Skip to main content

Advertisement

Log in

Application of iron-cobalt-copper (Fe-Co–Cu) trimetallic nanoparticles on anaerobic digestion (AD) for biogas production

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Anaerobic digestion (AD) is a commercial technology for bioenergy technology, which is a naturally occurring process of various microbial actions that break down organic waste materials and produce energy as biogas. Nevertheless, AD efficiency can be reduced due to substrate loading, ammonia inhibition, low methane yield, and impure feedstock. The supplementation of various metal nanoparticles (NPs) has shown significant results for higher biogas production in the AD process. Iron (Fe)–based NPs are an essential complement to microbes for higher biogas production in the AD process. In this study, Fe-Co–Cu TMNPs were synthesized via the chemical co-precipitation method using metal salt (Fe(NO3)3, Co(NO3)2, Cu(NO3)2), and precipitants. The structure and morphology of the TMNPs are characterized by Fourier-transformation (FTIR) spectroscopy, X-ray diffraction (XRD), and field-emission scanning electron microscopy (FESEM/EDX). Furthermore, the effect of Fe-Co–Cu trimetallic nanoparticles (TMNPs) in five different concentrations (0, 10, 20, 30, 40, and 50 mg/L) on palm oil mill effluent (POME)–based AD process for biogas production. The results showed that biogas yield increased by 5.66%, 7.54%, and 11.11% when using 20, 30, and 50 mg/L Fe-Co–Cu TMNPs. With the same TMNP concentration (10 mg/L and 40 mg/L), biogas yield was reduced by 26.41% and 11.11%, respectively. The economic feasibility and sustainability of Fe-Co–Cu TMNPs manufacturing and applying Fe-Co–Cu TMNPs in the AD process have been demonstrated. The assay showed the negative and positive effects of Fe-Co–Cu TMNPs in the POME-based AD process. The result of the present study indicates a possible new strategy for the preparation and design of NPs to enhance biogas production.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Madderla S, Ramasamy D, Sudhakar K, Kadirgama K, Samykano M, Harun WSW, Najafi G, et al (2021) Sustain Energy Technol Assess 44:1010588. https://doi.org/10.1016/j.seta.2021.10105

  2. Jacob JM, Ravindran R, Narayanan M et al (2021) Microalgae: a prospective low cost green alternative for nanoparticle synthesis. Curr Opin Environ Sci Heal 20:100163. https://doi.org/10.1016/j.coesh.2019.12.005

    Article  Google Scholar 

  3. Deepanraj B, Sivasubramanian V, Jayaraj S (2017) Effect of substrate pretreatment on biogas production through anaerobic digestion of food waste. Int J Hydrogen Energy 42:26522–26528. https://doi.org/10.1016/j.ijhydene.2017.06.178

    Article  CAS  Google Scholar 

  4. Souvannasouk V, Shen MY, Trejo M, Bhuyar P (2021) Biogas production from Napier grass and cattle slurry using a green energy technology. Int J Innov Res Sci Stud 4(3):174–180

    Google Scholar 

  5. Hussain I, Singh NB, Singh A et al (2016) Green synthesis of nanoparticles and its potential application. Biotechnol Lett 38:545–560. https://doi.org/10.1007/s10529-015-2026-7

    Article  CAS  PubMed  Google Scholar 

  6. Salavati-Niasari M, Khansari A, Davar F (2009) Synthesis and characterization of cobalt oxide nanoparticles by thermal treatment process. Inorganica Chim Acta 362:4937–4942. https://doi.org/10.1016/j.ica.2009.07.023

    Article  CAS  Google Scholar 

  7. Jamkhande PG, Ghule NW, Bamer AH, Kalaskar MG (2019) Metal nanoparticles synthesis: an overview on methods of preparation, advantages and disadvantages, and applications. J Drug Deliv Sci Technol 53:101174. https://doi.org/10.1016/j.jddst.2019.101174

    Article  CAS  Google Scholar 

  8. Valarmathi N, Ameen F, Almansob A et al (2020) Utilization of marine seaweed Spyridia filamentosa for silver nanoparticles synthesis and its clinical applications. Mater Lett 263:127244. https://doi.org/10.1016/j.matlet.2019.127244

    Article  CAS  Google Scholar 

  9. Ghotekar S, Pansambal S, Bilal M et al (2021) Environmentally friendly synthesis of Cr2O3 nanoparticles: characterization, applications and future perspective ─ a review. Case Stud Chem Environ Eng 3:100089. https://doi.org/10.1016/j.cscee.2021.100089

    Article  CAS  Google Scholar 

  10. Wang S, Yang H, Feng L et al (2013) A simple and inexpensive synthesis route for LiFePO4/C nanoparticles by co-precipitation. J Power Sources 233:43–46. https://doi.org/10.1016/j.jpowsour.2013.01.124

    Article  CAS  Google Scholar 

  11. Liu W-T (2006) Nanoparticles and their biological and environmental applications. J Biosci Bioeng 102:1–7. https://doi.org/10.1263/jbb.102.1

    Article  CAS  PubMed  Google Scholar 

  12. Abdelsalam E, Samer M, Attia YA et al (2017) Effects of Co and Ni nanoparticles on biogas and methane production from anaerobic digestion of slurry. Energy Convers Manag 141:108–119. https://doi.org/10.1016/j.enconman.2016.05.051

    Article  CAS  Google Scholar 

  13. Kassab G, Khater D, Odeh F et al (2020) Impact of nanoscale magnetite and zero valent iron on the batch-wise anaerobic co-digestion of food waste and waste-activated sludge. Water (Switzerland) 12:1–19. https://doi.org/10.3390/W12051283

    Article  Google Scholar 

  14. Chu CY, Zheng JL, Chen TH, Bhuyar P (2021) High performance of biohydrogen production in packed-filter bioreactor via optimizing packed-filter position. Int J Environ Res Public Health 18(14):7462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zamri MFMA, Hasmady S, Akhiar A et al (2021) A comprehensive review on anaerobic digestion of organic fraction of municipal solid waste. Renew Sustain Energy Rev 137:110637. https://doi.org/10.1016/j.rser.2020.110637

    Article  CAS  Google Scholar 

  16. Krishnan S, Suzana BN, Wahid ZA et al (2020) Optimization of operating parameters for xylose reductase separation through ultrafiltration membrane using response surface methodology. Biotechnol Reports 27:e00498. https://doi.org/10.1016/j.btre.2020.e00498

    Article  Google Scholar 

  17. Nasrullah M, Singh L, Krishnan S et al (2020) Electrocoagulation treatment of raw palm oil mill effluent: effect of operating parameters on floc growth and structure. J Water Process Eng 33:101114. https://doi.org/10.1016/j.jwpe.2019.101114

    Article  Google Scholar 

  18. Jadhava P, Muhammad N, Bhuyar P et al (2021) A review on the impact of conductive nanoparticles (CNPs) in anaerobic digestion: applications and limitations. Environ Technol Innov 23:101526. https://doi.org/10.1016/j.eti.2021.101526

    Article  CAS  Google Scholar 

  19. Juntupally S, Begum S, Allu SK et al (2017) Relative evaluation of micronutrients (MN) and its respective nanoparticles (NPs) as additives for the enhanced methane generation. Bioresour Technol 238:290–295. https://doi.org/10.1016/j.biortech.2017.04.049

    Article  CAS  PubMed  Google Scholar 

  20. Wang C, Zhang Y, Wang Y, Zhao Y (2017) Comparative studies of non-noble metal modified mesoporous M-Ni-CaO-ZrO2(M = Fe Co, Cu) catalysts for simulated biogas dry reforming. Chinese J Chem 35:113–120. https://doi.org/10.1002/cjoc.201600609

    Article  CAS  Google Scholar 

  21. Mu H, Chen Y (2011) Long-term effect of ZnO nanoparticles on waste activated sludge anaerobic digestion. Water Res 45:5612–5620. https://doi.org/10.1016/j.watres.2011.08.022

    Article  CAS  PubMed  Google Scholar 

  22. Wang D, Chen Y (2016) Critical review of the influences of nanoparticles on biological wastewater treatment and sludge digestion. Crit Rev Biotechnol 36:816–828

    Article  CAS  PubMed  Google Scholar 

  23. Mudhoo A, Kumar S (2013) Effects of heavy metals as stress factors on anaerobic digestion processes and biogas production from biomass. Int J Environ Sci Technol 10:1383–1398

    Article  CAS  Google Scholar 

  24. Zainal BS, Zinatizadeh AA, Chyuan OH et al (2018) Effects of process, operational and environmental variables on biohydrogen production using palm oil mill effluent (POME). Int J Hydrogen Energy 43:10637–10644. https://doi.org/10.1016/j.ijhydene.2017.10.167

    Article  CAS  Google Scholar 

  25. Allaedini G, Tasirin SM, Aminayi P (2016) Synthesis of Fe–Ni–Ce trimetallic catalyst nanoparticles via impregnation and co-precipitation and their application to dye degradation. Chem Pap 70:231–242. https://doi.org/10.1515/chempap-2015-0190

    Article  CAS  Google Scholar 

  26. Razmara Z, Razmara F (2019) Synthesis and magnetic properties of Fe-Ni-Zn, Fe-Co-Zn and Co-Ni-Zn nanoparticles by co-precipitation method. Inorg Nano-Metal Chem 49:163–168. https://doi.org/10.1080/24701556.2019.1599400

    Article  CAS  Google Scholar 

  27. Boshagh F, Rostami K (2020) A review of measurement methods of biological hydrogen. Int J Hydrogen Energy 45:24424–24452. https://doi.org/10.1016/j.ijhydene.2020.06.079

    Article  CAS  Google Scholar 

  28. Shen MY, Chu CY, Sawatdeenarunat C, Bhuyar P (2022). Production, downstream processing, and characterization of polyhydroxyalkanoates (PHAs) boosted by pyruvate supplement using mixed microbial culture (MMC) and organic wastewater. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-021-02170-w

  29. Chu CY, Zheng JL, Bhuyar P (2022) Enhancement of biohydrogen production by employing a packed-filter bioreactor (PFBR) utilizing sulfite-rich organic effluent obtained from a washing process of beverage manufactures. Biomass Bioenerg 161:106451. https://doi.org/10.1016/j.biombioe.2022.106451

    Article  CAS  Google Scholar 

  30. Khan I, Saeed K, Khan I (2019) Nanoparticles: properties, applications and toxicities. Arab J Chem 12:908–931. https://doi.org/10.1016/j.arabjc.2017.05.011

    Article  CAS  Google Scholar 

  31. Tiwary KP, Ali F, Choubey SK et al (2021) Doping effect of Ni2+ ion on structural, morphological and optical properties of Zinc sulfide nanoparticles synthesized by microwave assisted method. Optik (Stuttg) 227:166045. https://doi.org/10.1016/j.ijleo.2020.166045

    Article  CAS  ADS  Google Scholar 

  32. Lei Y, Huo J, Liao H (2018) Fabrication and catalytic mechanism study of CeO2-Fe2O3-ZnO mixed oxides on double surfaces of polyimide substrate using ion-exchange technique. Mater Sci Semicond Process 74:154–164. https://doi.org/10.1016/j.mssp.2017.10.032

    Article  CAS  Google Scholar 

  33. Elango M, Deepa M, Subramanian R, Musthafa AM (2018) Synthesis, characterization, and antibacterial activity of polyindole/Ag–Cuo nanocomposites by reflux condensation method. Polym Plast Technol Eng 57:1440–1451. https://doi.org/10.1080/03602559.2017.1410832

    Article  CAS  Google Scholar 

  34. Wang S, Wang R, Chang J et al (2018) Self-supporting Co3O4/graphene hybrid films as binder-free anode materials for lithium ion batteries. Sci Rep 8:3182. https://doi.org/10.1038/s41598-018-21436-4

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  35. Valentini F, Piermatti O, Vaccaro L (2021) Metal Nanoparticles as Sustainable Tools for C–N Bond Formation via C–H Activation. Molecules, 26(13):4106. https://doi.org/10.3390/molecules26134106

  36. Kobayashi Y, Maeda T, Yasuda Y, Morita T (2016) Metal–metal bonding process using cuprous oxide nanoparticles. J Mater Res Technol 5:345–352. https://doi.org/10.1016/j.jmrt.2016.05.007

    Article  CAS  Google Scholar 

  37. Mu H, Chen Y, Xiao N (2011) Effects of metal oxide nanoparticles (TiO 2, Al 2O 3, SiO 2 and ZnO) on waste activated sludge anaerobic digestion. Bioresour Technol 102:10305–10311. https://doi.org/10.1016/j.biortech.2011.08.100

    Article  CAS  PubMed  Google Scholar 

  38. Ivanov V, Stabnikov V, Stabnikova O et al (2020) Iron-containing clay and hematite iron ore in slurry-phase anaerobic digestion of chicken manure. AIMS Mater Sci 6:821–832. https://doi.org/10.3934/matersci.2019.5.821

    Article  Google Scholar 

  39. Jadhav P, Bin KZ, Zularisam AW et al (2022) The role of iron-based nanoparticles (Fe-NPs) on methanogenesis in anaerobic digestion (AD) performance. Environ Res 204:112043. https://doi.org/10.1016/j.envres.2021.112043

    Article  CAS  PubMed  Google Scholar 

  40. Noonari AA, Mahar RB, Sahito AR, Brohi KM (2019) Anaerobic co-digestion of canola straw and banana plant wastes with buffalo dung: effect of Fe3O4 nanoparticles on methane yield. Renew Energy 133:1046–1054. https://doi.org/10.1016/j.renene.2018.10.113

    Article  CAS  Google Scholar 

  41. Kirschling TL, Gregory KB, Minkley EG, J, et al (2010) Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials. Environ Sci Technol 44:3474–3480. https://doi.org/10.1021/es903744f

    Article  CAS  PubMed  ADS  Google Scholar 

  42. García A, Delgado L, Torà JA et al (2012) Effect of cerium dioxide, titanium dioxide, silver, and gold nanoparticles on the activity of microbial communities intended in wastewater treatment. J Hazard Mater 199–200:64–72. https://doi.org/10.1016/j.jhazmat.2011.10.057

    Article  CAS  PubMed  Google Scholar 

  43. Abdelsalam E, Samer M, Attia YA et al (2016) Comparison of nanoparticles effects on biogas and methane production from anaerobic digestion of cattle dung slurry. Renew Energy 87:592–598. https://doi.org/10.1016/j.renene.2015.10.053

    Article  CAS  Google Scholar 

  44. Deepanraj B, Sivasubramanian V, Jayaraj S (2017) Multi-response optimization of process parameters in biogas production from food waste using Taguchi – Grey relational analysis. Energy Convers Manag 141:429–438. https://doi.org/10.1016/j.enconman.2016.12.013

    Article  CAS  Google Scholar 

  45. Jadhav P, Nasrullah M, Zularisam AW, Bhuyar P, Krishnan S, and Mishra P (2021) Direct interspecies electron transfer performance through nanoparticles (NPs) for biogas production in the anaerobic digestion process. International Journal of Environmental Science and Technology, 1–13

  46. Gonzalez-Estrella J, Puyol D, Sierra-Alvarez R, Field JA (2015) Role of biogenic sulfide in attenuating zinc oxide and copper nanoparticle toxicity to acetoclastic methanogenesis. Journal of Hazardous Materials 283:755–763. https://doi.org/10.1016/j.jhazmat.2014.10.030

  47. Ochoa-Herrera V, León G, Banihani Q et al (2011) Toxicity of copper(II) ions to microorganisms in biological wastewater treatment systems. Sci Total Environ 412–413:380–385. https://doi.org/10.1016/j.scitotenv.2011.09.072

    Article  CAS  PubMed  ADS  Google Scholar 

  48. Ollila K (2013) Copper corrosion experiments under anoxic conditions. Swedish Nuclear Fuel and Waste Management Co

  49. Benjamin MM (2014) Water chemistry. Waveland Press, Long Grove

  50. Wang S, Chen L, Yang H, Liu Z (2021) Influence of zinc oxide nanoparticles on anaerobic digestion of waste activated sludge and microbial communities. RSC Adv 11:5580–5589. https://doi.org/10.1039/D0RA08671A

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  51. Dong Z, Guo H, Zhang M et al (2022) Enhancing biomethane yield of coal in anaerobic digestion using iron/copper nanoparticles synthesized from corn straw extract. Fuel 319:123664. https://doi.org/10.1016/j.fuel.2022.123664

    Article  CAS  Google Scholar 

  52. Mustapha NA, Toya S, Maeda T (2020) Effect of Aso limonite on anaerobic digestion of waste sewage sludge. AMB Express 10:74. https://doi.org/10.1186/s13568-020-01010-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Olaya W, Dilawar H, Eskicioglu C (2021) Comparative response of thermophilic and mesophilic sludge digesters to zinc oxide nanoparticles. Environ Sci Pollut Res 28:24521–24534. https://doi.org/10.1007/s11356-020-09067-7

    Article  CAS  Google Scholar 

  54. Jeevanandam J, Barhoum A, Chan YS et al (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 9:1050–1074. https://doi.org/10.3762/bjnano.9.98

    Article  PubMed  PubMed Central  Google Scholar 

  55. Serrano E, Rus G, García-Martínez J (2009) Nanotechnology for sustainable energy. Renew Sustain Energy Rev 13:2373–2384. https://doi.org/10.1016/j.rser.2009.06.003

    Article  CAS  Google Scholar 

  56. Murugavelu M, Karthikeyan B (2014) Study of Ag–Pd bimetallic nanoparticles modified glassy carbon electrode for detection of L-cysteine. Superlattices Microstruct 75:916–926. https://doi.org/10.1016/j.spmi.2014.09.025

    Article  CAS  ADS  Google Scholar 

  57. Abbati de Assis C, Greca LG, Ago M et al (2018) Techno-economic assessment, scalability, and applications of aerosol lignin micro- and nanoparticles. ACS Sustain Chem Eng 6:11853–11868. https://doi.org/10.1021/acssuschemeng.8b02151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Aziz NIHA, Hanafiah MM, Gheewala SH (2019) A review on life cycle assessment of biogas production: challenges and future perspectives in Malaysia. Biomass Bioenerg 122:361–374. https://doi.org/10.1016/j.biombioe.2019.01.047

    Article  CAS  Google Scholar 

  59. Zhu X, Blanco E, Bhatti M, Borrion A (2021) Impact of metallic nanoparticles on anaerobic digestion: a systematic review. Sci Total Environ 757:143747. https://doi.org/10.1016/j.scitotenv.2020.143747

    Article  CAS  PubMed  ADS  Google Scholar 

  60. Auffan M, Achouak W, Rose J et al (2008) Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environ Sci Technol 42:6730–6735. https://doi.org/10.1021/es800086f

    Article  CAS  PubMed  ADS  Google Scholar 

Download references

Funding

This work was financially supported by the Ministry of Higher Education under the Fundamental Research Grant Scheme for Research Acculturation of Early Career Researchers (FRGS-RACER) no. RACER/1/2019/TK10/UMP/1 and Education Malaysia via Research Grant (FRGS/1/2019/TK07/02/5) through Universiti Malaysia Pahang (UMP) grant no. RDU192614 and RDU1901202, respectively.

Author information

Authors and Affiliations

Authors

Contributions

Pramod Jadhav: conceptualization, writing—original draft; Zaied Bin Khalid: writing—review and editing; Santhana Krishnan: writing—review and editing, formal analysis, conceptualization; Prakash Bhuyar: review and editing, formal analysis; A.W. Zularisam: project administration; Abdul Syukor Abd Razak: visualization; Mohd Nasrullah: supervision, funding acquisition.

Corresponding author

Correspondence to Mohd Nasrullah.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jadhav, P., Khalid, Z.B., Krishnan, S. et al. Application of iron-cobalt-copper (Fe-Co–Cu) trimetallic nanoparticles on anaerobic digestion (AD) for biogas production. Biomass Conv. Bioref. 14, 7591–7601 (2024). https://doi.org/10.1007/s13399-022-02825-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02825-2

Keywords

Navigation