Skip to main content

Advertisement

Log in

Bioprospecting lignin biomass into environmentally friendly polymers—Applied perspective to reconcile sustainable circular bioeconomy

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The valorization of lignin into biopolymers and other high-value products development is the most promising technology for sustainable development. This technology has gain importance for the development of kind of different biopolymers such as epoxies, polyesters, polyurethanes, phenol resins, polyhydroxyalkanoates, poly(lactic acids), and other useful biopolymers. However, lignin recalcitrance remains a potential problem for efficient lignin valorization, and therefore, several efforts have been made to develop high-efficiency bioprocesses for the synthesis of target polymer types, and other useful bioproducts. A comprehensive insight into lignin structure and properties will aid to understand the catalytic and metabolic deconstructive pathways for the efficient valorization of lignin. Due to the presence of multifunctional properties of lignin for the development of kinds of different biobased polymers, the review aims to highlight the biosynthesis and structure, potentialities of lignin and lignin-derivatives on polymers development, and future trends with outlook in lignin valorization have been systematically summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature. 488:294–303

    Article  Google Scholar 

  2. Qazi A, Hussain F, Rahim NA, Hardaker G, Alghazzawi D, Shaban K, Haruna K (2019) Towards sustainable energy: a systematic review of renewable energy sources, technologies, and public opinions. IEEE Access 7:63837–63851

    Article  Google Scholar 

  3. Zhao Y, Qamar SA, Qamar M, Bilal M, Iqbal HM (2021) Sustainable remediation of hazardous environmental pollutants using biochar-based nanohybrid materials. J Environ Manag 300:113762

    Article  Google Scholar 

  4. Qamar SA, Qamar M, Basharat A, Bilal M, Cheng H, Iqbal HM (2022) Alginate-based nano-adsorbent materials–Bioinspired solution to mitigate hazardous environmental pollutants. Chemosphere 288:132618

  5. Li W, Qamar SA, Qamar M, Basharat A, Bilal M, Iqbal HM (2021) Carrageenan-based nano-hybrid materials for the mitigation of hazardous environmental pollutants. Int J Biol Macromol 190:700–712

    Article  Google Scholar 

  6. Iqbal HMN, Kyazze G, Keshavarz T (2013) Advances in the valorization of lignocellulosic materials by biotechnology: an overview. BioRes 8:3157−3176

  7. Evode N, Qamar SA, Bilal M, Barceló D, Iqbal HM (2021) Plastic waste and its management strategies for environmental sustainability. Case Stud Chem Environ Eng 4:100142

  8. Bilal M, Qamar SA, Yadav V, Cheng H, Khan M, Adil SF, Iqbal HM (2021) Exploring the potential of ligninolytic armory for lignin valorization–A way forward for sustainable and cleaner production. J Clean Prod 326:129420

    Article  Google Scholar 

  9. Mehmood T, Nadeem F, Qamar SA, Bilal M, Iqbal H (2021) Bioconversion of agro-industrial waste into value-added compounds. In: Sustainable bioconversion of waste to value added products, pp 349–368

    Chapter  Google Scholar 

  10. Ponnusamy VK, Nguyen DD, Dharmaraja J, Shobana S, Banu JR, Saratale RG, Kumar G (2019) A review on lignin structure, pretreatments, fermentation reactions and biorefinery potential. Bioresour Technol 271:462–472

    Article  Google Scholar 

  11. Saratale RG, Saratale GD, Cho SK, Kim DS, Ghodake GS, Kadam A, Shin HS (2019) Pretreatment of kenaf (Hibiscus cannabinus L.) biomass feedstock for polyhydroxybutyrate (PHB) production and characterization. Bioresour Technol 282:75–80

    Article  Google Scholar 

  12. Ahmad E, Pant KK (2018) Lignin conversion: a key to the concept of lignocellulosic biomass-based integrated biorefinery. In: Waste biorefinery, pp 409–444

    Chapter  Google Scholar 

  13. Watkins MM, Wiese DN, Yuan DN, Boening C, Landerer FW (2015) Improved methods for observing Earth's time variable mass distribution with GRACE using spherical cap mascons. J Geophys Res Solid Earth 120:2648–2671

    Article  Google Scholar 

  14. Trubetskaya A, Brown A, Tompsett GA, Timko MT, Kling J, Broström M, Umeki K (2018) Characterization and reactivity of soot from fast pyrolysis of lignocellulosic compounds and monolignols. Appl Energy 212:1489–1500

    Article  Google Scholar 

  15. Zhao ZM, Liu ZH, Pu Y, Meng X, Xu J, Yuan JS, Ragauskas AJ (2020) Emerging Strategies for Modifying Lignin Chemistry to Enhance Biological Lignin Valorization. ChemSusChem. 13:5423–5432

    Article  Google Scholar 

  16. Arevalo-Gallegos A, Ahmad Z, Asgher M, Parra-Saldivar R, Iqbal HM (2017) Lignocellulose: a sustainable material to produce value-added products with a zero-waste approach—a review. Int J Biol Macromol 99:308–318

    Article  Google Scholar 

  17. Singh AK, Bilal M, Iqbal HM, Raj A (2021) Lignin peroxidase in focus for catalytic elimination of contaminants-A critical review on recent progress and perspectives. Int J Biol Macromol 177:58–82

    Article  Google Scholar 

  18. Key RE, Bozell JJ (2016) Progress toward lignin valorization via selective catalytic technologies and the tailoring of biosynthetic pathways. ACS Sustain Chem Eng 4:5123–5135

    Article  Google Scholar 

  19. Banu JR, Kavitha S, Kannah RY, Devi TP, Gunasekaran M, Kim SH, Kumar G (2019) A review on biopolymer production via lignin valorization. Bioresour Technol 290:121790

    Article  Google Scholar 

  20. Studer MH, DeMartini JD, Davis MF, Sykes RW, Davison B, Keller M, Wyman CE (2011) Lignin content in natural Populus variants affects sugar release. PNAS. 108:6300–6305

    Article  Google Scholar 

  21. Hirayama H, Akiyama T, Kimura S, Nawawi DS, Syafii W, Yokoyama T, Matsumoto Y (2019) Influence of the p-hydroxyphenyl/guaiacyl ratio on the biphenyl and β-5 contents in compression wood lignins. Holzforschung. 73:923–935

    Article  Google Scholar 

  22. Bonawitz ND, Chapple C (2010) The genetics of lignin biosynthesis: connecting genotype to phenotype. Annu Rev Genet 44:337–363

    Article  Google Scholar 

  23. Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Physiol 153:895–905

    Article  Google Scholar 

  24. Liu ZH, Olson ML, Shinde S, Wang X, Hao N, Yoo CG, Yuan JS (2017) Synergistic maximization of the carbohydrate output and lignin processability by combinatorial pretreatment. Green Chem 19:4939–4955

    Article  Google Scholar 

  25. Franke R, McMichael CM, Meyer K, Shirley AM, Cusumano JC, Chapple C (2000) modified lignin in tobacco and poplar plants over-expressing the Arabidopsis gene encoding ferulate 5-hydroxylase. Plant J 22:223–234

    Article  Google Scholar 

  26. Rippert P, Puyaubert J, Grisollet D, Derrier L, Matringe M (2009) Tyrosine and phenylalanine are synthesized within the plastids in Arabidopsis. Plant Physiol 149:1251–1260

    Article  Google Scholar 

  27. Maeda HA (2016) Lignin biosynthesis: Tyrosine shortcut in grasses. Nat Plants 2:1–2

    Article  Google Scholar 

  28. Asgher M, Nasir I, Khalid N, Qamar SA (2020) Development of biocomposites based on bacterial cellulose reinforced delignified rice husk-PVA plasticized with glycerol. J Polym Res 27:1–11

    Article  Google Scholar 

  29. Mahmood N, Yuan Z, Schmidt J, Xu CC (2013) Production of polyols via direct hydrolysis of kraft lignin: Effect of process parameters. Bioresour Technol 139:13–20

    Article  Google Scholar 

  30. Gabov K, Fardim P, da Silva Júnior FG (2013) Hydrotropic fractionation of birch wood into cellulose and lignin: a new step towards green biorefinery. BioResources. 8:3518–3531

    Article  Google Scholar 

  31. Ouyang X, Ke L, Qiu X, Guo Y, Pang Y (2009) Sulfonation of alkali lignin and its potential use in dispersant for cement. J Dispers Sci Technol 30:1–6

    Article  Google Scholar 

  32. Doherty WO, Mousavioun P, Fellows CM (2011) Value-adding to cellulosic ethanol: Lignin polymers. Ind Crop Prod 33:259–276

    Article  Google Scholar 

  33. Chakar FS, Ragauskas AJ (2004) Review of current and future softwood kraft lignin process chemistry. Ind Crop Prod 20:131–141

    Article  Google Scholar 

  34. Potthast A (2006) Chemistry of (acid) sulfite cooking. In: Sixta H (ed) Handbook of Pulp. Wiley-VCH, pp 405–427

    Google Scholar 

  35. Chaparro TR, Botta CM, Pires EC (2010) Toxicity and recalcitrant compound removal from bleaching pulp plant effluents by an integrated system: anaerobic packed-bed bioreactor and ozone. Water Sci Technol 61:199–205

    Article  Google Scholar 

  36. Lora J (2008) Industrial commercial lignins: sources, properties and applications. In: Monomers, polymers and composites from renewable resources, pp 225–241

    Chapter  Google Scholar 

  37. Vishtal AG, Kraslawski A (2011) Challenges in industrial applications of technical lignins. BioResources. 6:3547–3568

    Article  Google Scholar 

  38. Park SY, Kim JY, Youn HJ, Choi JW (2018) Fractionation of lignin macromolecules by sequential organic solvents systems and their characterization for further valuable applications. Int J Biol Macromol 106:793–802

    Article  Google Scholar 

  39. Christopher L (2012) Integrated Forest biorefineries: challenges and opportunities. Royal Society of Chemistry UK

  40. Gierer J, Lindeberg O, Noren I (1979) Alkaline delignification in the presence of anthraquinone/anthrahydroquinone. Holzforschung. 33:213–214

    Google Scholar 

  41. Saake B, Lehnen R (2000) Lignin. In: Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA

    Google Scholar 

  42. Durante-Rodríguez G, Gómez-Álvarez H, Blázquez B, Fernández Llamosas H, Martín-Moldes Z, Sanz D, Díaz E (2018) Anaerobic pathways for the catabolism of aromatic compounds. In :Lignin Valorization: Emerging Approaches. Royal Society of Chemistry, UK, pp 333−390

  43. Aziz S, Sarkanen K (1989) Organosolv Pulping—A Review. TAPPI J 72:162–175

    Google Scholar 

  44. Araújo LCP, Yamaji FM, Lima VH, Botaro VR (2020) Kraft lignin fractionation by organic solvents: correlation between molar mass and higher heating value. Bioresour Technol 314:123757

    Article  Google Scholar 

  45. Borand MN, Karaosmanoğlu F (2018) Effects of organosolv pretreatment conditions for lignocellulosic biomass in biorefinery applications: a review. J Renew Sustain Energy 10:033104

    Article  Google Scholar 

  46. Belgacem MN, Blayo A, Gandini A (2003) Organosolv lignin as a filler in inks, varnishes, and paints. Ind Crop Prod 18:145–153

    Article  Google Scholar 

  47. Chio C, Sain M, Qin W (2019) Lignin utilization: a review of lignin depolymerization from various aspects. Renew Sust Energ Rev 107:232–249

    Article  Google Scholar 

  48. Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 86:1781–1788

    Article  Google Scholar 

  49. Hu L, Pan H, Zhou Y, Zhang M (2011) Methods to improve lignin's reactivity as a phenol substitute and as replacement for other phenolic compounds: A brief review. BioRes. 6:3515–3525

    Article  Google Scholar 

  50. Hamelinck CN, van Hooijdonk G, Faaij APC (2005) Ethanol from lignocellulosic biomass: Techno-economic performance in short- middle- and long-term. Biomass Bioenergy 28:384–410

    Article  Google Scholar 

  51. Yasuda S, Asano K (2000) Preparation of strongly acidic cation-exchange resins from gymnosperm acid hydrolysis lignin. J Wood Sci 46:477–479

    Article  Google Scholar 

  52. Rabinovich ML (2010) Wood hydrolysis industry in the Soviet Union and Russia: a minireview. Cellul Chem Technol 44:173

    Google Scholar 

  53. Pazhany AS, Henry RJ (2019) Genetic modification of biomass to alter lignin content and structure. Ind Eng Chem Res 58:16190–16203

    Article  Google Scholar 

  54. Asgher M, Urooj Y, Qamar SA, Khalid N (2020) Improved exopolysaccharide production from Bacillus licheniformis MS3: optimization and structural/functional characterization. Int J Biol Macromol 151:984–992

  55. Asgher M, Rani A, Khalid N, Qamar SA, Bilal M (2021) Bioconversion of sugarcane molasses waste to high-value exopolysaccharides by engineered Bacillus licheniformis. Case Stud Chem Environ Eng 3:100084

  56. Qamar SA, Asgher M, Bilal M (2021) Sustainable Production, Optimization, and Partial Characterization of Exopolysaccharides by Macrococcus brunensis. Waste Biomass Valor 12:6847–6859

    Article  Google Scholar 

  57. Vanholme R, De Meester B, Ralph J, Boerjan W (2019) Lignin biosynthesis and its integration into metabolism. Curr Opin Biotechnol 56:230–239

    Article  Google Scholar 

  58. Hisano H, Nandakumar R, Wang ZY (2009) Genetic modification of lignin biosynthesis for improved biofuel production. In Vitro Cell Dev Biol Plant 45:306–313

    Article  Google Scholar 

  59. Ha CM, Fine D, Bhatia A, Rao X, Martin MZ, Engle NL, Dixon RA (2019) Ectopic defense gene expression is associated with growth defects in Medicago truncatula lignin pathway mutants. Plant Physiol 181:63–84

    Article  Google Scholar 

  60. Gupta RM, Musunuru K (2014) Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9. J Clin Investig 124:4154–4161

    Article  Google Scholar 

  61. Eudes A, Liang Y, Mitra P, Loque D (2014) Lignin bioengineering. Curr Opin Biotechnol 26:189–198

    Article  Google Scholar 

  62. Vanholme R, Morreel K, Ralph J, Boerjan W (2008) Lignin engineering. Curr Opin Biotechnol 11:278–285

    Google Scholar 

  63. Coleman HD, Park JY, Nair R, Chapple C, Mansfield SD (2008) RNAi-mediated suppression of p-coumaroyl-CoA 3′-hydroxylase in hybrid poplar impacts lignin deposition and soluble secondary metabolism. PNAS. 105:4501–4506

    Article  Google Scholar 

  64. Cass CL, Peraldi A, Dowd PF, Mottiar Y, Santoro N, Karlen SD, Sedbrook JC (2015) Effects of PHENYLALANINE AMMONIA LYASE (PAL) knockdown on cell wall composition, biomass digestibility, and biotic and abiotic stress responses in Brachypodium. J Exp Bot 66:4317–4335

    Article  Google Scholar 

  65. Marita JM, Ralph J, Hatfield RD, Chapple C (1999) NMR characterization of lignins in Arabidopsis altered in the activity of ferulate 5-hydroxylase. PNAS. 96:12328–12332

    Article  Google Scholar 

  66. Huang J, Gu M, Lai Z, Fan B, Shi K, Zhou YH, Chen Z (2010) Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiol 153:1526–1538

    Article  Google Scholar 

  67. Gui J, Shen J, Li L (2011) Functional characterization of evolutionarily divergent 4-coumarate: coenzyme A ligases in rice. Plant Physiol 157:574–586

    Article  Google Scholar 

  68. Thévenin J, Pollet B, Letarnec B, Saulnier L, Gissot L, Maia-Grondard A, Jouanin L (2011) The simultaneous repression of CCR and CAD, two enzymes of the lignin biosynthetic pathway, results in sterility and dwarfism in Arabidopsis thaliana. Mol Plant 4:70–82

    Article  Google Scholar 

  69. Mansfield SD, Kim H, Lu F, Ralph J (2012) Whole plant cell wall characterization using solution-state 2D NMR. Nat Protoc 7:1579–1589

    Article  Google Scholar 

  70. Vásquez-Garay F, Mendonça RT, Peretti SW (2018) Chemoenzymatic lignin valorization: Production of epoxidized pre-polymers using Candida antarctica lipase B. Enzym Microb Technol 112:6–13

  71. Xu C, Ferdosian F (2017) Conversion of lignin into bio-based chemicals and materials. Springer, New York, pp 133–156

    Book  Google Scholar 

  72. Ma Y, Liu H, Wu J, Yuan L, Wang Y, Du X, Zhang H (2019) The adverse health effects of bisphenol A and related toxicity mechanisms. Environ Res 176:108575

    Article  Google Scholar 

  73. R. 108575, Caillol S, David G, Boutevin B, Pascault JP (2014) Biobased thermosetting epoxy: present and future. Chem Rev 114:1082–1115

    Article  Google Scholar 

  74. Ng F, Couture G, Philippe C, Boutevin B, Caillol S (2017) Bio-based aromatic epoxy monomers for thermoset materials. Molecules. 22:149

    Article  Google Scholar 

  75. Jahangeer M, Fatima R, Ashiq M, Basharat A, Qamar SA, Bilal M, Iqbal HMN (2021) Therapeutic and Biomedical Potentialities of Terpenoids–A Review. J Pure Appl Microbiol 15:6872

    Article  Google Scholar 

  76. Zhang Y, Pang H, Wei D, Li J, Li S, Lin X, Liao B (2019) Preparation and characterization of chemical grouting derived from lignin epoxy resin. Eur Polym J 118:290–305

    Article  Google Scholar 

  77. Kaiho A, Mazzarella D, Satake M, Kogo M, Sakai R, Watanabe T (2016) Construction of the di (trimethylolpropane) cross linkage and the phenylnaphthalene structure coupled with selective β-O-4 bond cleavage for synthesizing lignin-based epoxy resins with a controlled glass transition temperature. Green Chem 18:6526–6535

    Article  Google Scholar 

  78. Mendis GP, Hua I, Youngblood JP, Howarter JA (2015) Enhanced dispersion of lignin in epoxy composites through hydration and mannich functionalization. J Appl Polym Sci 132:41263

    Article  Google Scholar 

  79. Sun J, Wang C, Stubbs LP, He C (2017) Carboxylated lignin as an effective cohardener for enhancing strength and toughness of epoxy. Macromol Mater Eng 302:1700341

    Article  Google Scholar 

  80. Guo X, Xin J, Huang J, Wolcott MP, Zhang J (2019) Preparation and toughening of mechanochemically modified lignin-based epoxy. Polymer. 183:121859

    Article  Google Scholar 

  81. Jablonskis A, Arshanitsa A, Arshanitsa A, Telysheva G, Evtuguin D (2018) Evaluation of Ligno Boost™ softwood kraft lignin epoxidation as an approach for its application in cured epoxy resins. Ind Crop Prod 112:225–235

    Article  Google Scholar 

  82. Nagatani M, Tsurumaki A, Takamatsu K, Saito H, Nakamura N, Ohno H (2019) Preparation of epoxy resins derived from lignin solubilized in tetrabutylphosphonium hydroxide aqueous solutions. Int J Biol Macromol 132:585–591

    Article  Google Scholar 

  83. Zhang Y, Wang H, Eberhardt TL, Gu Q, Pan H (2021) Preparation of carboxylated lignin-based epoxy resin with excellent mechanical properties. Eur Polym J 150:110389

    Article  Google Scholar 

  84. Feghali E, van de Pas DJ, Torr KM (2020) Toward Bio-Based Epoxy Thermoset Polymers from Depolymerized Native Lignins Produced at the Pilot Scale. Biomacromolecules. 21:1548–1559

    Article  Google Scholar 

  85. Zhen X, Li H, Xu Z, Wang Q, Zhu S, Wang Z, Yuan Z (2021) Facile synthesis of lignin-based epoxy resins with excellent thermal-mechanical performance. Int J Biol Macromol 182:276–285

    Article  Google Scholar 

  86. Upton BM, Kasko AM (2016) Strategies for the conversion of lignin to high-value polymeric materials: review and perspective. Chem Rev 116:2275–2306

    Article  Google Scholar 

  87. Duval A, Lawoko M (2014) A review on lignin-based polymeric, micro-and nano-structured materials. React Funct Polym 85:78–96

    Article  Google Scholar 

  88. Thanh Binh NT, Thanh Binh ND, Kim DO, Lee SH, Kim BJ, Lee YS, Nam JD (2009) Synthesis of lignin-based thermoplastic copolyester using kraft lignin as a macromonomer. Compos Interfaces 16:923–935

    Article  Google Scholar 

  89. Laurichesse S, Avérous L (2014) Chemical modification of lignins: Towards biobased polymers. Prog Polym Sci 39:1266–1290

    Article  Google Scholar 

  90. Varanasi P, Singh P, Auer M, Adams PD, Simmons BA, Singh S (2013) Survey of renewable chemicals produced from lignocellulosic biomass during ionic liquid pretreatment. Biotechnol Biofuels 6:1–9

    Article  Google Scholar 

  91. Matsushita Y, Inomata T, Takagi Y, Hasegawa T, Fukushima K (2011) Conversion of sulfuric acid lignin generated during bioethanol production from lignocellulosic materials into polyesters with ɛ-caprolactone. J Wood Sci 57:214–218

    Article  Google Scholar 

  92. Sivasankarapillai G, McDonald AG (2011) Synthesis and properties of lignin-highly branched poly (ester-amine) polymeric systems. Biomass Bioenergy 35:919–931

    Article  Google Scholar 

  93. Lora JH (2016) Lignin: A platform for renewable aromatic polymeric materials. In: Quality living through chemurgy and green chemistry. Springer, Berlin, Heidelberg, pp 221−261

  94. Gandini A (2011) The irruption of polymers from renewable resources on the scene of macromolecular science and technology. Green Chem 13:1061–1083

    Article  Google Scholar 

  95. Kai D, Tan MJ, Chee PL, Chua YK, Yap YL, Loh XJ (2016) Towards lignin-based functional materials in a sustainable world. Green Chem 18:1175–1200

    Article  Google Scholar 

  96. Duval A, Lange H, Lawoko M, Crestini C (2015) Modification of Kraft lignin to expose diazobenzene groups: Toward pH-and light-responsive biobased polymers. Biomacromolecules. 16:2979–2989

    Article  Google Scholar 

  97. Sivasankarapillai G, McDonald AG, Li H (2012) Lignin valorization by forming toughened lignin-co-polymers: Development of hyperbranched prepolymers for cross-linking. Biomass Bioenergy 47:99–108

    Article  Google Scholar 

  98. Tian D, Chandra RP, Lee JS, Lu C, Saddler JN (2017) A comparison of various lignin-extraction methods to enhance the accessibility and ease of enzymatic hydrolysis of the cellulosic component of steam-pretreated poplar. Biotechnol Biofuels 10:1–10

    Article  Google Scholar 

  99. Ma X, Chen J, Zhu J, Yan N (2021) Lignin‐Based Polyurethane: Recent Advances and Future Perspectives. Macromol Rapid Commun 42:2000492

  100. Mahmood N, Yuan Z, Schmidt J, Schmidt CC (2016) Depolymerization of lignins and their applications for the preparation of polyols and rigid polyurethane foams: A review. Renew Sust Energ Rev 60:317–329

    Article  Google Scholar 

  101. Li Y, Ragauskas AJ (2012) Kraft lignin-based rigid polyurethane foam. J Wood Chem Technol 32:210–224

    Article  Google Scholar 

  102. Nacas AM, Ito NM, JR RDS, Spinacé MA, Santos DJD (2017) Effects of NCO: OH ratio on the mechanical properties and chemical structure of Kraft lignin–based polyurethane adhesive. J Adhes 93:18–29

    Article  Google Scholar 

  103. Jia Z, Lu C, Zhou P, Wang L (2015) Preparation and characterization of high boiling solvent lignin-based polyurethane film with lignin as the only hydroxyl group provider. RSC Adv 5:53949–53955

    Article  Google Scholar 

  104. Wu S, Zhan H (2001) Characteristics of demethylated wheat straw soda lignin and its utilization in lignin-based phenolic formaldehyde resins. Cellul Chem Technol 35:253–262

    Google Scholar 

  105. Chung H, Washburn NR (2012) Improved lignin polyurethane properties with lewis acid treatment. ACS Appl Mater Interfaces 4:2840–2846

    Article  Google Scholar 

  106. Cateto CA, Barreiro MF, Rodrigues AE, Belgacem MN (2009) Optimization study of lignin oxypropylation in view of the preparation of polyurethane rigid foams. Ind Eng Chem Res 48:2583–2589

    Article  Google Scholar 

  107. Sadeghifar H, Cui C, Argyropoulos DS (2012) toward thermoplastic lignin polymers. Part 1. Selective masking of phenolic hydroxyl groups in kraft lignins via methylation and oxypropylation chemistries. Ind Eng Chem Res 51:16713–16720

    Article  Google Scholar 

  108. Pavier C, Gandini A (2000) Oxypropylation of sugar beet pulp. 2. Separation of the grafted pulp from the propylene oxide homopolymer. Carbohydr Polym 42:13–17

    Article  Google Scholar 

  109. Wu LCF, Glasser WG (1984) Engineering plastics from lignin. I. Synthesis of hydroxypropyl lignin. J Appl Polym Sci 29:1111–1123

    Article  Google Scholar 

  110. Tian T, Hu R, Tang BZ (2018) Room temperature one-step conversion from elemental sulfur to functional polythioureas through catalyst-free multicomponent polymerizations. J Am Chem Soc 140:6156–6163

    Article  Google Scholar 

  111. Faria FA, Evtuguin DV, Rudnitskaya A, Gomes MT, Oliveira JA, Graça MPF, Costa LC (2012) Lignin-based polyurethane doped with carbon nanotubes for sensor applications. Polym Int 61:788–794

    Article  Google Scholar 

  112. Carriço CS, Fraga T, Pasa VM (2016) Production and characterization of polyurethane foams from a simple mixture of castor oil, crude glycerol and untreated lignin as bio-based polyols. Eur Polym J 85:53–61

    Article  Google Scholar 

  113. Zhu S, Chen K, Xu J, Li J, Mo L (2018) Bio-based polyurethane foam preparation employing lignin from corn stalk enzymatic hydrolysis residues. RSC Adv 8:15754–15761

    Article  Google Scholar 

  114. Klein SE, Alzagameem A, Rumpf J, Korte I, Kreyenschmidt J, Schulze M (2019) Antimicrobial activity of lignin-derived polyurethane coatings prepared from unmodified and demethylated lignins. Coating. 9:494

    Article  Google Scholar 

  115. Sternberg J, Pilla S (2020) Materials for the biorefinery: high bio-content, shape memory Kraft lignin-derived non-isocyanate polyurethane foams using a non-toxic protocol. Green Chem 22:6922–6935

    Article  Google Scholar 

  116. Zhang Y, Liao J, Fang X, Bai F, Qiao K, Wang L (2017) Renewable high-performance polyurethane bioplastics derived from lignin–poly (ε-caprolactone). ACS Sustain Chem Eng 5:4276–4284

    Article  Google Scholar 

  117. Kalami S, Arefmanesh M, Master E, Nejad M (2017) Replacing 100% of phenol in phenolic adhesive formulations with lignin. J Appl Polym Sci 134:45124

    Article  Google Scholar 

  118. Vithanage AE, Chowdhury E, Pomeroy LD, DeSisto WJ, Frederick BG, Gramlich WM (2017) Renewably sourced phenolic resins from lignin bio-oil. J Appl Polym Sci 134:44827

    Article  Google Scholar 

  119. Cheng S, Yuan Z, Leitch M, Anderson M, Xu CC (2013) highly efficient de-polymerization of organosolv lignin using a catalytic hydrothermal process and production of phenolic resins/adhesives with the depolymerized lignin as a substitute for phenol at a high substitution ratio. Ind Crop Prod 44:315–322

    Article  Google Scholar 

  120. Cheng S, D'Cruz I, Yuan Z, Wang M, Anderson M, Leitch M, Xu C (2011) Use of biocrude derived from woody biomass to substitute phenol at a high-substitution level for the production of biobased phenolic resol resins. J Appl Polym Sci 121:2743–2751

    Article  Google Scholar 

  121. Li J, Zhang J, Zhang S, Gao Q, Li J, Zhang W (2018) Alkali lignin depolymerization under eco-friendly and cost-effective NaOH/urea aqueous solution for fast curing bio-based phenolic resin. Ind Crop Prod 120:25–33

    Article  Google Scholar 

  122. Li Y, Li B, Du F, Wang Y, Pan L, Chen D (2017) Microwave-assisted hydrothermal liquefaction of lignin for the preparation of phenolic formaldehyde adhesive. J Appl Polym Sci 134:44510

    Article  Google Scholar 

  123. Zhang W, Ma Y, Wang C, Li S, Zhang M, Chu F (2013) Preparation and properties of lignin–phenol–formaldehyde resins based on different biorefinery residues of agricultural biomass. Ind Crop Prod 43:326–333

    Article  Google Scholar 

  124. Foyer G, Chanfi BH, Virieux D, David G, Caillol S (2016) Aromatic dialdehyde precursors from lignin derivatives for the synthesis of formaldehyde-free and high char yield phenolic resins. Eur Polym J 77:65–74

    Article  Google Scholar 

  125. Granado L, Tavernier R, Henry S, Auke RO, Foyer G, David G, Caillol S (2019) toward sustainable phenolic thermosets with high thermal performances. ACS Sustain Chem Eng 7:7209–7217

    Article  Google Scholar 

  126. Schneider MH, Phillips JG (2004) U.S. Patent No. 6,747,076. Washington, DC: U.S. Patent and Trademark Office

  127. Dongre P, Driscoll M, Amidon T, Bujanovic B (2015) Lignin-furfural based adhesives. Energies. 8:7897–7914

    Article  Google Scholar 

  128. Liu J, Wang J, Fu Y, Chang J (2016) Synthesis and characterization of phenol–furfural resins using lignin modified by a low transition temperature mixture. RSC Adv 6:94588–94594

    Article  Google Scholar 

  129. Yang W, Jiao L, Wang X, Wu W, Lian H, Dai H (2021) Formaldehyde-free self-polymerization of lignin-derived monomers for synthesis of renewable phenolic resin. Int J Biol Macromol 166:1312–1319

    Article  Google Scholar 

  130. Li J, Zhang J, Zhang S, Gao Q, Li J, Zhang W (2017) Fast curing bio-based phenolic resins via lignin demethylated under mild reaction condition. Polymers. 9:428

    Article  Google Scholar 

  131. Hussin MH, Samad NA, Latif NHA, Rozuli NA, Yusoff SB, Gambier F, Brosse N (2018) Production of oil palm (Elaeis guineensis) fronds lignin-derived non-toxic aldehyde for eco-friendly wood adhesive. Int J Biol Macromol 113:1266–1272

    Article  Google Scholar 

  132. Feng S, Shui T, Wang H, Ai X, Kuboki T, Xu CC (2021) Properties of phenolic adhesives formulated with activated organosolv lignin derived from cornstalk. Ind Crop Prod 161:113225

    Article  Google Scholar 

  133. Nampoothiri KM, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101:8493–8501

    Article  Google Scholar 

  134. Asgher M, Qamar SA, Bilal M, Iqbal HM (2020) Bio-based active food packaging materials: Sustainable alternative to conventional petrochemical-based packaging materials. Food Res Int 137:109625

    Article  Google Scholar 

  135. Bilal M, Gul I, Basharat A, Qamar SA (2021) Polysaccharides-based bio-nanostructures and their potential food applications. Int J Biol Macromol 176:540–557

    Article  Google Scholar 

  136. Ouyang W, Huang Y, Luo H, Wang D (2012) Poly (lactic acid) blended with cellulolytic enzyme lignin: Mechanical and thermal properties and morphology evaluation. J Polym Environ 20:1–9

    Article  Google Scholar 

  137. Reti C, Casetta M, Duquesne S, Bourbigot S, Delobel R (2008) Flammability properties of intumescent PLA including starch and lignin. Polym Adv Technol 19:628–635

    Article  Google Scholar 

  138. Khosravi-Darani K, Bucci DZ (2015) Application of poly (hydroxyalkanoate) in food packaging: Improvements by nanotechnology. Chem Biochem Eng Q 29:275–285

    Article  Google Scholar 

  139. Sosa-Hernández JE, Villalba-Rodríguez AM, Romero-Castillo KD, Zavala-Yoe R, Bilal M, Ramirez-Mendoza RA, Parra-Saldivar R, Iqbal HMN (2020) Poly-3-hydroxybutyrate-based constructs with novel characteristics for drug delivery and tissue engineering applications—A review. Polym Eng Sci 60:1760–1772

    Article  Google Scholar 

  140. Morya R, Sharma A, Kumar M, Tyagi B, Singh SS, Thakur I (2021) Polyhydroxyalkanoate synthesis and characterization: A proteogenomic and process optimization study for biovalorization of industrial lignin. Bioresour Technol 320:124439

    Article  Google Scholar 

  141. Kumar P, Maharjan A, Jun HB, Kim BS (2019) Bioconversion of lignin and its derivatives into polyhydroxyalkanoates: challenges and opportunities. Biotechnol Appl Biochem 66:153–162

    Article  Google Scholar 

  142. Laycock B, Halley P, Pratt S, Werker A, Lant P (2013) The chemomechanical properties of microbial polyhydroxyalkanoates. Prog Polym Sci 38:536–583

    Article  Google Scholar 

  143. Ayyachamy M, Cliffe FE, Coyne JM, Collier J, Tuohy MG (2013) Lignin: untapped biopolymers in biomass conversion technologies. Biomass Convers 3:255–269

    Article  Google Scholar 

  144. Martens S, Holloway JO, Du Prez FE (2017) Click and Click-Inspired Chemistry for the Design of Sequence-Controlled Polymers. Macromol Rapid Commun 38:1700469

    Article  Google Scholar 

  145. Semsarilar M, Perrier S (2010) 'Green'reversible addition-fragmentation chain-transfer (RAFT) polymerization. Nat Chem 2:811

    Article  Google Scholar 

  146. Holmberg AL, Stanzione JF, Wool RP, Epps TH (2014) A facile method for generating designer block copolymers from functionalized lignin model compounds. ACS Sust. Chem Eng 2:569–573

    Google Scholar 

  147. Stanzione JF, Sadler JM, La Scala JJ, Wool RP (2012) Lignin model compounds as Bio-Based reactive diluents for liquid molding resins. ChemSusChem. 5:1291

    Article  Google Scholar 

  148. Holmberg AL, Karavolias MG, Epps TH (2015) RAFT polymerization and associated reactivity ratios of methacrylate-functionalized mixed bio-oil constituents. Polym Chem 6:5728–5739

    Article  Google Scholar 

  149. Holmberg AL, Nguyen NA, Karavolias MG, Reno KH, Wool RP, Epps TH III (2016) Softwood lignin-based methacrylate polymers with tunable thermal and viscoelastic properties. Macromolecules. 49:1286–1295

    Article  Google Scholar 

  150. Nguyen HTH, Qi P, Rostagno M, Feteha A, Miller SA (2018) The quest for high glass transition temperature bioplastics. J Mater Chem A 6:9298–9331

    Article  Google Scholar 

  151. Giummarella N, Gioia C, Lawoko M (2018) A one-pot biomimetic synthesis of selectively functionalized lignins from monomers: a green functionalization platform. Green Chem 20:2651–2662

    Article  Google Scholar 

  152. Lai C, Zhou Z, Zhang L, Wang X, Zhou Q, Zhao Y, Fong H (2014) Free-standing and mechanically flexible mats consisting of electrospun carbon nanofibers made from a natural product of alkali lignin as binder-free electrodes for high-performance supercapacitors. J Power Sources 247:134–141

    Article  Google Scholar 

  153. You X, Koda K, Yamada T, Uraki Y (2015) Preparation of electrode for electric double layer capacitor from electrospun lignin fibers. Holzforschung. 69:1097–1106

    Article  Google Scholar 

  154. You X, Duan J, Koda K, Yamada T, Uraki Y (2016) Preparation of electric double layer capacitors (EDLCs) from two types of electrospun lignin fibers. Holzforschung. 70:661–671

    Article  Google Scholar 

  155. Lei D, Li XD, Seo MK, Khil MS, Kim HY, Kim BS (2017) NiCo2O4 nanostructure-decorated PAN/lignin-based carbon nanofiber electrodes with excellent cyclability for flexible hybrid supercapacitors. Polymer. 132:31–40

    Article  Google Scholar 

  156. Wang SX, Yang L, Stubbs LP, Li X, He C (2013) Lignin-derived fused electrospun carbon fibrous mats as high-performance anode materials for lithium-ion batteries. ACS Appl Mater Interfaces 5:12275–12282

    Article  Google Scholar 

  157. Jin J, Yu BJ, Shi ZQ, Wang CY, Chong CB (2014) Lignin-based electrospun carbon nanofibrous webs as free-standing and binder-free electrodes for sodium ion batteries. J Power Sources 272:800–807

    Article  Google Scholar 

  158. Zhou LY, Fu J, He Y (2020) A review of 3D printing technologies for soft polymer materials. Adv Funct Mater 30:2000187

    Article  Google Scholar 

  159. Domínguez-Robles J, Martin NK, Fong ML, Stewart SA, Irwin NJ, Rial-Hermida MI, Larrañeta E (2019) Antioxidant PLA composites containing lignin for 3D printing applications: A potential material for healthcare applications. Pharmaceutics. 11:165

    Article  Google Scholar 

  160. Tanase-Opedal M, Espinosa E, Rodríguez A, Chinga-Carrasco G (2019) Lignin: A biopolymer from forestry biomass for biocomposites and 3D printing. Materials. 12:3006

    Article  Google Scholar 

  161. Gkartzou E, Koumoulos EP, Charitidis CA (2017) Production and 3D printing processing of bio-based thermoplastic filament. Manuf Rev 4:1

    Google Scholar 

  162. Vaidya AA, Collet C, Gaugler M, Lloyd-Jones G (2019) Integrating softwood biorefinery lignin into polyhydroxybutyrate composites and application in 3D printing. Mater Today Commun 19:286–296

    Article  Google Scholar 

  163. Nguyen NA, Bowland CC, Naskar AK (2018) Mechanical, thermal, morphological, and rheological characteristics of high-performance 3D-printing lignin-based composites for additive manufacturing applications. Data Br 19:936–950

    Article  Google Scholar 

  164. Nguyen NA, Bowland CC, Naskar AK (2018) A general method to improve 3D-printability and inter-layer adhesion in lignin-based composites. Appl Mater Today 12:138–152

    Article  Google Scholar 

  165. Feng Q, Chen F, Wu H (2011) Preparation and characterization of a temperature-sensitive lignin-based hydrogel. BioResources. 6:4942–4952

    Article  Google Scholar 

  166. Bashir O, Bhat SA, Basharat A, Qamar M, Qamar SA, Bilal M, Iqbal HM (2021) Nano-engineered materials for sensing food pollutants: Technological advancements and safety issues. Chemosphere 292:133320

  167. Azadfar M, Gao AH, Bule MV, Chen S (2015) Structural characterization of lignin: A potential source of antioxidants guaiacol and 4-vinylguaiacol. Int J Biol Macromol 75:58–66

    Article  Google Scholar 

  168. Aadil KR, Barapatre A, Jha H (2016) Synthesis and characterization of Acacia lignin-gelatin film for its possible application in food packaging. Bioresour Bioprocess 3:1–11

    Article  Google Scholar 

  169. Zadeh EM, O’Keefe SF, Kim YT (2018) Utilization of lignin in biopolymeric packaging films. ACS Omega 3:7388–7398

    Article  Google Scholar 

  170. Shankar S, Rhim JW, Won K (2018) Preparation of poly (lactide)/lignin/silver nanoparticles composite films with UV light barrier and antibacterial properties. Int J Biol Macromol 107:1724–1731

    Article  Google Scholar 

  171. Rai S, Dutta PK, Mehrotra GK (2017) Lignin incorporated antimicrobial chitosan film for food packaging application. J Polym Mater 34:171

    Google Scholar 

  172. Muir M (1996) DMSO: many uses, much controversy. Altern Complement Ther 2:230–235

    Article  Google Scholar 

  173. Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23

    Article  Google Scholar 

  174. Ten E, Vermerris W (2015) Recent developments in polymers derived from industrial lignin. J Appl Polym Sci 132:42069

    Article  Google Scholar 

  175. Aro T, Fatehi P (2017) Production and application of lignosulfonates and sulfonated lignin. ChemSusChem. 10:1861–1877

    Article  Google Scholar 

  176. Martinez V, Mitjans M, M. (2012) Pilar Vinardell, Pharmacological applications of lignins and lignins related compounds: an overview. Curr Org Chem 16:1863–1870

    Article  Google Scholar 

  177. Thakur VK, Thakur MK (2015) Recent advances in green hydrogels from lignin: a review. Int J Biol Macromol 72:834–847

    Article  Google Scholar 

  178. Vashist A, Vashist A, Gupta YK, Ahmad S (2014) Recent advances in hydrogel-based drug delivery systems for the human body. J Mater Chem 2:147–166

    Google Scholar 

  179. Raschip IE, Hitruc EG, Vasile C (2011) Semi-interpenetrating polymer networks containing polysaccharides. II. Xanthan/lignin networks: a spectral and thermal characterization. High Perform Polym 23:219–229

    Article  Google Scholar 

  180. Azadi P, Inderwildi OR, Farnood R, King DA (2013) Liquid fuels, hydrogen and chemicals from lignin: A critical review. Renew Sust Energ Rev 21:506–523

    Article  Google Scholar 

  181. Mohan D, Pittman CU Jr, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuel 20:848–889

    Article  Google Scholar 

  182. Bai X, Kim KH (2016) Biofuels and chemicals from lignin based on pyrolysis. In: Production of Biofuels and Chemicals from Lignin. Springer, Singapore, pp 263–287

    Chapter  Google Scholar 

  183. Qamar SA, Qamar M, Bilal M, Bharagava RN, Ferreira LFR, Sher F, Iqbal HM (2021) Cellulose-deconstruction potential of nano-biocatalytic systems: A strategic drive from designing to sustainable applications of immobilized cellulases. Int J Biol Macromol 185:1–19

    Article  Google Scholar 

  184. Kang S, Li X, Fan J, Chang J (2013) Hydrothermal conversion of lignin: a review. Renew Sust Energ Rev 27:546–558

    Article  Google Scholar 

  185. Yaman S (2004) Pyrolysis of biomass to produce fuels and chemical feedstocks. Energ Convers Manage 45:651–671

    Article  Google Scholar 

  186. Figueiredo P, Lintinen K, Hirvonen JT, Kostiainen MA, Santos HA (2018) Properties and chemical modifications of lignin: Towards lignin-based nanomaterials for biomedical applications. Prog Mater Sci 93:233–269

    Article  Google Scholar 

  187. Peres APG, Lunelli BH (2013) Application of biomass to hydrogen and syngas production. Chem Eng Trans 32:589–594

    Google Scholar 

  188. Shen D, Zhao J, Xiao R, Gu S (2015) Production of aromatic monomers from catalytic pyrolysis of black-liquor lignin. J Anal Appl Pyrolysis 111:47–54

    Article  Google Scholar 

  189. French R, Czernik S (2010) Catalytic pyrolysis of biomass for biofuels production. Fuel Process Technol 91:25–32

    Article  Google Scholar 

  190. Qin Z, Zhuang Q, Zhu X, Cai X, Zhang X (2011) Carbon consequences and agricultural implications of growing biofuel crops on marginal agricultural lands in China. Environ Sci Technol 45:10765–10772

    Article  Google Scholar 

  191. Ruppert AM, Weinberg K, Palkovits R (2012) Hydrogenolysis goes bio: from carbohydrates and sugar alcohols to platform chemicals. Angew Chem Int Ed 51:2564–2601

    Article  Google Scholar 

  192. Asgher M, Arshad S, Qamar SA, Khalid N (2020) Improved biosurfactant production from Aspergillus niger through chemical mutagenesis: characterization and RSM optimization. SN Appl Sci 2:1–11

    Article  Google Scholar 

  193. Asgher M, Afzal M, Qamar SA, Khalid N (2020) Optimization of biosurfactant production from chemically mutated strain of Bacillus subtilis using waste automobile oil as low-cost substrate. Environ Sustain 3:405–413

    Article  Google Scholar 

  194. Delidovich I, Hausoul PJ, Deng L, Pfützenreuter R, Rose M, Palkovits R (2016) Alternative monomers based on lignocellulose and their use for polymer production. Chem Rev 116:1540–1599

    Article  Google Scholar 

  195. Hassan SS, Williams GA, Jaiswal AK (2019) Moving towards the second generation of lignocellulosic biorefineries in the EU: Drivers, challenges, and opportunities. Renew Sust Energ Rev 101:590–599

    Article  Google Scholar 

  196. Pandey MP, Kim CS (2011) Lignin depolymerization and conversion: a review of thermochemical methods. Chem Eng Technol 34:29–41

    Article  Google Scholar 

  197. Sheldon RA (2014) Green and sustainable manufacture of chemicals from biomass: state of the art. Green Chem 16:950–963

    Article  Google Scholar 

  198. Nakagawa Y, Tamura M, Tomishige K (2013) Catalytic reduction of biomass-derived furanic compounds with hydrogen. ACS Catal 3:2655–2668

    Article  Google Scholar 

  199. Karimi K, Taherzadeh MJ (2016) A critical review of analytical methods in pretreatment of lignocelluloses: composition, imaging, and crystallinity. Bioresour Technol 200:1008–1018

    Article  Google Scholar 

Download references

Acknowledgement

Consejo Nacional de Ciencia y Tecnología (CONACyT) Mexico is thankfully acknowledged for partially supporting this work under Sistema Nacional de Investigadores (SNI) program awarded to Hafiz M. N. Iqbal (CVU: 735340). The listed author(s) thankfully acknowledge the literature access provided by their representative organizations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Bilal or Hafiz M. N. Iqbal.

Ethics declarations

Conflict of interests

The listed author(s) declare no conflicting interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilal, M., Qamar, S.A., Qamar, M. et al. Bioprospecting lignin biomass into environmentally friendly polymers—Applied perspective to reconcile sustainable circular bioeconomy. Biomass Conv. Bioref. 14, 4457–4483 (2024). https://doi.org/10.1007/s13399-022-02600-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02600-3

Keywords

Navigation