Skip to main content

Advertisement

Log in

Expression of the SEPT9_i4 isoform confers resistance to microtubule-interacting drugs

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

The evolutionarily conserved septin family of genes encode GTP binding proteins involved in a variety of cellular functions including cytokinesis, apoptosis, membrane dynamics and vesicle trafficking. Septin proteins can form hetero-oligomeric complexes and interact with other proteins including actin and tubulin. The human SEPT9 gene on chromosome 17q25.3 has a complex genomic architecture with 18 different transcripts that can encode 15 distinct polypeptides. Two distinct transcripts with unique 5′ ends (SEPT9_v4 and SEPT9_v4*) encode the same protein. In tumours the ratio of these transcripts changes with elevated levels of SEPT9_v4* mRNA, a transcript that is translated with enhanced efficiency leading to increased SEPT9_i4 protein.

Methods

We have examined the effect of over-expression of SEPT9_i4 on the dynamics of microtubule polymer mass in cultured cells.

Results

We show that the microtubule network in SEPT9_i4 over-expressing cells resists disruption by paclitaxel or cold incubation but also repolymerises tubulin more slowly after microtubule depolymerisation. Finally we show that SEPT9_i4 over-expressing cells have enhanced survival in the presence of clinically relevant microtubule acting drugs but not after treatment with DNAinteracting agents.

Conclusions

Given that SEPT9 over-expression is seen in diverse tumours and in particular ovarian and breast cancer, such data indicate that SEPT9_v4 expression may be clinically relevant and contribute to some forms of drug resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P.A. Hall, S.E. Russell, Mammalian septins: dynamic heteromers with roles in cellular morphogenesis and compartmentalization. J Pathol. In press (2012)

  2. E.T. Spiliotis, W.J. Nelson, Here come the septins: novel polymers that coordinate intracellular functions and organization. J. Cell Sci. 119, 4–10 (2006)

    Article  PubMed  CAS  Google Scholar 

  3. K. Nagata, A. Kawajiri, S. Matsui, M. Takagishi, T. Shiromizu, N. Saitoh et al., Filament formation of MSF-A, a mammalian septin, in human mammary epithelial cells depends on interactions with microtubules. J. Biol. Chem. 278, 18538–18543 (2003)

    Article  PubMed  CAS  Google Scholar 

  4. M.C. Surka, C.W. Tsang, W.S. Trimble, The mammalian septin MSF localizes with microtubules and is required for completion of cytokinesis. Mol. Biol. Cell 13, 3532–3545 (2002)

    Article  PubMed  CAS  Google Scholar 

  5. C. Robertson, S.W. Church, H.A. Nagar, J. Price, P.A. Hall, S.E. Russell, Properties of SEPT9 isoforms and the requirement for GTP binding. J. Pathol. 203, 519–527 (2004)

    Article  PubMed  CAS  Google Scholar 

  6. M.S. Longtine, E. Bi, Regulation of septin organization and function in yeast. Trends Cell Biol. 13, 403–409 (2003)

    Article  PubMed  CAS  Google Scholar 

  7. M. Versele, J. Thorner, Some assembly required: yeast septins provide the instruction manual. Trends Cell Biol. 15, 414–424 (2005)

    Article  PubMed  CAS  Google Scholar 

  8. M. Sirajuddin, M. Farkasovsky, F. Hauer, D. Kühlmann, I.G. Macara, M. Weyand et al., Structural insight into filament formation by mammalian septins. Nature 449, 311–315 (2007)

    Article  PubMed  CAS  Google Scholar 

  9. P.A. Hall, K. Jung, K.J. Hillan, S.E. Russell, Expression profiling the human septin gene family. J. Pathol. 206, 269–278 (2005)

    Article  PubMed  CAS  Google Scholar 

  10. S.E. Russell, P.A. Hall, Do septins have a role in cancer? Br. J. Cancer 93, 499–503 (2005)

    Article  PubMed  CAS  Google Scholar 

  11. S. Amir, R. Wang, H. Matzkin, J.W. Simons, N.J. Mabjeesh, MSF-A interacts with hypoxia-inducible factor-1alpha and augments hypoxia-inducible factor transcriptional activation to affect tumorigenicity and angiogenesis. Cancer Res. 66, 856–866 (2006)

    Article  PubMed  CAS  Google Scholar 

  12. J.F. Burrows, S. Chanduloy, M.A. McIlhatton, H. Nagar, K. Yeates, P. Donaghy et al., Altered expression of the septin gene, SEPT9, in ovarian neoplasia. J. Pathol. 201, 581–588 (2003)

    Article  PubMed  CAS  Google Scholar 

  13. R. Grützmann, B. Molnar, C. Pilarsky, J.K. Habermann, P.M. Schlag, H.D. Saeger et al., Sensitive detection of colorectal cancer in peripheral blood by septin 9 DNA methylation assay. PLoS One 3, e3759 (2008)

    Article  PubMed  Google Scholar 

  14. K.L. Bennett, M. Karpenko, M.T. Lin, R. Claus, K. Arab, G. Dyckhoff et al., Frequently methylated tumor suppressor genes in head and neck squamous cell carcinoma. Cancer Res. 68, 4494–4499 (2008)

    Article  PubMed  CAS  Google Scholar 

  15. S.E. Russell, M.A. McIlhatton, J.F. Burrows, P.G. Donaghy, S. Chanduloy, E.M. Petty et al., Isolation and mapping of a human septin gene to a region on chromosome 17q, commonly deleted in sporadic epithelial ovarian tumors. Cancer Res. 60, 4729–4734 (2000)

    PubMed  CAS  Google Scholar 

  16. M.A. McIlhatton, J.F. Burrows, P.G. Donaghy, S. Chanduloy, P.G. Johnston, S.E. Russell, Genomic organization, complex splicing pattern and expression of a human septin gene on chromosome 17q25.3. Oncogene 20, 5930–5939 (2001)

    Article  PubMed  CAS  Google Scholar 

  17. M. Scott, W.G. McCluggage, K.J. Hillan, P.A. Hall, S.E. Russell, Altered patterns of transcription of the septin gene, SEPT9, in ovarian tumorigenesis. Int. J. Cancer 118, 1325–1329 (2006)

    Article  PubMed  CAS  Google Scholar 

  18. M. Scott, P.L. Hyland, G. McGregor, K.J. Hillan, S.E. Russell, P.A. Hall, Multimodality expression profiling shows SEPT9 to be overexpressed in a wide range of human tumours. Oncogene 24, 4688–4700 (2005)

    Article  PubMed  CAS  Google Scholar 

  19. S.S. McDade, P.A. Hall, S.E. Russell, Translational control of SEPT9 isoforms is perturbed in disease. Hum. Mol. Genet. 16, 742–752 (2007)

    Article  PubMed  CAS  Google Scholar 

  20. A.D. Chacko, P.L. Hyland, S.S. McDade, P.W. Hamilton, S.H. Russell, P.A. Hall, SEPT9_v4 expression induces morphological change, increased motility and disturbed polarity. J. Pathol. 206, 458–465 (2005)

    Article  PubMed  CAS  Google Scholar 

  21. E.E. Morrison, J.M. Askham, EB 1 immunofluorescence reveals an increase in growing astral microtubule length and number during anaphase in NRK-52E cells. Eur. J. Cell Biol. 80, 749–753 (2001)

    Article  PubMed  CAS  Google Scholar 

  22. M.A. Jordan, L. Wilson, Microtubules as a target for anticancer drugs. Nat. Rev. Cancer 4, 253–265 (2004)

    Article  PubMed  CAS  Google Scholar 

  23. A. Desai, T.J. Mitchison, Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol. 13, 83–117 (1997)

    Article  PubMed  CAS  Google Scholar 

  24. B.E. Kremer, T. Haystead, I.G. Macara, Mammalian septins regulate microtubule stability through interaction with the microtubule-binding protein MAP4. Mol. Biol. Cell 16, 4648–4659 (2005)

    Article  PubMed  CAS  Google Scholar 

  25. E.T. Spiliotis, M. Kinoshita, W.J. Nelson, A mitotic septin scaffold required for mammalian chromosome congression and segregation. Science 307, 1781–1785 (2005)

    Article  PubMed  CAS  Google Scholar 

  26. M. Nakamura, X.Z. Zhou, K.P. Lu, Critical role for the EB1 and APC interaction in the regulation of microtubule polymerization. Curr. Biol. 11, 1062–1067 (2001)

    Article  PubMed  CAS  Google Scholar 

  27. A. Goncalves, D. Braguer, K. Kamath, L. Martello, C. Briand, S. Horwitz et al., Resistance to Taxol in lung cancer cells associated with increased microtubule dynamics. Proc. Natl. Acad. Sci. U. S. A. 98, 11737–11742 (2001)

    Article  PubMed  CAS  Google Scholar 

  28. L.A. Martello, P. Verdier-Pinard, H.J. Shen, L. He, K. Torres, G.A. Orr, S.B. Horwitz, Elevated levels of microtubule destabilizing factors in a Taxol-resistant/dependent A549 cell line with an alpha-tubulin mutation. Cancer Res. 63, 1207–1213 (2003)

    PubMed  CAS  Google Scholar 

  29. L. Cassimeris, Accessory protein regulation of microtubule dynamics throughout the cell cycle. Curr. Opin. Cell Biol. 11, 134–141 (1999)

    Article  PubMed  CAS  Google Scholar 

  30. R. Tournebize, S.S. Andersen, F. Verde, M. Doree, E. Karsenti, A.A. Hyman, Distinct roles of PP1 and PP2A-like phosphatases in control of microtubule dynamics during mitosis. EMBO J. 16, 5537–5549 (1997)

    Article  PubMed  CAS  Google Scholar 

  31. S.S.L. Andersen, E. Karsenti, XMAP310: a Xenopus rescue-promoting factor localized to the mitotic spindle. J. Cell Biol. 139, 975–983 (1997)

    Article  PubMed  CAS  Google Scholar 

  32. C.M. Field, D. Kellogg, Septins: cytoskeletal polymers or signalling GTPases? Trends Cell Biol. 9, 387–394 (1999)

    Article  PubMed  CAS  Google Scholar 

  33. J. Kusch, A. Meyer, M.P. Snyder, Y. Barral, Microtubule capture by the cleavage apparatus is required for proper spindle positioning in yeast. Genes Dev. 16, 1627–1639 (2002)

    Article  PubMed  CAS  Google Scholar 

  34. G. Drewes, A. Ebneth, E.M. Mandelkow, MAPs, MARKs and microtubule dynamics. Trends Biochem. Sci. 23, 307–311 (1998)

    Article  PubMed  CAS  Google Scholar 

  35. T.A. Cook, T. Nagasaki, G.G. Gundersen, Rho guanosine triphosphatase mediates the selective stabilization of microtubules induced by lysophosphatidic acid. J. Cell Biol. 141, 175–185 (1998)

    Article  PubMed  CAS  Google Scholar 

  36. K. Nagata, M. Inagaki, Cytoskeletal modification of Rho guanine nucleotide exchange factor activity: identification of a Rho guanine nucleotide exchange factor as a binding partner for Sept9b, a mammalian septin. Oncogene 24, 65–76 (2005)

    Article  PubMed  CAS  Google Scholar 

  37. J.R. Bowen, D. Hwang, X. Bai, D. Roy, E.T. Spiliotis, Septin GTPases spatially guide microtubule organization and plus end dynamics in polarizing epithelia. J. Cell Biol. 194, 187–197 (2011)

    Article  PubMed  CAS  Google Scholar 

  38. M.E. Sellin, L. Sandblad, S. Stenmark, M. Gullberg, Deciphering the rules governing assembly order of mammalian septin complexes. Mol. Biol. Cell 22, 3152–3164 (2011)

    Article  PubMed  CAS  Google Scholar 

  39. S. Amir, N.J. Mabjeesh, SEPT9_V1 protein expression is associated with human cancer cell resistance to microtubule-disrupting agents. Canc. Biol. Ther. 6, 1926–1931 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the financial support of QUB Faculty of Medicine, WellBeing of Women, Action Cancer, The Pathological Society of Great Britain and Ireland, The Hilary Curry Fund and NI HPSS R and D Office.

Conflict of interest

Richard Kennedy is also an employee of Almac Diagnostics, 19 Seagoe Industrial Estate, Craigavon, UK BT63 5QD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Hilary Russell.

Additional information

Alex D Chacko and Simon S McDade have contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chacko, A.D., McDade, S.S., Chanduloy, S. et al. Expression of the SEPT9_i4 isoform confers resistance to microtubule-interacting drugs. Cell Oncol. 35, 85–93 (2012). https://doi.org/10.1007/s13402-011-0066-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-011-0066-0

Keywords

Navigation