Skip to main content

Advertisement

Log in

Gefitinib induces cytoplasmic translocation of the CDK inhibitor p27 and its binding to a cleaved intermediate of caspase 8 in non-small cell lung cancer cells

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

The epidermal growth factor receptor (EGFR) represents one of the first rationally selected molecules for targeted therapy in non-small cell lung cancer (NSCLC). Gefitinib is a reversible and highly selective tyrosine kinase inhibitor that competitively blocks the binding of adenosine triphosphate to its binding site in the tyrosine kinase domain of the EGFR. It has been found that treatment with gefitinib induces cell cycle arrest and apoptosis in NSCLC cells harboring activating EGFR mutations. Despite its clinical relevance, however, the mechanism underlying gefitinib-induced apoptosis has remained largely unknown.

Methods

We used the gefitinib-sensitive NSCLC cell line HCC827, which harbors a deletion in exon 19 of the EGFR gene, to examine the effect of gefitinib on the apoptotic machinery.

Results

We found that gefitinib treatment caused the NSCLC cells to undergo apoptosis following activation of the caspase 8 cascade. Expression of p27, a cyclin-dependent kinase (CDK) inhibitor whose major target is the cyclin E/CDK2 complex, was found to increase during this process, and this increase was accompanied by translocation of p27 from the nucleus to the cytoplasm. Moreover, we found that cytoplasmic p27 bound to a cleaved intermediate (p43/p41) of caspase 8 and that inhibition of cytoplasmic translocation of p27 reduced gefitinib-induced cell death in HCC827 cells.

Conclusion

Based on our results, we conclude that gefitinib-induced apoptosis is mediated by the interaction of p27 and caspase 8 in NSCLC cells carrying an activating EGFR mutation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. F. Ciardiello, G. Tortora, A novel approach in the treatment of cancer: targeting the epidermal growth factor receptor. Clin. Cancer Res. 7, 2958–2970 (2001)

    PubMed  CAS  Google Scholar 

  2. W. Pao, V.A. Miller, Epidermal growth factor receptor mutations, small-molecule kinase inhibitors, and non-small-cell lung cancer: current knowledge and future directions. J. Clin. Oncol. 23, 2556–2568 (2005)

    Article  PubMed  CAS  Google Scholar 

  3. A. Koren, H. Motaln, T. Cufer, Lung cancer stem cells: a biological and clinical perspective. Cell Oncol 36, 265–275 (2013)

  4. N. Peled, M.W. Wynes, N. Ikeda, T. Ohira, K. Yoshida, J. Qian, M. Ilouze, R. Brenner, Y. Kato, C. Mascaux, F.R. Hirsch, Insulin-like growth factor-1 receptor (IGF-1R) as a biomarker for resistance to the tyrosine kinase inhibitor gefitinib in non-small cell lung cancer. Cell Oncol 36, 277–288 (2013)

  5. A.E. Wakeling, S.P. Guy, J.R. Woodburn, S.E. Ashton, B.J. Curry, A.J. Barker, K.H. Gibson, ZD1839 (Iressa): an orally active inhibitor of epidermal growth factor signaling with potential for cancer therapy. Cancer Res. 62, 5749–5754 (2002)

    PubMed  CAS  Google Scholar 

  6. V.D. Cataldo, D.L. Gibbons, R. Pérez-Soler, A. Quintás-Cardama, Treatment of non-small-cell lung cancer with erlotinib or gefitinib. N. Engl. J. Med. 364, 947–955 (2011)

    Article  PubMed  CAS  Google Scholar 

  7. T.J. Lynch, D.W. Bell, R. Sordella, S. Gurubhagavatula, R.A. Okimoto, B.W. Brannigan, P.L. Harris, S.M. Haserlat, J.G. Supko, F.G. Haluska, D.N. Louis, D.C. Christiani, J. Settleman, D.A. Haber, Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139 (2004)

    Article  PubMed  CAS  Google Scholar 

  8. J.G. Paez, P.A. Jänne, J.C. Lee, S. Tracy, H. Greulich, S. Gabriel, P. Herman, F.J. Kaye, N. Lindeman, T.J. Boggon, K. Naoki, H. Sasaki, Y. Fujii, M.J. Eck, W.R. Sellers, B.E. Johnson, M. Meyerson, EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497–1500 (2004)

    Article  PubMed  CAS  Google Scholar 

  9. H. Linardou, I.J. Dahabreh, D. Bafaloukos, P. Kosmidis, S. Murray, Somatic EGFR mutations and efficacy of tyrosine kinase inhibitors in NSCLC. Nat Rev Clin Oncol 6, 352–366 (2009)

    Article  PubMed  CAS  Google Scholar 

  10. S. Tracy, T. Mukohara, M. Hansen, M. Meyerson, B.E. Johnson, P.A. Jänne, Gefitinib induces apoptosis in the EGFRL858R non-small-cell lung cancer cell line H3255. Cancer Res. 64, 7241–7244 (2004)

    Article  PubMed  CAS  Google Scholar 

  11. S.V. Sharma, P. Gajowniczek, I.P. Way, D.Y. Lee, J. Jiang, Y. Yuza, M. Classon, D.A. Haber, J. Settleman, A common signaling cascade may underlie “addiction” to the Src, BCR-ABL, and EGF receptor oncogenes. Cancer Cell 10, 425–435 (2006)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. G.C. Chang, S.L. Hsu, J.R. Tsai, F.P. Liang, S.Y. Lin, G.T. Sheu, C.Y. Chen, Molecular mechanisms of ZD1839-induced G1-cell cycle arrest and apoptosis in human lung adenocarcinoma A549 cells. Biochem. Pharmacol. 68, 1453–1464 (2004)

    Article  PubMed  CAS  Google Scholar 

  13. G.K. Schwartz, M.A. Shah, Targeting the cell cycle: a new approach to cancer therapy. J. Clin. Oncol. 23, 9408–9421 (2005)

    Article  PubMed  CAS  Google Scholar 

  14. M. Boehm, T. Yoshimoto, M.F. Crook, S. Nallamshetty, A. True, G.J. Nabel, E.G. Nabel, A growth factor-dependent nuclear kinase phosphorylates p27 (Kip1) and regulates cell cycle progression. EMBO J. 21, 3390–3401 (2002)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. S. Shintani, C. Li, M. Mihara, J. Yano, N. Terakado, K. Nakashiro, H. Hamakawa, Gefitinib (‘Iressa’, ZD1839), an epidermal growth factor receptor tyrosine kinase inhibitor, up-regulates p27KIP1 and induces G1 arrest in oral squamous cell carcinoma cell lines. Oral Oncol. 40, 43–51 (2004)

    Article  PubMed  CAS  Google Scholar 

  16. O. Coqueret, New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? Trends Cell Biol. 13, 65–70 (2003)

    Article  PubMed  CAS  Google Scholar 

  17. I.M. Chu, L. Hengst, J.M. Slingerland, The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy. Nat. Rev. Cancer 8, 253–267 (2008)

    Article  PubMed  CAS  Google Scholar 

  18. G. Rodier, A. Montagnoli, L. Di Marcotullio, P. Coulombe, G.F. Draetta, M. Pagano, S. Meloche, p27 cytoplasmic localization is regulated by phosphorylation on Ser10 and is not a prerequisite for its proteolysis. EMBO J. 20, 6672–6682 (2001)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. A. Besson, M. Gurian-West, X. Chen, K.S. Kelly-Spratt, C.J. Kemp, J.M. Roberts, A pathway in quiescent cells that controls p27Kip1 stability, subcellular localization and tumor suppression. Genes Dev. 20, 47–64 (2006)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. N.A. Thornberry, Y. Lazebnik, Caspases: enemies within. Science 281, 1312–1316 (1998)

    Article  PubMed  CAS  Google Scholar 

  21. N. Shinoura, T. Furitsu, A. Asai, T. Kirino, H. Hamada, Co-transfection of p27Kip1 strongly augments Fas ligand- and caspase-8-mediated apoptosis in U-373MG glioma cells. Anticancer Res. 21, 3261–3268 (2001)

    PubMed  CAS  Google Scholar 

  22. X.B. Yan, D.S. Yang, X. Gao, J. Feng, Z.L. Shi, Z. Ye, Caspase-8 dependent osteosarcoma cell apoptosis induced by proteasome inhibitor MG132. Cell Biol. Int. 31, 1136–1143 (2007)

    Article  PubMed  CAS  Google Scholar 

  23. J. Liang, J. Zubovitz, T. Petrocelli, R. Kotchetkov, M.K. Connor, K. Han, J.H. Lee, S. Ciarallo, C. Catzavelos, R. Beniston, E. Franssen, J.M. Slingerland, PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest. Nat. Med. 8, 1153–1160 (2002)

    Article  PubMed  CAS  Google Scholar 

  24. I. Shin, F.M. Yakes, F. Rojo, N.Y. Shin, A.V. Bakin, J. Baselga, C.L. Arteaga, PKB/Akt mediates cell-cycle progression by phosphorylation of p27 (Kip1) at threonine 157 and modulation of its cellular localization. Nat. Med. 8, 1145–1152 (2002)

    Article  PubMed  CAS  Google Scholar 

  25. G. Viglietto, M.L. Motti, P. Bruni, R.M. Melillo, A. D’Alessio, D. Califano, F. Vinci, G. Chiappetta, P. Tsichlis, A. Bellacosa, A. Fusco, M. Santoro, Cytoplasmic relocalization and inhibition of the cyclin-dependent kinase inhibitor p27 (Kip1) by PKB/Akt-mediated phosphorylation in breast cancer. Nat. Med. 8, 1136–1144 (2002)

    Article  PubMed  CAS  Google Scholar 

  26. J. Philipp-Staheli, S.R. Payne, C.J. Kemp, p27 (Kip1): regulation and function of a haploinsufficient tumor suppressor and its misregulation in cancer. Exp. Cell Res. 264, 148–168 (2001)

    Article  PubMed  CAS  Google Scholar 

  27. C. Craig, R. Wersto, M. Kim, E. Ohri, Z. Li, D. Katayose, S.J. Lee, J. Trepel, K. Cowan, P. Seth, A recombinant adenovirus p27kip1 induces cell cycle arrest and loss of cyclin-Cdk activity in human breast cancer cells. Oncogene 14, 2283–2289 (1997)

    Article  PubMed  CAS  Google Scholar 

  28. Y. Katayose, M. Kim, A.N. Rakkar, Z. Li, K.H. Cowan, P. Seth, Promoting apoptosis: a novel activity associated with the cyclin-dependent kinase inhibitor p27. Cancer Res. 57, 5441–5445 (1997)

    PubMed  CAS  Google Scholar 

  29. A.L. Katner, Q.B. Hoang, P. Gootam, E. Jaruga, Q. Ma, J. Gnarra, W. Rayford, Induction of cell cycle arrest and apoptosis in human prostate carcinoma cells by a recombinant adenovirus expressing p27Kip1. Prostate 53, 77–87 (2002)

    Article  PubMed  CAS  Google Scholar 

  30. K. Supriatno, M.O. Harada, T. Hoque, H. Bando, M. Yoshida, Sato, overexpression of p27 (Kip1) induces growth arrest and apoptosis in an oral cancer cell line. Oral Oncol. 38, 730–736 (2002)

    Article  PubMed  CAS  Google Scholar 

  31. Q. Zhang, L. Tian, A. Mansouri, A.L. Korapati, T.J. Johnson, F.X. Claret, Inducible expression of a degradation-resistant form of p27Kip1 causes growth arrest and apoptosis in breast cancer cells. FEBS Lett. 579, 3932–3940 (2005)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. I. Naruse, H. Hoshino, K. Dobashi, K. Minato, R. Saito, M. Mori, Over-expression of p27kip1 induces growth lung cancer cell lines. Int. J. Cancer 88, 377–383 (2000)

    Article  PubMed  CAS  Google Scholar 

  33. M. Ohtani, H. Isozaki, K. Fujii, E. Nomura, M. Niki, H. Mabuchi, K. Nishiguchi, M. Toyoda, T. Ishibashi, N. Tanigawa, Impact of the expression of cyclin-dependent kinase inhibitor p27Kip1 and apoptosis in tumor cells on the overall survival of patients with non-early stage gastric carcinoma. Cancer 85, 1711–1718 (1999)

    Article  PubMed  CAS  Google Scholar 

  34. S.P. Singh, J. Lipman, H. Goldman, F.H. Ellis Jr., L. Aizenman, M.G. Cangi, S. Signoretti, D.S. Chiaur, M. Pagano, M. Loda, Loss or altered subcellular localization of p27 in Barrett’s associated adenocarcinoma. Cancer Res. 58, 1730–1735 (1998)

    PubMed  CAS  Google Scholar 

  35. A. Sgambato, C. Ratto, B. Faraglia, M. Merico, R. Ardito, G. Schinzari, G. Romano, A.R. Cittadini, Reduced expression and altered subcellular localization of the cyclin-dependent kinase inhibitor p27 (Kip1) in human colon cancer. Mol. Carcinog. 26, 172–179 (1999)

    Article  PubMed  CAS  Google Scholar 

  36. V. Masciullo, A. Sgambato, C. Pacilio, B. Pucci, G. Ferrandina, J. Palazzo, A. Carbone, A. Cittadini, S. Mancuso, G. Scambia, A. Giordano, Frequent loss of expression of the cyclin-dependent kinase inhibitor p27 in epithelial ovarian cancer. Cancer Res. 59, 3790–1794 (1999)

    PubMed  CAS  Google Scholar 

  37. V. Masciullo, T. Susini, A. Zamparelli, A. Bovicelli, C. Minimo, D. Massi, G. Taddei, N. Maggiano, P. De Iaco, M. Ceccaroni, L. Bovicelli, G. Amunni, S. Mancuso, G. Scambia, A. Giordano, Frequent loss of expression of the cyclin-dependent kinase inhibitor p27 (Kip1) in estrogen-related endometrial adenocarcinomas. Clin. Cancer Res. 9, 5332–5338 (2003)

    PubMed  CAS  Google Scholar 

  38. Y.H. Ling, T. Li, Z. Yuan, M. Haigentz Jr., T.K. Weber, R. Perez-Soler, Erlotinib, an effective epidermal growth factor receptor tyrosine kinase inhibitor, induces p27KIP1 up-regulation and nuclear translocation in association with cell growth inhibition and G1/S phase arrest in human non-small-cell lung cancer cell lines. Mol. Pharmacol. 72, 248–258 (2007)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant (50452–2013) from the Korea Institute of Radiological and Medical Sciences Research Fund (RTR12-01).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheol Hyeon Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, S.H., Jeong, EH., Lee, TG. et al. Gefitinib induces cytoplasmic translocation of the CDK inhibitor p27 and its binding to a cleaved intermediate of caspase 8 in non-small cell lung cancer cells. Cell Oncol. 37, 377–386 (2014). https://doi.org/10.1007/s13402-014-0198-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-014-0198-0

Keywords

Navigation