. Sugawara, K. Iseki, In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. Int. J. Pharm. 403, 136–138 (2011)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2013R1A1A1059709).

Conflict of interest

All authors of this manuscript declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyo-Jong Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J.J., Hwang, S.J., Park, JH. et al. Chlorogenic acid inhibits hypoxia-induced angiogenesis via down-regulation of the HIF-1α/AKT pathway. Cell Oncol. 38, 111–118 (2015). https://doi.org/10.1007/s13402-014-0216-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-014-0216-2

Keywords

Navigation