Skip to main content
Log in

Alcoholic concentrate of microalgal biomass modulates cytotoxicity, apoptosis, and gene expression studied in hepatocellular carcinoma

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract 

In the present study, extracts from three microalgae Chlorella vulgaris (CV), Nannochloropsis oculata (NO), and Thalassiosira weissflogii (TW) have been studied to identify its antiproliferative activity and elucidate its mechanism to induce apoptosis in HepG2 cell lines. The cytotoxicity of these extracts was experimented at 10, 100, 200, 400, 500, and 1000 μg/mL concentrations for 24, 48, and 72 h to calculate the IC50 values for their corresponding treatment. The gene and protein expression were analyzed using real-time qPCR and Western blot analysis for apoptotic and cell cycle markers respectively. The cytotoxicity results of NO were recorded as the lowest during the 48- and 72-h treatment with 357.7 and 242.34 μg/mL respectively compared to CV and TW. NO and TW treatment showed elevated expression of Tp53 and Bax by 5.4 and 3.5 times respectively. NO treatment at both concentrations (400 and 100 μg/mL) increased the expression of cleaved caspase 3 and 8 proteins while CV and TW showed elevated expression of these proteins only at higher concentrations. Therefore, the reports of the present study suggest that these three microalgal extracts induced apoptosis through an extrinsic pathway in HepG2 cells thereby inhibiting cancer cell proliferation and can be a potential anticancer agent for hepatocarcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yoon SK (2018) Molecular mechanism of hepatocellular carcinoma. Hepatoma Re 4 (42) https://doi.org/10.20517/2394-5079.2018.23

  2. Brabletz T, Kalluri R, Nieto MA, Weinberg RA (2018) EMT in cancer. Nat. Rev. Cancer 18, 128 (20I8), https://doi.org/10.1038/nrc.2017.118

  3. Hernandez-Gea V, Toffanin S, Friedman SL, Lovet JM (2013) Role of the microenvironment in the pathogenesis and treatment of hepatocellular carcinoma. Gastroenterol 144:512–527. https://doi.org/10.1053/j.gastro.2013.01.002

    Article  Google Scholar 

  4. Wu Q, Xu L, Wang C, Fan W, Yan H, Li Q (2018) MicroRNA-124-3p represses cell growth and cell motility by targeting EphA2 in glioma. Biochem. Biophys. Res Commun 503:2436–2442. https://doi.org/10.1016/j.bbrc.2018.06.173

    Article  Google Scholar 

  5. Lurje I, Czigany Z, Bednarsch J, Roderburg C, Isfort P, Neumann UP, Lurje G (2019)Treatment strategies for hepatocellular carcinoma—a multidisciplinary approach. Int J Mol Sci 20 (2019) 1465; https://doi.org/10.3390/ijms20061465

  6. Sapisochin G, Barry A, Doherty M, Fischer S, Goldaracena N, Rosales R, Russo M, Beecroft R, Ghanekar A, Bhat M, Brierley J (2017) Stereotactic body radiotherapy vs. TACE or RFA as a bridge to transplant in patients with hepatocellular carcinoma. An intention-to-treat analysis J Hepatol 67:92–99

    Google Scholar 

  7. Vogel A, Saborowski A (2020) Current strategies for the treatment of intermediate and advanced hepatocellular carcinoma, Cancer Treat. Rev 82, 101946. https://doi.org/10.1016/j.ctrv.2019.101946.

  8. Martins A, Vieira H, Gaspar H, Santos S (2014) Marketed marine natural products in the pharmaceutical and cosmeceutical industries: tips for success. Mar drugs 12:1066–1101

    Article  Google Scholar 

  9. Rumin J, Nicolau E, de Oliveira Junior RG, Grünewald CF, Picot L (2020) Analysis of scientific research driving microalgae market opportunities in Europe. Mar Drugs 18(5):264. https://doi.org/10.3390/md18050264

    Article  Google Scholar 

  10. Talero E, García-Mauriño S, Ávila-Román J, Rodríguez-Luna A, Alcaide A, Motilva V (2015) Bioactive compounds isolated from microalgae in chronic inflammation and cancer. Mar drugs 13:6152–6209

    Article  Google Scholar 

  11. Lee JC, Hou MF, Huang HW, Chang FR, Yeh FR, Tang CC, Chang JY (2013) Marine algal natural products with anti-oxidative, anti-inflammatory, and anti-cancer properties. Cancer Cell Int 13:1–7

    Article  Google Scholar 

  12. Kotake-Nara E, Kushiro M, Zhang H, Sugawara T, Miyashita K, Nagao A (2001) Carotenoids affect proliferation of human prostate cancer cells. J Nutr 131, 306. https://doi.org/10.1093/jn/131.12.3303

  13. Moore RE (1996) Cyclic peptides and depsipeptides from cyanobacteria: a review. J Indust Microbiol 16:134–143. https://doi.org/10.1007/BF01570074

    Article  Google Scholar 

  14. Banker R, Carmeli S (1998) Tenuecyclamides A-D, cyclic hexapeptides from the cyanobacterium Nostoc spongiaeformevar, tenue. J Nat Prod 61:1248–1251. https://doi.org/10.1021/np980138j

    Article  Google Scholar 

  15. Oftedal L, Selheim F, Wahlsten M, Sivonen K, Døskeland SO, Herfindal L (2010) Marine benthic cyanobacteria contain apoptosis-inducing activity synergizing with daunorubicin to kill leukemia cells, but not cardiomyocytes. Mar Drugs 8:2659–2672. https://doi.org/10.3390/md8102659

    Article  Google Scholar 

  16. Pang M, Gao CL, Wu ZX, Lv N, Wang ZL, Tang XX, Qu P (2010) Apoptosis induced by yessotoxins in Hela human cervical cancer cells in vitro. Mol Med Rep 3:629–634. https://doi.org/10.3892/mmr_00000307

    Article  Google Scholar 

  17. Stevenson CS, Capper EA, Roshak AK, Marquez B, Eichman C, Jackson JR, Mattern M, Gerwick WH, Jacobs RS, Marshall LA (2002) The identification and characterization of the marine natural product scytonemin as a novel antiproliferative pharmacophore. J Pharmacol Exp Ther 303 (2), 858–866. https://doi.org/10.1124/jpet.102.036350

  18. Hau AM, Greenwood JA, Löhr CV, Serrill JD, Proteau PJ, Ganley IG, McPhail KL, Ishmael JE (2013) Coibamide A induces mTOR-independent autophagy and cell death in human glioblastoma cells. PLoS One. 8, e65250. https://doi.org/10.1371/journal.pone.0065250

  19. Bechelli J, Coppage M, Rosell K, Liesveld J (2011) Cytotoxicity of algae extracts on normal and malignant cells Leuk Res Treat 373519. https://doi.org/10.4061/2011/373519

  20. Hong J, Luesch LH (2012) From discovery to broad-spectrum therapy. Nat Prod Rep 29:449–456. https://doi.org/10.1039/c2np00066k

    Article  Google Scholar 

  21. Phang SM (2010) Potential products from tropical algae and seaweeds, especially with reference to Malaysia. Malay J Sci 29:160–166. https://doi.org/10.22452/mjs.vol29no2.7

  22. Panahi Y, Mostafazadeh B, Abrishami A, Saadat A, Beiraghdar F, Tavana S, Pishgoo B, Parvin A, Sahebkar A (2013) Investigation of the effects of Chlorella vulgaris supplementation on the modulation of oxidative stress in apparently healthy smokers. Clin Lab 59:579–587

    Google Scholar 

  23. Zheng L, Oh ST, Jeon JY, Moon BH, Kwon HS, Lim SU, An BK, Kang CW (2012) The dietary effects of fermented Chlorella vulgaris (CBT®) on production performance, liver lipids and intestinal microflora in laying hens, Asian-Australas. J Anim Sci25, 261. https://doi.org/10.5713/ajas.2011.11273

  24. Natrah FMI, Yusoff FM, Shariff M, Abas F, Mariana NS (2007) Screening of Malaysian indigenous microalgae for antioxidant properties and nutritional value. J Appl Phycol 19: 711–718. https://doi.org/10.1007/s10811-007-9192-5

  25. Aliahmat NS, Noor MRM, Yusof WJW, Makpol S, Ngah WZW, Yusof YM (2012) Antioxidant enzyme activity and malondialdehyde levels can be modulated by Piper betle, tocotrienol rich fraction and Chlorella vulgaris in aging C57BL/6 mice. J Clinics 67:1447–1454. https://doi.org/10.6061/clinics/2012(12)16

    Article  Google Scholar 

  26. Makpol S, Yeoh TW, Ruslam FAC, Arifin KT, Yusof YAM (2013) Comparative effect of Piper betle, Chlorella vulgaris and tocotrienol-rich fraction on antioxidant enzymes activity in cellular ageing of human diploid fibroblasts. BMC Compl Altern Med 13:1–10. https://doi.org/10.1186/1472-6882-13-210

    Article  Google Scholar 

  27. Shibata S, Natori Y, Nishihara T, Tomisaka K, Matsumoto K, Sansawa H, Nguyen VC (2003) Antioxidant and anti-cataract effects of Chlorella on rats with streptozotocin-induced diabetes. J Nutr Sci vitaminol 49:334–339. https://doi.org/10.3177/jnsv.49.334

    Article  Google Scholar 

  28. Jeong H, Kwon HJ, Kim MK (2009) Hypoglycemic effect of Chlorella vulgaris intake in type 2 diabetic Goto-Kakizaki and normal Wistar rats. Nutr Res Practice 3:23–30

    Article  Google Scholar 

  29. Aizzat O, Yap SW, Sopiah H, Madiha MM, Hazreen M, Shailah WW, Junizam x AN, Syaidah D, Srijit x M, Musalmah x M, Anum x MY  (2010) Modulation of oxidative stress by Chlorella vulgaris in streptozotocin (STZ) induced diabetic Sprague-Dawley rats Adv Med Sci 281–288. https://doi.org/10.2478/v10039-010-0046-z

  30. Azamai S, Sulaiman SHM, Habib ML, Looi S, Das NAA, Hamid WZW, Ngah YAM (2009) Chlorella vulgaris triggers apoptosis in hepatocarcinogenesis-induced rats. J Zhejiang Uni Sci B 10, 14–21. https://doi.org/10.1631/jzus.B0820168

  31. Yusof YAM, Saad SM, Makpol S, Shamaan NA, Ngah WZW (2010) Hot water extract of Chlorella vulgaris induced DNA damage and apoptosis. J Clinics 65:1371–1377. https://doi.org/10.1590/S1807-59322010001200023

    Article  Google Scholar 

  32. Wang HM, Pan JL, Chen CY, Chiu CC, Yang MH, Chang JS (2010) Chang, Identification of anti-lung cancer extract from Chlorella vulgaris CC by antioxidant property using supercritical carbon dioxide extraction. Process Biochem 45:1865–1872. https://doi.org/10.1016/j.procbio.2010.05.023

    Article  Google Scholar 

  33. Vecina JF, Oliveira AG, Araujo TG, Baggio SR, Torello CO, Saad MJA, de Souza Queiroz ML, Chlorella modulates insulin signaling pathway and prevents high-fat diet-induced insulin resistance in mice. Life Sci 24 (95):45–52

  34. Ebrahimzadeh MA, Khalili M, AA Dehpour AA (2018) Antioxidant activity of ethyl acetate and methanolic extracts of two marine algae, Nannochloropsis oculata and Gracilaria gracilis-an in vitro assay. Braz. J Pharm Sci 54, e17280. https://doi.org/10.1590/s2175-97902018000117280

  35. Yadav M, Rani K, Chauhan MK, Panwar A (2020) Sandal, Evaluation of mercury adsorption and removal efficacy of pulverized Chlorella (C. vulgaris). J Appl Phycol 32: 1–10. https://doi.org/10.1007/s10811-020-02052-0

  36. de Melo RG, de Andrade AF, Bezerra RP, Marques DDAV, da Silva VA, Paz ST, de Lima Filho JL, Porto ALF (2019) Hydrogel-based Chlorella vulgaris extracts: a new topical formulation for wound healing treatment. J Appl Phycol 31:3653–3663. https://doi.org/10.1007/s10811-019-01837-2

    Article  Google Scholar 

  37. Durmaz Y (2007) Vitamin E (α-tocopherol) production by the marine microalgae Nannochloropsis oculata (Eustigmatophyceae) in nitrogen limitation. Aquaculture 272:717–722. https://doi.org/10.1016/j.aquaculture.2007.07.213

    Article  Google Scholar 

  38. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96. https://doi.org/10.1263/jbb.101.87

    Article  Google Scholar 

  39. Samarakoon KW, Ko JY, Rahman SM, Lee JH, Kang MC, Kwon ON, Lee JB, Jeon YJ (2013) In vitro studies of anti-inflammatory and anticancer activities of organic solvent extracts from cultured marine microalgae. Algae 28:111–119. https://doi.org/10.4490/algae.2013.28.1.111

    Article  Google Scholar 

  40. Letsiou S, Kalliampakou K, Gardikis K, Mantecon K, Infante L, Chatzikonstantinou M, Labrou NE, Flemetakis E (2017) Skin protective effects of Nannochloropsis gaditana extract on H2O2-stressed human dermal fibroblasts. Front Mar Sci 4:221. https://doi.org/10.3389/fmars.2017.00221

  41. Kim KN, Cha SH, Kim EA, Kang MC, Yang HM, Kim MJ, Yang H, Roh SW, Jung WK, Heo SJ, Kim D (2012) Neuroprotective effects of Nannochloropsis oculata against AAPH-induced oxidative DNA damage in HT22 cells. Int J Pharmacol 8:527–534. https://doi.org/10.3923/ijp.2012.527.534

    Article  Google Scholar 

  42. Sanjeewa KKA, Fernando IPS, Samarakoon SW, Lakmal HHC, Kim EA, Kwon ON, Dilshara MG, Lee JB, Jeon YJ (2016) Anti-inflammatory and anti-cancer activities of sterol rich fraction of cultured marine microalga Nannochloropsisoculata. Algae 31:277–287. https://doi.org/10.4490/algae.2016.31.6.29

    Article  Google Scholar 

  43. Nasirian F, Sarir H, Moradi-kor N (2019) Antihyperglycemic and antihyperlipidemic activities of Nannochloropsis oculata microalgae in Streptozotocin-induced diabetic rats. Biomol Concepts 10:37–43. https://doi.org/10.1515/bmc-2019-0004

    Article  Google Scholar 

  44. Manzo E, Gallo C, Sartorius R, Nuzzo G, Sardo A, De Berardinis P, Cutignano A (2019) Immunostimulatory phosphatidyl monogalactosyl diacylglycerols (PGDG) from the marine diatom Thalassiosira weissflogii: inspiration for a novel synthetic toll-like receptor 4 agonist. Mar drugs 17:103. https://doi.org/10.3390/md17020103

  45. Shalini AA, Syed Ali M, Anuradha V, Yogananth N, Bhuvana P (2019) GCMS analysis and invitro antibacterial and anti-inflammatory study on methanolic extract of Thalassiosira weissflogii, Biocatal. Agric Biotechnol 19:101148. https://doi.org/10.1016/j.bcab.2019.101148.

  46. Bhuvana P, Sangeetha P, Anuradha V, Syed Ali M (2019) Spectral characterization of bioactive compounds from microalgae: N. oculata and C. vulgaris, Biocatal Agric Biotechnol 19:101148. https://doi.org/10.1016/j.bcab.2019.101094

  47. Ji H (2010) Lysis of cultured cells for immunoprecipitation. Cold Spring Harb Protoc. 2010, pdb prot5466

  48. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 5:402–408

    Article  Google Scholar 

  49. Barkia I, Saari N, Manning SR (2019) Microalgae for high-value products towards human health and nutrition. Mar Drugs 17:304. https://doi.org/10.3390/md17050304

  50. Balaji M, Thamilvanan D, Vinayagam SC, Balakumar BS (2017) Anticancer, antioxidant activity and gc-ms analysis of selected micro algal members of chlorophyceae. Int J Pharm Sci Res 13:3302–3314. https://doi.org/10.13040/IJPSR.0975-8232, 8, 3302–14

  51. Mohd-Syahril MZ, Roshani O, Nurhasyimah R, Mohamad Hafiz MS, Sharida MD, Ahmed HY (2011) Screening of anticancer activities of crude extracts of unicellular green algae (Chlorella vulgaris) and filamentous blue green algae (Spirulina platensis) on selected cancer cell lines. In International Conference on Applied Sciences, Mathematics and Humanities. Appl Sci 2011

  52. Qasem W, Mohamed EA, Hamed AA, El-Sayed AEKB, Salah El Din RA (2016) Antimicrobial and anticancer activity of some microalgae species. Egypt J Phyco 17:33–49

    Article  Google Scholar 

  53. Gupta P, Sinha D, Bandopadhyay R (2014) Isolation and screening of marine microalgae Chlorella sp. PR-1 for anticancer activity. Int J Pharm Pharm Sci 6(10):517–519

  54. Shanab SM, Mostafa SS, Shalaby EA, Mahmoud GI (2012) Aqueous extracts of microalgae exhibit antioxidant and anticancer activities. Asian Pac J Trop Biomed 2:608–615. https://doi.org/10.1016/S2221-1691(12)60106-3

    Article  Google Scholar 

  55. Ávila-Román J, Talero E, de Los Reyes C, Zubía E, Motilva V, García-Mauriño S (2016) Cytotoxic activity of microalgal-derived oxylipins against human cancer cell lines and their impact on ATP levels. Nat Prod Commun 11:1871–1875. https://doi.org/10.1177/1934578X1601101225

    Article  Google Scholar 

  56. Gnanakani PE, Santhanam P, Premkumar K, Kumar KE, Dhanaraju KD, Nannochloropsis extract–mediated synthesis of biogenic silver nanoparticles, characterization and in vitro assessment of antimicrobial, antioxidant and cytotoxic activities. Asian Pac J Cancer Prev 20:2353. https://doi.org/10.31557/APJCP.2019.20.8.2353

  57. Lin PY, Tsai CT, Chuang WL, Chao YH, Pan IH, Chen YK, Lin CC, Wang BY (2017) Chlorella sorokiniana induces mitochondrial-mediated apoptosis in human non-small cell lung cancer cells and inhibits xenograft tumor growth in vivo. BMC Comple Altern Med 17:88. https://doi.org/10.1186/s12906-017-1611-9

    Article  Google Scholar 

  58. Walczak H, Krammer PH (2000) The CD95 (APO-1/Fas) and the TRAIL (APO-2L) apoptosis systems, Exp. Cell Res 256:58–66. https://doi.org/10.1006/excr.2000.484

  59. Micheau O, Solary E, Hammann A, Dimanche-Boitrel MT (1999) Fas ligand-independent, FADD-mediated activation of the Fas death pathway by anticancer drugs. J Bio Chem 274:7987–7992. https://doi.org/10.1074/jbc.274.12.7987

    Article  Google Scholar 

  60. Kirkin V, Joos S, Zörnig M (2004) The role of Bcl-2 family members in tumorigenesis. Biochimica et Biophysica. Acta Mol Cell Res 1644:229–249. https://doi.org/10.1016/j.bbamcr.2003.08.009

    Article  Google Scholar 

  61. Gartel AL, Tyner AL (2002) The role of the cyclin-dependent kinase inhibitor p21 in apoptosis 1 supported in part by NIH grant R01 DK56283 (to ALT) for the p21 research and Campus Research Board and Illinois Department of Public Health Penny Severns Breast and Cervical Cancer grants (to ALG). Mol Cancer, Ther 1:639–649

    Google Scholar 

  62. Hamid T, Boominathan M, Bakiyalakshmi SVA (2019) Study on in vitro anticancer activity of Chlorella vualgaris against hepg-2. Int J Bas Appl Res 9:614–622

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Mohamed Sathak Trust, Chennai, for all the help and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anuradha Venkatraman or Syed Ali Mohamed Yacoob.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 74 KB)

Supplementary file2 (DOCX 12 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkatraman, A., Moovendhan, M., Chandrasekaran, K. et al. Alcoholic concentrate of microalgal biomass modulates cytotoxicity, apoptosis, and gene expression studied in hepatocellular carcinoma. Biomass Conv. Bioref. (2022). https://doi.org/10.1007/s13399-022-02786-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-022-02786-6

Keywords

Navigation