Skip to main content

Advertisement

Log in

Combined arsenic trioxide-cisplatin treatment enhances apoptosis in oral squamous cell carcinoma cells

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

Oral squamous cell carcinoma (OSCC) accounts for the majority of oral cancers. Despite recent advances in OSCC diagnostics and therapeutics, the overall survival rate still remains low. Here, we assessed the efficacy of a combinatorial arsenic trioxide (ATO) and cisplatin (CDDP) treatment in human OSCC cells.

Methods

The combinatorial effect of ATO/CDDP on the growth and apoptosis of OSCC cell lines HSC-2, HSC-3, and HSC-4 was evaluated using MTT and annexin V assays, respectively. Chou–Talalay analyses were preformed to evaluate the combinatorial effects of ATO/CDDP on the dose-reduction index (DRI). To clarify the mechanism underlying the ATO/CDDP anticancer effect, we also examined the involvement of reactive oxygen species (ROS) in ATO/CDDP-induced apoptosis.

Results

Combination index (CI) analyses revealed that a synergistic interaction of ATO and CDDP elicits a wide range of effects in HSC-2 cells, with CI values ranging from 0.78 to 0.90, where CI < 1 defines synergism. The CI values in HSC-3 and HSC-4 cells ranged from 0.34 to 0.45 and from 0.60 to 0.92, respectively. In addition, ATO/CDDP yielded favorable DRI values ranging from 1.6-fold to 7.71-fold dose reduction. Compared to mono-therapy, ATO/CDDP combinatorial therapy significantly augmented the loss of mitochondrial potential, caspase-3/7 activity and subsequent apoptosis. These changes were all abrogated by the antioxidant N-acetylcysteine.

Conclusions

This study provides the first evidence for a synergistic ATO/CDDP anticancer (apoptotic) activity in OSCC cells with a favorable DRI, thereby highlighting its potential as a combinational therapeutic regime in OSCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ATO:

Arsenic trioxide

BCL2:

B-cell CLL/lymphoma 2

XIAP:

X-linked inhibitor of apoptosis

CDDP:

Cisplatin

CI:

Combination index

DRI:

Dose-reduction index

OSCC:

Oral squamous cell carcinoma

ROS:

Reactive oxygen species

References

  1. D.M. Parkin, F. Bray, J. Ferlay, P. Pisani, Global cancer statistics. 2002. CA Cancer J. Clin. 55, 74–108 (2005)

    Article  PubMed  Google Scholar 

  2. J. Xhu, Z. Chen, V. Lallemand-Breitenbach, H. de The, How acute promyelocytic leukaemia revived arsenic. Nat. Rev. Cancer 2, 705–713 (2002)

    Article  CAS  Google Scholar 

  3. Z.Y. Wang, Z. Chen, Acute promyelocytic leukemia: from highly fatal to highly curable. Blood 111, 2505–2515 (2008)

    Article  PubMed  CAS  Google Scholar 

  4. X.W. Zhang, X.J. Yan, Z.R. Zhou, F.F. Yang, Z.Y. Wu, H.B. Sun, W.X. Liang, A.X. Song, V. Lallemand-Breitenbach, M. Jeanne, Q.Y. Zhang, H.Y. Yang, Q.H. Huang, G.B. Zhou, J.H. Tong, Y. Zhang, J.H. Wu, H.Y. Hu, H. de The, S.J. Chen, Z. Chen, Arsenic trioxide controls the fate of the PML-RARalpha oncoprotein by directly binding PML. Science 328, 240–243 (2010)

    Article  PubMed  CAS  Google Scholar 

  5. V. Lallemand-Breitenbach, M. Jeanne, S. Benhenda, R. Nasr, M. Lei, L. Peres, J. Zhou, J. Zhu, B. Raught, H. de The, Arsenic degrades PML or PML-RARalpha through a SUMO-triggered RNF4/ubiquitin-mediated pathway. Nat. Cell Biol. 10, 547–555 (2008)

    Article  PubMed  CAS  Google Scholar 

  6. M.H. Tatham, M.C. Geoffroy, L. Shen, A. Plechanovova, N. Hattersley, E.G. Jaffray, J.J. Palvimo, R.T. Hay, RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat. Cell Biol. 10, 538–546 (2008)

    Article  PubMed  CAS  Google Scholar 

  7. D. Doucer, M.S. Tallman, Arsenic trioxide: new clinical experience with an old medication in hematologic malignancies. J. Clin. Oncol. 23, 2396–2410 (2005)

    Article  CAS  Google Scholar 

  8. M.R. Litzow, S. Lee, J.M. Bennett, G.W. Dewald, R.E. Gallagher, V. Jain, E.M. Paietta, J. Racevskis, S.R. Rousey, J.J. Mazza, M.S. Tallman, A phase II trial of arsenic trioxide for relapsed and refractory acute lymphoblastic leukemia. Haematologica 91, 1105–1108 (2006)

    PubMed  CAS  Google Scholar 

  9. J.H. Park, E.J. Kim, H.Y. Jang, H. Shim, K.K. Lee, H.J. Jo, H.J. Kim, S.H. Yang, E.T. Jeong, H.R. Kim, Combination treatment with arsenic trioxide and sulindac enhances apoptotic cell death in lung cancer cells via activation of oxidative stress and mitogen-activated protein kinases. Oncol. Rep. 20, 379–384 (2008)

    PubMed  CAS  Google Scholar 

  10. X. Wang, G. Wang, D. Dong, S. Fu, B. Yang, Inhibition on LS-174T cell growth and activity of telomerase in vitro and in vivo by arsenic trioxide. Exp. Toxicol. Pathol. 60, 481–488 (2008)

    Article  PubMed  CAS  Google Scholar 

  11. B. Liu, S. Pan, X. Dong, H. Qiao, H. Jiang, G.W. Krissansen, X. Sun, Opposing effects of arsenic trioxide on hepatocellular carcinoma in mice. Cancer Sci. 97, 675–681 (2006)

    Article  PubMed  CAS  Google Scholar 

  12. S.Y. Woo, M.Y. Lee, Y.J. Jung, E.S. Yoo, J.Y. Seoh, H.Y. Shin, H.S. Ahn, K.H. Ryu, Arsenic trioxide inhibits cell growth in SH-SY5Y and SK-N-AS neuroblastoma cell lines by a different mechanism. Pediatr. Hematol. Oncol. 23, 231–243 (2006)

    Article  PubMed  CAS  Google Scholar 

  13. P. Kumar, Q. Gao, Y. Ning, Z. Wang, P.H. Krebsbach, P.J. Polverini, Arsenic trioxide enhances the therapeutic efficacy of radiation treatment of oral squamous carcinoma while protecting bone. Mol. Cancer Ther. 7, 2060–2069 (2008)

    Article  PubMed  CAS  Google Scholar 

  14. N. Zhang, Z.M. Wu, E. McGowan, J. Shi, Z.B. Hong, C.W. Ding, P. Xia, W. Di, Arsenic trioxide and cisplatin synergism increase cytotoxicity in human ovarian cancer cells: therapeutic potential for ovarian cancer. Cancer Sci. 100, 2459–2464 (2009)

    Article  PubMed  CAS  Google Scholar 

  15. C. Nie, C. Tian, L. Zhao, P.X. Petit, M. Mehrpour, Q. Chen, Cysteine 62 of Bax is critical for its conformational activation and its proapoptotic activity in response to H2O2-induced apoptosis. J. Biol. Chem. 283, 15359–15369 (2008)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. A. Ota, M. Yamamoto, T. Hori, S. Miyai, Y. Naishiro, H. Sohma, M. Maeda, Y. Kokai, Upregulation of plasma CCL8 in mouse model of graft-vs-host disease. Exp. Hematol. 37, 525–531 (2009)

    Article  PubMed  CAS  Google Scholar 

  17. T.C. Chou, P. Talalay, Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv. Enzym. Regul. 22, 27–55 (1984)

    Article  CAS  Google Scholar 

  18. T.C. Chou, Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev. 58, 621–681 (2006)

    Article  PubMed  CAS  Google Scholar 

  19. L. Zhang, K. Wang, F. Zhao, W. Hu, J. Chen, G.M. Lanza, B. Shen, B. Zhang, Near infrared imaging of EGFR of oral squamous cell carcinoma in mice administered arsenic trioxide. PLoS One 7, e46255 (2012)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. C.W. Tsai, N.W. Chang, R.Y. Tsai, R.F. Wang, C.M. Hsu, S.S. Lin, C.N. Wu, S.S. Sun, M.H. Tsai, D.T. Bau, Synergistic cytotoxic effects of arsenic trioxide plus dithiothreitol on mice oral cancer cells. Anticancer Res. 30, 3655–3660 (2010)

    PubMed  CAS  Google Scholar 

  21. Y. Jing, J. Dai, R.M. Chalmers-Redman, W.G. Tatton, S. Waxman, Arsenic trioxide selectively induces acute promyelocytic leukemia cell apoptosis via a hydrogen peroxide-dependent pathway. Blood 94, 2102–2111 (1999)

    PubMed  CAS  Google Scholar 

  22. S.H. Kang, J.H. Song, H.K. Kang, S.J. Kim, H.W. Kang, Y.K. Lee, D.B. Park, Arsenic trioxide-induced apoptosis is independent of stress-responsive signaling pathways but sensitive to inhibition of inducible nitric oxide synthase in HepG2 cells. Exp. Mol. Med. 35, 83–90 (2003)

    Article  PubMed  CAS  Google Scholar 

  23. M. Okamura, K. Hashimoto, J. Shimada, H. Sakagami, Apoptosis-inducing activity of cisplatin (CDDP) against human hepatoma and oral squamous cell carcinoma cell lines. Anticancer Res. 24, 655–661 (2004)

    PubMed  CAS  Google Scholar 

  24. Y. Jing, J. Dai, R.M. Chalmers-Redman, W.G. Tatton, S. Waxman, Arsenic trioxide selectively induces acute promyelocytic leukemia cell apoptosis via a hydrogen peroxide-dependent pathway. Blood 94, 2102–2111 (1999)

    PubMed  CAS  Google Scholar 

  25. E. Brown, C.G. Yedjou, P.B. Tchounwou, Cytotoxicity and oxidative stress in human liver carcinoma cells exposed to arsenic trioxide (HepG(2)). Met. Ions Biol. Med. 10, 583–587 (2008)

    PubMed Central  PubMed  Google Scholar 

  26. S. Urba, G. Wolf, A. Eisbruch, F. Worden, J. Lee, C. Bradford, T. Teknos, D. Chepeha, M. Prince, N. Hogikyan, J. Taylor, Single-cycle induction chemotherapy selects patients with advanced laryngeal cancer for combined chemoradiation: a new treatment paradigm. J. Clin. Oncol. 24, 593–598 (2006)

    Article  PubMed  CAS  Google Scholar 

  27. C. Andreadis, K. Vahtsevanos, T. Sidiras, I. Thomaidis, K. Antoniadis, D. Mouratidou, 5-Fluorouracil and cisplatin in the treatment of advanced oral cancer. Oral Oncol. 39, 380–385 (2003)

    Article  PubMed  CAS  Google Scholar 

  28. E. Fox, B.I. Razzouk, B.C. Widemann, S. Xiao, M. O’Brien, W. Goodspeed, G.H. Reaman, S.M. Blaney, A.J. Murgo, F.M. Balis, P.C. Adamson, Phase 1 trial and pharmacokinetic study of arsenic trioxide in children and adolescents with refractory or relapsed acute leukemia, including acute promyelocytic leukemia or lymphoma. Blood 111, 566–573 (2008)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. U. Kotowski, G. Heiduschka, M. Brunner, B.M. Erovic, H. Martinek, D. Thurnher, Arsenic trioxide enhances the cytotoxic effect of cisplatin in head and neck squamous cell carcinoma cell lines. Oncol. Lett. 3, 1326–1330 (2012)

    PubMed Central  PubMed  CAS  Google Scholar 

  30. K.Y. Kim, H.J. Cho, S.N. Yu, S.H. Kim, H.S. Yu, Y.M. Park, N. Mirkheshti, S.Y. Kim, C.S. Song, B. Chatterjee, S.C. Ahn, Interplay of reactive oxygen species, intracellular Ca(2+) surge and loss of mitochondrial homeostasis in the apoptotic ablation of prostate cancer cells by deoxypodophyllotoxin. J. Cell. Biochem. 114, 1124–1134 (2013)

    Article  PubMed  CAS  Google Scholar 

  31. B.D. Bowling, N. Doudican, P. Manga, S.J. Orlow, Inhibition of mitochondrial protein translation sensitizes melanoma cells to arsenic trioxide cytotoxicity via a reactive oxygen species dependent mechanism. Cancer Chemother. Pharmacol. 63, 37–43 (2008)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. I. Jutooru, G. Chadalapaka, S. Sreevalsan, P. Lei, R. Barhoumi, R. Burghardt, S. Safe, Arsenic trioxide downregulates specificity protein (Sp) transcription factors and inhibits bladder cancer cell and tumor growth. Exp. Cell Res. 316, 2174–2188 (2010)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants of the Strategic Research Foundation Grant-aided Project for Private Universities from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan (S1101027 to S. Karnan, H. Konishi, and Y. Hosokawa), and the AIKEIKAI Foundation (to A. Ota).

Ethical standards

This research complies with the ethical guidelines of the Japanese Ministry of Health, Labour, and Welfare.

Conflict of interest

None reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akinobu Ota.

Additional information

Toshiki Nakaoka, Akinobu Ota, and Takayuki Ono contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 221 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakaoka, T., Ota, A., Ono, T. et al. Combined arsenic trioxide-cisplatin treatment enhances apoptosis in oral squamous cell carcinoma cells. Cell Oncol. 37, 119–129 (2014). https://doi.org/10.1007/s13402-014-0167-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-014-0167-7

Keywords

Navigation