Skip to main content
Log in

Evaluation of chemical constituents of Stoechospermum marginatum and its potential for antioxidant and antimicrobial activity

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Seaweeds are considered one of the prosperous sources of bioactive compounds with enormous biological activities. Seaweed resources are still unexplored for its multiple activities. The present study is focused to evaluate the biochemical and structural composition, and antioxidant, antimicrobial activity of a brown seaweed Stoechospermum marginatum. Bioactive substances such as alkaloids, tannins, flavonoids, steroids, and phenols were determined by the qualitative analysis of phytochemicals. Moreover, quantitative analysis of seaweed extract obtained from Soxhlet extraction method using methanol as solvent revealed the significant existence of phenolic compound, flavonoids, and tannins. Phytochemical constituents of the extract were confirmed by UV visible spectroscopy, FTIR, NMR and HPLC analysis. This study revealed the presence of secondary metabolites, and functional groups that are responsible for biological activities. The antioxidant assays for S. marginatum used were as follows: DPPH radical scavenging activity (44.03 ± 0.307%), H2O2 scavenging activity (31.60%), metal chelating activity (47.33 ± 0.665%), ferrous iron reducing assay, and total antioxidant activity (47.92 ± 0.001%). The findings obtained from this study exhibited that the extracts yielded a great potential of antioxidant activities. Besides, bioactive extracts showed excellent antimicrobial activity against the tested pathogens. The extract had effective activity against Bacillus subtilis strain (13 mm inhibition zone). It is noticeable that the seaweed S. marginatum can be utilized as a novel substance to replace many toxic synthetic antioxidants and antimicrobial agents available in the pharmaceutical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Hmani I, Ktari L, Ismail A, M’dallel C, Bour ME (2021) Assessment of the antioxidant and antibacterial properties of red algae (Rhodophyta) from the north coast of Tunisia. EMJE 6:13. https://doi.org/10.1007/s41207-020-00222-7

    Article  Google Scholar 

  2. Lakshmanan K, Padmanabhan S (2022) Phytochemical analysis and antioxidant activity of seaweed extracts. J Pharm Innov 11(1):527–531

    Google Scholar 

  3. Kurup GM, Jose GM (2016) In vitro antioxidant properties of edible marine algae Sargassum swartzii, Ulva fasciata and Chaetomorpha antennina of Kerala Coast. J Pharma Reports 1(112):2

    Google Scholar 

  4. Ebrahimzadeh MA, Nabavi SM, Nabavi SF, Bahramian F, Bekhradnia AR (2010) Antioxidant and free radical scavenging activity of H. Officinalis l. Var. Angustifolius, v. Odorata, b. Hyrcana and c. Speciosum. Pak J Pharm Sci 23(1):29–34

    Google Scholar 

  5. Anjali KP, Sangeetha BM, Devi G, Raghunatha R, Dutta S (2019) Bioprospecting of seaweeds (Ulva lactuca and Stoechospermum marginatum): the compound characterization and functional applications in medicine-a comparative study. J Photochem Photobiol B Biol 200:111622. https://doi.org/10.1016/j.jphotobiol.2019.111622

    Article  Google Scholar 

  6. Bhuyar P, Rahim MHA, Sundararaju S, Ramaraj R, Maniam GP, Govindan N (2020) Synthesis of silver nanoparticles using marine macroalgae Padina sp. and its antibacterial activity towards pathogenic bacteria. BJBAS 9(1):1–15. https://doi.org/10.1186/s43088-019-0031-y

    Article  Google Scholar 

  7. Ramli ANM, Manap NWA, Bhuyar P, Azelee NIW (2020) Passion fruit (Passiflora edulis) peel powder extract and its application towards antibacterial and antioxidant activity on the preserved meat products. SN Appl Sci 2(10):1–11. https://doi.org/10.1007/s42452-020-03550-z

    Article  Google Scholar 

  8. Wongsa P, Bhuyar P, Tongkoom K, Spreer W, Müller J (2022) Influence of hot-air drying methods on the phenolic compounds/allicin content, antioxidant activity and α-amylase/α-glucosidase inhibition of garlic (Allium sativum L.). Eur Food Res Technol:1–13. https://doi.org/10.1007/s00217-022-04150-4

  9. Bhuyar P, Sundararaju S, Rahim MHA, Unpaprom Y, Maniam GP, Govindan N (2021) Antioxidative study of polysaccharides extracted from red (Kappaphycus alvarezii), green (Kappaphycus striatus) and brown (Padina gymnospora) marine macroalgae/seaweed. SN Appl Sci 3(4):1–9. https://doi.org/10.1007/s42452-021-04477-9

    Article  Google Scholar 

  10. Bhuyar P, Rahim MH, Sundararaju S, Maniam GP, Govindan N (2020) Antioxidant and antibacterial activity of red seaweed Kappaphycus alvarezii against pathogenic bacteria. Glob J Environ Sci 6(1):47–58. https://doi.org/10.22034/GJESM.2020.01.04

    Article  Google Scholar 

  11. Cagalj M, Skroza D, MdC R-D, Verardo V, Bassi D, Frleta R, Generalic Mekinic I, Tabanelli G, Šimat V (2022) Variations in the composition, antioxidant and antimicrobial activities of Cystoseira compressa during seasonal growth. Mar Drugs 20:64. https://doi.org/10.3390/md20010064

    Article  Google Scholar 

  12. El Shafay SM, Ali SS, El-Sheekh MM (2016) Antimicrobial activity of some seaweeds species from Red sea, against multidrug resistant bacteria. Egypt J Aquat Res 42(1):65–74

    Article  Google Scholar 

  13. Liu Z, Gao T, Yang Y, Meng F, Zhan F, Jiang Q, Sun X (2019) Anti-cancer activity of porphyran and carrageenan from red seaweeds. Molecules 24(23):4286. https://doi.org/10.3390/molecules24234286

    Article  Google Scholar 

  14. Sellimi S, Maalej H, Rekik DM, Benslima A, Ksouda G, Hamdi M, Sahnoun Z, Li S, Nasri M, Hajji M (2018) Antioxidant, antibacterial and in vivo wound healing properties of laminaran purified from Cystoseira barbata seaweed. Int J Biol Macromol 119:633–644. https://doi.org/10.1016/j.ijbiomac.2018.07.171

    Article  Google Scholar 

  15. Palanivel R, Azeez TB, Muthaya S (2017) Nutrient content, phytonutrient composition, alpha amylase, alpha glucosidase inhibition activity and antioxidant activity of the Stoechospermum Marginatum collected in pre monsoon season. TURJAS 5(3):275–280. https://doi.org/10.24925/turjaf.v5i3.275-280.966

    Article  Google Scholar 

  16. Ibrahim D, Lim SH (2015) In vitro antimicrobial activities of methanolic extract from marine alga Enteromorpha intestinalis. Asian Pac J Trop Biomed 5(9):785–788. https://doi.org/10.1016/j.apjtb.2015.07.012

    Article  Google Scholar 

  17. Moubayed NM, Al Houri HJ, Al Khulaifi MM, Al Farraj DA (2017) Antimicrobial, antioxidant properties and chemical composition of seaweeds collected from Saudi Arabia (Red Sea and Arabian Gulf). Saudi J Biol Sci 24(1):162–169. https://doi.org/10.1016/j.sjbs.2016.05.018

    Article  Google Scholar 

  18. Huang W, Tan H, Nie S (2022) Beneficial effects of seaweed-derived dietary fiber: highlights of the sulfated polysaccharides. Food Chem 373:131608. https://doi.org/10.1016/j.foodchem.2021.131608

    Article  Google Scholar 

  19. Chaves Filho GP, Lima MEGB, de Oliveira Rocha HA, Moreira SMG (2022) Role of sulfated polysaccharides from seaweeds in bone regeneration: a systematic review. Carbohydr Polym:119204. https://doi.org/10.1016/j.carbpol.2022.119204

  20. Hayashi K, Nakano T, Hashimoto M, Kanekiyo K, Hayashi T (2008) Defensive effects of a fucoidan from brown alga Undaria pinnatifida against herpes simplex virus infection. Int Immunopharmacol 8(1):109–116. https://doi.org/10.1016/j.intimp.2007.10.017

    Article  Google Scholar 

  21. Vishchuk OS, Ermakova SP, Zvyagintseva TN (2013) The fucoidans from brown algae of Far-Eastern seas: anti-tumor activity and structure–function relationship. Food Chem 141(2):1211–1217. https://doi.org/10.1016/j.foodchem.2013.03.065

    Article  Google Scholar 

  22. Shiau JP, Chuang YT, Yang KH, Chang FR, Sheu JH, Hou MF, Jeng JH, Tang JY, Chang HW (2022) Brown algae-derived fucoidan exerts oxidative stress-dependent antiproliferation on oral cancer cells. Antioxidants (Basel) 11(5):841. https://doi.org/10.3390/antiox11050841

    Article  Google Scholar 

  23. Du B, Zhao Q, Cheng C, Wang H, Liu Y, Zhu F, Yang Y (2022) A critical review on extraction, characteristics, physicochemical activities, potential health benefits, and industrial applications of fucoidan. eFood 3(4):e19

    Article  Google Scholar 

  24. Adhikari U, Mateu CG, Chattopadhyay K, Pujol CA, Damonte EB, Ray B (2006) Structure and antiviral activity of sulfated fucans from Stoechospermum marginatum. Phytochemistry 67(22):2474–2482

    Article  Google Scholar 

  25. Lakshmanan K, Padmanabhan S, SP P, RP AB, TA K (2022) In vitro anticancer activity of ethanolic extract of Stoechospermum marginatum against HT-29 human colon adenocarcinoma cells. Indian J Exp Biol 60:169–175

    Google Scholar 

  26. Rajathi FAA, Parthiban C, Kumar VG, Anantharaman P (2012) Biosynthesis of antibacterial gold nanoparticles using brown alga, Stoechospermum marginatum (kützing). Spectrochim Acta A Mol Biomol Spectrosc 99:166–173. https://doi.org/10.1016/j.saa.2012.08.081

    Article  Google Scholar 

  27. Mayzaud P, Chanut JP, Ackman RG (1989) Seasonal changes of the biochemical composition of marine particulate matter with special reference to fatty acids and sterols. Mar Ecol Prog Ser 56(1):189–204

    Article  Google Scholar 

  28. Khairy MH, El-Shafay MS (2013) Seasonal variations in the biochemical composition of some common sea 10weed species from the coast of Abu Qir Bay, Alexandria, Egypt. Oceanologia 55:435–452. https://doi.org/10.5697/oc.55-2.435

    Article  Google Scholar 

  29. Trease GE, Evans WC (1989) Phytochemical screening. In: Trease GE, Evans WC (eds) Textbook of Pharmacognosy, 10th edn. bailiere Tindal Limited, London, p 541

    Google Scholar 

  30. Peach K, Tracoy MV (1955) Modern methods of plant analysis, 4th edn. Springer, Heidelberg, Berlin, pp 373–374

    Book  Google Scholar 

  31. Abulude FO (2007) Phytochemical screening and mineral contents of leaves of some Nigerian woody plants. Res J Phytochem 1:33–39

    Article  Google Scholar 

  32. Roopashree TS, Dang R, Rani RHS, Narendra C (2008) Antibacterial activity of antipsoriatic herbs: Cassia tora, Momordica charantia andCalendula officinalis. IJARNP 1(3):20–28

    Google Scholar 

  33. Dardavila MM, Savvidou MG, Louli V, Magoulas K, Voutsas E (2022) Extraction of bioactive compounds from Ulva lactuca. Appl Sci 12:2117. https://doi.org/10.3390/app12042117

    Article  Google Scholar 

  34. Singleton VL, Rossi JA Jr (1965) Colorunetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. AJEV 16:144–158

    Google Scholar 

  35. Broadhurst RB, Jones WT (1978) Analysis of condensed tannins using acidified vanillin. J Sci Food Agric 29(9):788–794. https://doi.org/10.1002/jsfa.2740290908

    Article  Google Scholar 

  36. Paul JPJ (2012) Phytochemical studies on Turbinaria ornata (Turner) J.Ag. AJPTR 2(6):582–589

    Google Scholar 

  37. Paul JPJ (2018) Phytochemical analysis of methanolic extract of Caulerpa Scalpelliformis (R.BR.) WEB. V. Bosse Collected From Hare Island, Thoothukudi, Tamil Nadu, India. Indo Am J P Sci 5(3)

  38. Urrea-Victoria V, Furlan CM, dos Santos DYAC, Chow F (2022) Antioxidant potential of two Brazilian seaweeds in response to temperature: Pyropia spiralis (red alga) and Sargassum stenophyllum (brown alga). J Exp Mar Biol Ecol 549:151706. https://doi.org/10.1016/j.jembe.2022.151706

    Article  Google Scholar 

  39. Keser S, Celik S, Turkoglu S, Yilmaz O, Turkoglu I (2012) Hydrogen peroxide radical scavenging and total antioxidant activity of hawthorn. Chem J 2(1):9–12

    Google Scholar 

  40. Rudtanatip T, Pariwatthanakun C, Somintara S, Sakaew W, Wongprasert K (2022) Structural characterization, antioxidant activity, and protective effect against hydrogen peroxide-induced oxidative stress of chemically degraded Gracilaria fisheri sulfated galactans. Int J Biol Macromol 206:51–63. https://doi.org/10.1016/j.ijbiomac.2022.02.125

    Article  Google Scholar 

  41. Dinis TCP, Madeira VMC, Almeida LM (1994) Action of phenolic derivates (acetoaminophen, salycilate and 5-aminosalycilate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch Biochem Biophys 315:161–169. https://doi.org/10.4103/0974-8520

    Article  Google Scholar 

  42. Mezghani S, Csupor D, Bourguiba I, Hohmann J, Amir M, Bouaziz M (2016) Characterization of phenolic compounds of Ulva rigida (Chlorophycae) and its antioxidant activity. European J Med Plants 12(1):1–9. https://doi.org/10.9734/EJMP/2016/22935

    Article  Google Scholar 

  43. Janarthanan M, Kumar MS (2013) Qualitative and quantitative analysis of phytochemical studies on selected seaweeds Acanthopora Spicifera and Sargassum Wightii. Int J eng res dev 7(3):11–15

    Google Scholar 

  44. Britannica, The Editors of Encyclopaedia (2021). "tannin". Encyclopedia Britannica. https://www.britannica.com/science/tannin. Accessed 5 November 2022.

  45. Palaniappan N, Balasubramanian B, Arunkumar M, Pushparaj K, Rengasamy KR, Maluventhen V et al (2022) Anticancer, antioxidant, and antimicrobial properties of solvent extract of Lobophora variegata through in vitro and in silico studies with major phytoconstituents. Food Biosci 48:101822. https://doi.org/10.1016/j.fbio.2022.101822

    Article  Google Scholar 

  46. Sahu N, Saxena J (2013) Phytochemical analysis of Bougainvillea glabraChoisy by FTIR and UV-VIS spectroscopic analysis. Int J Pharm Sci Rev Res 21(1):196–198

    Google Scholar 

  47. Yin Z, Zhang W, Zhang J, Kang W (2017) Isolation, purification, structural analysis and coagulatory activity of water-soluble polysaccharides from Ligustrum lucidum Ait flowers. Chem Cent J 11(1):1–10. https://doi.org/10.1186/s13065-017-0332-y

    Article  Google Scholar 

  48. Enders AA, North NM, Fensore CM, Velez-Alvarez J, Allen HC (2021) Functional group identification for FTIR spectra using image-based machine learning models. Anal Chem 93(28):9711–9718

    Article  Google Scholar 

  49. Lingegowda DC, Kumar JK, Prasad AD, Zarei M, Gopal S (2012) FTIR spectroscopic studies on cleome gynandra-comparative analysis of functional group before and after extraction. Rom J Biophys 22(3-4):137–143

    Google Scholar 

  50. Veeraperumal S, Qiu HM, Zeng SS, Yao WZ, Wang BP, Liu Y, Cheong KL (2020) Polysaccharides from Gracilaria lemaneiformis promote the HaCaT keratinocytes wound healing by polarised and directional cell migration. Carbohydr Polym 241:116310. https://doi.org/10.1016/j.carbpol.2020.116310

    Article  Google Scholar 

  51. Chale-Dzul J, Moo-Puc R, Robledo D, Freile-Pelegrín Y (2015) Hepatoprotective effect of the fucoidan from the brown seaweed Turbinaria tricostata. J ApplPhycol 27(5):2123–2135

    Google Scholar 

  52. Clément MJ, Tissot B, Chevolot L, Adjadj E, Du Y, Curmi PA, Daniel R (2010) NMR characterization and molecular modeling of fucoidan showing the importance of oligosaccharide branching in its anticomplementary activity. Glycobiology 20(7):883–894

    Article  Google Scholar 

  53. Liu X (2021) Kwantlen Polytechnic University. 1H NMR Spectra and interpretation (Part I). https://chem.libretexts.org/@go/page/359598?pdf

  54. Wei W, Feng L, Bao WR, Ma DL, Leung CH, Nie SP, Han QB (2016) Structure characterization and immunomodulating effects of polysaccharides isolated from Dendrobium officinale. J Agric Food Chem 64(4):881–889. https://doi.org/10.1021/acs.jafc.5b05180

    Article  Google Scholar 

  55. Haniffa HM (2021) Brine shrimp cytotoxic activities of some methanolic extracts of marine algae and phytochemical analysis of green alga Ulva lactuca Linnaeus. JSC 2(02):40–46

    Google Scholar 

  56. Kothai R, Arul B, Anbazhagan V (2022) Anti-dengue activity of ZnO nanoparticles of crude fucoidan from brown seaweed S. marginatum. Appl Biochem Biotechnol:1–17. https://doi.org/10.1007/s12010-022-03966-w

  57. Lopes JF, Gaspar EM (2008) Simultaneous chromatographic separation of enantiomers, anomers and structural isomers of some biologically relevant monosaccharides. J Chromatogr A 1188(1):34–42. https://doi.org/10.1016/j.chroma.2007.12.016

    Article  Google Scholar 

  58. Cˇmiková N, Galovicˇová L, Miškeje M, Borotová P, Kluz M, Kaˇcániová M (2022) Determination of antioxidant, antimicrobial activity, heavy metals and elements content of seaweed extracts. Plants 11:1493. https://doi.org/10.3390/plants11111493

    Article  Google Scholar 

  59. Bhalodia NR, Nariya PB, Acharya RN, Shukla VJ (2013) In vitro antioxidant activity of hydro alcoholic extract from the fruit pulp of Cassia fistula Linn. Ayu 34(2):209–214

    Article  Google Scholar 

  60. Wong FC, Yong AL, Ting EP, Khoo SC, Ong HC, Chai TT (2014) Antioxidant, metal chelating, anti-glucosidase activities and phytochemical analysis of selected tropical medicinal plants. Iran J Pharm Res 13(4):1409–1415

    Google Scholar 

  61. Ahmed D, Khan MM, Saeed R (2015) Comparative analysis of phenolics, flavonoids, and antioxidant and antibacterial potential of methanolic, hexanic and aqueous extracts from Adiantum caudatum leaves. Antioxidants 4:394–409. https://doi.org/10.3390/antiox4020394

    Article  Google Scholar 

  62. Ismail A, Marjan ZM, Foong CW (2004) Total antioxidant activity and phenolic content in selected vegetables. Food chem 87(4):581–586. https://doi.org/10.1016/j.foodchem.2004.01.010

    Article  Google Scholar 

  63. Martín-Martín RP, Carcedo-Forés M, Camacho-Bolós P, García-Aljaro C, Angulo-Preckler C, Avila C, Garreta AG (2022) Experimental evidence of antimicrobial activity in Antarctic seaweeds: ecological role and antibiotic potential. Polar Biol 45(5):923–936. https://doi.org/10.1007/s00300-022-03036-1

    Article  Google Scholar 

  64. Mofeed J, Deyab M, Mohamed A, Moustafa M, Negm S, El-Bilawy E (2022) Antimicrobial activities of three seaweeds extract against some human viral and bacterial pathogens. Biocell 46(1):247. https://doi.org/10.32604/biocell.2022.015966

    Article  Google Scholar 

  65. Pérez MJ, Falqué E, Domínguez H (2016) Antimicrobial action of compounds from marine seaweed. Mar drugs 14(3):52. https://doi.org/10.3390/md14030052

    Article  Google Scholar 

  66. Shanmughapriya S, Manilal A, Sujith S, Selvin J, Kiran GS, Natarajaseenivasan K (2008) Antimicrobial activity of seaweeds extracts against multiresistant pathogens. Ann Microbiol 58(3):535–541

    Article  Google Scholar 

Download references

Funding

Author (Renganathan Rajkumar) is thankful to Indian National Science Academy, New Delhi, India, for providing INSA Visiting Scientist Fellowship (No. INSA/SP/VSP-21/2022-23) as a financial support.

Author information

Authors and Affiliations

Authors

Contributions

Naduvil Veettil Sarangi: investigation, original draft, formal analysis. Anandapadmanaban Baala Harini: writing, data interpretation, editing. Renganathan Rajkumar: planning, writing, execution. Ashok kumar Veeramuthu: writing, language correction, formatting.

Corresponding author

Correspondence to Renganathan Rajkumar.

Ethics declarations

Ethical approval

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarangi, N.V., Harini, A.B., Rajkumar, R. et al. Evaluation of chemical constituents of Stoechospermum marginatum and its potential for antioxidant and antimicrobial activity. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-03897-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-03897-4

Keywords

Navigation