Skip to main content

Advertisement

Log in

Degradation of newly developed date palm agro-residues-filled polyethylene biocomposites in the planktonic and benthic zones of a marine environment

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Although biodegradable polyethylene (PE)-based biocomposites reinforced using date palm fibers have emerged as an eco-friendly alternative to minimize plastic pollution, not much is known regarding their degradability especially in the marine environment. Our study aimed at developing date palm- and cellulose-based PE biocomposite panels (DPE and CPE, respectively), testing their biodegradability in planktonic and benthic marine habitats, and examining the associated bacterial community and its possible role in biodegradation. Mechanical, physical, chemical, and thermal properties of biocomposites were characterized using tensile and flexural tests, crystallinity and water absorption tests, fourier-transform infrared spectroscopy (FTIR), and thermal gravimetric analysis (TGA), respectively. Fabricated DPE panels demonstrated increased flexural attributes, and overall physical/structural integrity reflecting an improved mechanical sustainability than PE. Post-immersion, all panels revealed biotic rather than abiotic degradation of both PE matrix and date palm or cellulose. This was mainly evident from significant reductions in flexural strength, density, and intensity of PE-specific FTIR peaks. A mature biofouling community was developed on DPE and CPE based on the total biomass, bacterial, and phototroph abundances analyses. Non-metric multidimensional scaling (NMDS) analysis of the MiSeq dataset revealed habitat- rather than substrate-specific clustering of the bacterial community. Major bacterial groups detected included alpha- and gamma-proteobacteria, Clostridia, and Bacilli. Although certain genera such as Psychrobacter, Pseudomonas, and Bacillus were previously reported to play a major role in PE degradation, their degradation mechanisms remain unclear till date. We conclude that the newly designed biocomposites can potentially replace conventional materials, since they are derived from natural resources and biodegradable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bioplastics market data (2018) Global production capacities of bioplastics 2018–2023. In: Eur. Bioplastics Nova Inst. https://www.european-bioplastics.org/market/. Accessed 27 Aug 2021

  2. Ochoa-Yepes O, Medina-Jaramillo C, Guz L, Famá L (2018) Biodegradable and edible starch composites with fiber-rich lentil flour to use as food packaging. Starch-Stärke 70:1700222

    Article  Google Scholar 

  3. Narancic T, Cerrone F, Beagan N, O’Connor KE (2020) Recent advances in bioplastics: application and biodegradation. Polymers 12:920

    Article  Google Scholar 

  4. Pegoretti A, Dong Y, Slouf M (2020) Biodegradable matrices and composites Front Mater 7:265. https://doi.org/10.3389/fmats.2020.00265

    Article  Google Scholar 

  5. Gurunathan T, Mohanty S, Nayak SK (2015) A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos Part Appl Sci Manuf 77:1–25. https://doi.org/10.1016/j.compositesa.2015.06.007

    Article  Google Scholar 

  6. Meereboer KW, Misra M, Mohanty AK (2020) Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) bioplastics and their composites. Green Chem 22:5519–5558

    Article  Google Scholar 

  7. Trinh BM, Ogunsona EO, Mekonnen TH (2021) Thin-structured and compostable wood fiber-polymer biocomposites: Fabrication and performance evaluation. Compos Part Appl Sci Manuf 140:106150. https://doi.org/10.1016/j.compositesa.2020.106150

    Article  Google Scholar 

  8. Blanco I, Ingrao C, Siracusa V (2020) Life-cycle assessment in the polymeric sector: a comprehensive review of application experiences on the Italian Scale. Polymers (Basel) 12:1–42. https://doi.org/10.3390/POLYM12061212

    Article  Google Scholar 

  9. M Ramesh C Deepa LR Kumar et al 2020 Life-cycle and environmental impact assessments on processing of plant fibres and its bio-composites: a critical review J Ind Text 1–25https://doi.org/10.1177/1528083720924730

  10. Rangappa SM, Siengchin S, Parameswaranpillai J et al (2022) Lignocellulosic fiber reinforced composites: Progress, performance, properties, applications, and future perspectives. Polym Compos 43:645–691. https://doi.org/10.1002/pc.26413

  11. Beltrami LV, Bandeira JA, Scienza LC, Zattera AJ (2014) Biodegradable composites: Morphological, chemical, thermal, and mechanical properties of composites of poly (hydroxybutyrate-co-hydroxyvalerate) with curaua fibers after exposure to simulated soil. J Appl Polym Sci 131:40712. https://doi.org/10.1002/app.40712

    Article  Google Scholar 

  12. Brebu M (2020) Environmental degradation of plastic composites with natural fillers—a review. Polymers 12:166. https://doi.org/10.3390/polym12010166

    Article  Google Scholar 

  13. Folino A, Karageorgiou A, Calabrò PS, Komilis D (2020) Biodegradation of wasted bioplastics in natural and industrial environments: a review. Sustainability 12:6030. https://doi.org/10.3390/su12156030

    Article  Google Scholar 

  14. Maraveas C (2020) Production of sustainable and biodegradable polymers from agricultural waste. Polymers 12:1127

    Article  Google Scholar 

  15. Al-Kutti W, Nasir M, Johari MA et al (2018) An overview and experimental study on hybrid binders containing date palm ash, fly ash, OPC and activator composites. Constr Build Mater 159:567–577

    Article  Google Scholar 

  16. Jawaid M, Swain SK (eds) (2018) Bionanocomposites for packaging applications. Springer International Publishing, Cham

    Google Scholar 

  17. Lu DR, Xiao CM, Xu SJ (2009) Starch-based completely biodegradable polymer materials. Express Polym Lett 3:366–375. https://doi.org/10.3144/expresspolymlett.2009.46

    Article  Google Scholar 

  18. Nasir M, Aziz MA, Zubair M, et al (2022) Recent review on synthesis, evaluation, and SWOT analysis of nanostructured cellulose in construction applications. J Build Eng 1;46:103747.

  19. Awad S, Hamouda T, Midani M, et al (2021) Date palm fibre geometry and its effect on the physical and mechanical properties of recycled polyvinyl chloride composite. Ind Crops Prod 174:114172.

  20. Elseify LA, Midani M, Shihata LA et al (2019) Review on cellulosic fibers extracted from date palms (Phoenix Dactylifera L.) and their applications. Cellulose 26:2209–2232

    Article  Google Scholar 

  21. Nasir M, Al-Kutti W, Kayed TS et al (2021) Synthesis and SWOT analysis of date palm frond ash–Portland cement composites. Environ Sci Pollut Res 28:45240–45252

    Article  Google Scholar 

  22. Nassar MMA, Alzebdeh KI, Pervez T et al (2021) Polymer powder and pellets comparative performances as bio-based composites. Iran Polym J 30:269–283. https://doi.org/10.1007/s13726-020-00888-4

    Article  Google Scholar 

  23. Haseli M, Layeghi M, Zarea Hosseinabadi H (2018) Characterization of blockboard and battenboard sandwich panels from date palm waste trunks. Measurement 124:329–337. https://doi.org/10.1016/j.measurement.2018.04.040

    Article  Google Scholar 

  24. OECD-FAO (2018) OECD-FAO Agricultural Outlook (Edition 2018). https://www.oecd-ilibrary.org/agriculture-and-food/data/oecd-agriculture-statistics/oecd-fao-agricultural-outlook-edition-2018_d4bae583-en. Accessed 9 Feb 2019

  25. Bourmaud A, Dhakal H, Habrant A et al (2017) Exploring the potential of waste leaf sheath date palm fibres for composite reinforcement through a structural and mechanical analysis. Compos Part Appl Sci Manuf 103:292–303. https://doi.org/10.1016/j.compositesa.2017.10.017

    Article  Google Scholar 

  26. Almi K, Benchabane A, Lakel S, Kriker A (2015) Potential utilization of date palm wood as composite reinforcement. J Reinf Plast Compos 34:1231–1240

    Article  Google Scholar 

  27. Almi K, Lakel S, Benchabane A, Kriker A (2015b) Characterization of Date Palm Wood Used as Composites Reinforcement. Acta Phys Pol A 127:1072–1074. https://doi.org/10.12693/APhysPolA.127.1072

  28. Alzebdeh K, Nassar MM, Al-Hadhrami MA, et al (2017) Characterization of mechanical properties of aligned date palm frond fiber-reinforced low-density polyethylene. J Eng Res TJER 14:115. https://doi.org/10.24200/tjer.vol14iss2pp115-123

  29. Alzebdeh KI, Nassar MMA, Arunachalam R (2019) Effect of fabrication parameters on strength of natural fiber polypropylene composites: Statistical assessment. Measurement 146:195–207. https://doi.org/10.1016/j.measurement.2019.06.012

    Article  Google Scholar 

  30. Delzendehrooy F, Ayatollahi MR, Akhavan-Safar A, da Silva LFM (2020) Strength improvement of adhesively bonded single lap joints with date palm fibers: effect of type, size, treatment method and density of fibers. Compos Part B Eng 188:107874. https://doi.org/10.1016/j.compositesb.2020.107874

    Article  Google Scholar 

  31. Khanam PN, AlMaadeed MAA (2015) Processing and characterization of polyethylene-based composites. Adv Manuf Polym Compos Sci 1:63–79

    Google Scholar 

  32. Taban E, Khavanin A, Faridan M et al (2020) Comparison of acoustic absorption characteristics of coir and date palm fibers: experimental and analytical study of green composites. Int J Environ Sci Technol 17:39–48. https://doi.org/10.1007/s13762-019-02304-8

    Article  Google Scholar 

  33. Jagadeesh P, Puttegowda M, Mavinkere Rangappa S, Siengchin S (2021) A review on extraction, chemical treatment, characterization of natural fibers and its composites for potential applications. Polym Compos 42:6239–6264. https://doi.org/10.1002/pc.26312

    Article  Google Scholar 

  34. Sanjay MR, Siengchin S, Parameswaranpillai J et al (2019) A comprehensive review of techniques for natural fibers as reinforcement in composites: Preparation, processing and characterization. Carbohydr Polym 207:108–121

    Article  Google Scholar 

  35. D Badagliacco V Fiore C Sanfilippo A Valenza 2022 Effectiveness of sodium acetate treatment on the mechanical properties and morphology of natural fiber-reinforced composites J Compos Sci 6https://doi.org/10.3390/jcs6010005

  36. Okafor CE, Kebodi LC, Kandasamy J et al (2022) Properties and performance index of natural fiber reinforced cross-ply composites made from dioscorea alata stem fibers. Compos Part C Open Access 7:100213. https://doi.org/10.1016/j.jcomc.2021.100213

    Article  Google Scholar 

  37. Ariawan D, Rivai TS, Surojo E et al (2020) Effect of alkali treatment of Salacca Zalacca fiber (SZF) on mechanical properties of HDPE composite reinforced with SZF. Alex Eng J 59:3981–3989. https://doi.org/10.1016/j.aej.2020.07.005

    Article  Google Scholar 

  38. Chaudemanche S, Perrot A, Pimbert S et al (2018) Properties of an industrial extruded HDPE-WPC: The effect of the size distribution of wood flour particles. Constr Build Mater 162:543–552. https://doi.org/10.1016/j.conbuildmat.2017.12.061

    Article  Google Scholar 

  39. Hao X, Zhou H, Mu B et al (2020) Effects of fiber geometry and orientation distribution on the anisotropy of mechanical properties, creep behavior, and thermal expansion of natural fiber/HDPE composites. Compos Part B Eng 185:107778. https://doi.org/10.1016/j.compositesb.2020.107778

    Article  Google Scholar 

  40. Jordá-Vilaplana A, Carbonell-Verdú A, Samper MD et al (2017) Development and characterization of a new natural fiber reinforced thermoplastic (NFRP) with Cortaderia selloana (Pampa grass) short fibers. Compos Sci Technol 145:1–9. https://doi.org/10.1016/j.compscitech.2017.03.036

    Article  Google Scholar 

  41. Mahdavi S, Kermanian H, Varshoei A (2010) Comparison of mechanical properties of date palm fiber- polyethylene composite. BioResources 5:2391–2403

    Article  Google Scholar 

  42. Maria HJ, Luyt AS, Popelka A, et al (2020) Eco-friendly foam biocomposites based on cellulose extracted from date palm leaves and low-density polyethylene. Funct Compos Struct 2:045004

  43. Zheng B, Hu C, Guan L et al (2019) Structural characterization and analysis of high-strength laminated composites from recycled newspaper and HDPE. Polymers 11:1311. https://doi.org/10.3390/polym11081311

    Article  Google Scholar 

  44. Alshabanat M (2019) Morphological, thermal, and biodegradation properties of LLDPE/treated date palm waste composite buried in a soil environment. J Saudi Chem Soc 23:355–364. https://doi.org/10.1016/j.jscs.2018.08.008

    Article  Google Scholar 

  45. Nassar M, Alzebdeh K, Munam A (2020) Preparation of high performance fiber from natural fiber (Date Palm). World Intellect Prop Organ WIPO WO2020139088A1 Internet 1–22

  46. Licari JJ, Swanson DW (2011) Test and inspection methods. In: Adhesives Technology for Electronic Applications. Elsevier, pp 345–377

  47. Jia J, Raabe D (2008) Crystallinity and crystallographic texture in isotactic polypropylene during deformation and heating. ArXiv Prepr ArXiv08112412

  48. Abed RMM, Muthukrishnan T, Al Khaburi M et al (2020) Degradability and biofouling of oxo-biodegradable polyethylene in the planktonic and benthic zones of the Arabian Gulf. Mar Pollut Bull 150:110639. https://doi.org/10.1016/j.marpolbul.2019.110639

    Article  Google Scholar 

  49. Ahmad AS, Siong YJF, Syamsumir DF et al (2015) The potential of carotenoids from marine tropical microalgae in the healing process of gastritis. J Sustain Sci Manag 10:92–106

    Google Scholar 

  50. Klindworth A, Pruesse E, Schweer T et al (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41:e1–e1

    Article  Google Scholar 

  51. Ramette A (2009) Quantitative community fingerprinting methods for estimating the abundance of operational taxonomic units in natural microbial communities. Appl Environ Microbiol 75:2495–2505. https://doi.org/10.1128/AEM.02409-08

    Article  Google Scholar 

  52. Ramette A, Tiedje JM (2007) Biogeography: an emerging cornerstone for understanding prokaryotic diversity, ecology, and evolution. Microb Ecol 53:197–207

    Article  Google Scholar 

  53. Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  54. Augustia VA, Chafidz A, Setyaningsih L, et al (2018) Effect of date palm fiber loadings on the mechanical properties of high density polyethylene/date palm fiber composites. Trans Tech Publ, pp 94–99

  55. Chafidz A, Rizal M, Faisal R et al (2018) Processing and properties of high density polyethylene/date palm fiber composites prepared by a laboratory mixing extruder. J Mech Eng Sci 12:3771–3785

    Article  Google Scholar 

  56. Zadeh KM, Ponnamma D, Al-Maadeed MAA (2017) Date palm fibre filled recycled ternary polymer blend composites with enhanced flame retardancy. Polym Test 61:341–348

    Article  Google Scholar 

  57. Khatun M A, S S, Nur H P, Chowdhury AM S (2019) Physical, mechanical, thermal and morphological analysis of date palm mat (DPM) and palmyra palm fruit (PPF) fiber reinforced high density polyethylene hybrid composites. Adv Mater Sci 4:1–6. https://doi.org/10.15761/AMS.1000153

  58. Alhijazi M, Zeeshan Q, Safaei B et al (2020) Recent developments in palm fibers composites: a review. J Polym Environ 28:3029–3054. https://doi.org/10.1007/s10924-020-01842-4

    Article  Google Scholar 

  59. Appu SP, Ashwaq O, Al-Harthi M, Umar Y (2021) Fabrication and characterization of composites from recycled polyethylene and date palm seed powder. J Thermoplast Compos Mater 34:316–327

    Article  Google Scholar 

  60. John MJ, Thomas S (2012) Natural polymers: composites. Royal society of chemistry, United Kingdom

    Book  Google Scholar 

  61. Zini E, Scandola M (2011) Green composites: an overview. Polym Compos 32:1905–1915. https://doi.org/10.1002/pc.21224

    Article  Google Scholar 

  62. AL-Oqla FM, Alothman OY, Jawaid M, et al (2014) Processing and properties of date palm fibers and its composites. In: Biomass and bioenergy. Springer, pp 1–25

  63. Midani M, Saba N, Alothman OY (2020) Date Palm Fiber Composites, 1st edn. Springer, Singapore

    Book  Google Scholar 

  64. AlMaadeed MA, Nógellová Z, Mičušík M et al (2014) Mechanical, sorption and adhesive properties of composites based on low density polyethylene filled with date palm wood powder. Mater Des 53:29–37

    Article  Google Scholar 

  65. Arutchelvi J, Sudhakar M, Arkatkar A et al (2008) Biodegradation of polyethylene and polypropylene. Indian J Biotechnol 7:9–22

    Google Scholar 

  66. Muthukrishnan T, Al Khaburi M, Abed RMM (2019) Fouling microbial communities on plastics compared with wood and steel: are they substrate- or location-specific? Microb Ecol 78:361–374. https://doi.org/10.1007/s00248-018-1303-0

    Article  Google Scholar 

  67. O’Brine T, Thompson RC (2010) Degradation of plastic carrier bags in the marine environment. Mar Pollut Bull 60:2279–2283

    Article  Google Scholar 

  68. Sudhakar M, Trishul A, Doble M et al (2007) Biofouling and biodegradation of polyolefins in ocean waters. Polym Degrad Stab 92:1743–1752

    Article  Google Scholar 

  69. Bao Y, Dolfing J, Wang B et al (2019) Bacterial communities involved directly or indirectly in the anaerobic degradation of cellulose. Biol Fertil Soils 55:201–211. https://doi.org/10.1007/s00374-019-01342-1

    Article  Google Scholar 

  70. Sabev HA, Barratt SR, Greenhalgh M et al (2006) Biodegradation and biodeterioration of man-made polymeric materials. In: Gadd GM (ed) Fungi in Biogeochemical Cycles. Cambridge University Press, Cambridge, pp 212–235

    Chapter  Google Scholar 

  71. Wen G, Kötzsch S, Vital M et al (2015) BioMig A method to evaluate the potential release of compounds from and the formation of biofilms on polymeric materials in contact with drinking water. Environ Sci Technol 49:11659–11669

    Article  Google Scholar 

  72. Harrison JP, Sapp M, Schratzberger M, Osborn AM (2011) Interactions between microorganisms and marine microplastics: a call for research. Mar Technol Soc J 45:12–20. https://doi.org/10.4031/MTSJ.45.2.2

    Article  Google Scholar 

  73. Rummel CD, Jahnke A, Gorokhova E et al (2017) Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment. Environ Sci Technol Lett 4:258–267. https://doi.org/10.1021/acs.estlett.7b00164

    Article  Google Scholar 

  74. Urbanek AK, Rymowicz W, Mirończuk AM (2018) Degradation of plastics and plastic-degrading bacteria in cold marine habitats. Appl Microbiol Biotechnol 102:7669–7678. https://doi.org/10.1007/s00253-018-9195-y

    Article  Google Scholar 

  75. Pinto M, Langer TM, Hüffer T et al (2019) The composition of bacterial communities associated with plastic biofilms differs between different polymers and stages of biofilm succession. PLoS ONE 14:e0217165. https://doi.org/10.1371/journal.pone.0217165

    Article  Google Scholar 

  76. Chen C-L, Maki JS, Rittschof D, Teo SL-M (2013) Early marine bacterial biofilm on a copper-based antifouling paint. Int Biodeterior Biodegrad 83:71–76

    Article  Google Scholar 

  77. Elifantz H, Horn G, Ayon M et al (2013) Rhodobacteraceae are the key members of the microbial community of the initial biofilm formed in Eastern Mediterranean coastal seawater. FEMS Microbiol Ecol 85:348–357

    Article  Google Scholar 

  78. Muthukrishnan T, Abed RM, Dobretsov S et al (2014) Long-term microfouling on commercial biocidal fouling control coatings. Biofouling 30:1155–1164

    Article  Google Scholar 

  79. Rampadarath S, Bandhoa K, Puchooa D et al (2017) Early bacterial biofilm colonizers in the coastal waters of Mauritius. Electron J Biotechnol 29:13–21

    Article  Google Scholar 

  80. Basili M, Quero GM, Giovannelli D et al (2020) Major role of surrounding environment in shaping biofilm community composition on marine plastic debris. Front Mar Sci 7:262. https://doi.org/10.3389/fmars.2020.00262

    Article  Google Scholar 

  81. Dussud C, Meistertzheim AL, Conan P et al (2018) Evidence of niche partitioning among bacteria living on plastics, organic particles and surrounding seawaters. Environ Pollut 236:807–816. https://doi.org/10.1016/j.envpol.2017.12.027

    Article  Google Scholar 

  82. Kesy K, Oberbeckmann S, Kreikemeyer B, Labrenz M (2019) Spatial environmental heterogeneity determines young biofilm assemblages on microplastics in Baltic Sea Mesocosms. Front Microbiol 10:1665. https://doi.org/10.3389/fmicb.2019.01665

    Article  Google Scholar 

  83. De Tender C, Devriese LI, Haegeman A et al (2017) Temporal dynamics of bacterial and fungal colonization on plastic debris in the North Sea. Environ Sci Technol 51:7350–7360

    Article  Google Scholar 

  84. Harrison JP, Schratzberger M, Sapp M, Osborn AM (2014) Rapid bacterial colonization of low-density polyethylene microplastics in coastal sediment microcosms. BMC Microbiol 14:232. https://doi.org/10.1186/s12866-014-0232-4

    Article  Google Scholar 

  85. Govarthanan M, Khalifa AYZ, Kamala-Kannan S, et al (2020) Significance of allochthonous brackish water Halomonas sp. on biodegradation of low and high molecular weight polycyclic aromatic hydrocarbons. Chemosphere 243:125389. https://doi.org/10.1016/j.chemosphere.2019.125389

  86. Li J, Kim HR, Lee HM et al (2020) Rapid biodegradation of polyphenylene sulfide plastic beads by Pseudomonas sp. Sci Total Environ 720:137616. https://doi.org/10.1016/j.scitotenv.2020.137616

    Article  Google Scholar 

  87. Oberbeckmann S, Loeder MGJ, Gerdts G, Osborn AM (2014) Spatial and seasonal variation in diversity and structure of microbial biofilms on marine plastics in Northern European waters. FEMS Microbiol Ecol 90:478–492. https://doi.org/10.1111/1574-6941.12409

    Article  Google Scholar 

  88. Oberbeckmann S, Osborn AM, Duhaime MB (2016) Microbes on a bottle: substrate, season and geography influence community composition of microbes colonizing marine plastic debris. PLoS ONE 11:e0159289. https://doi.org/10.1371/journal.pone.0159289

    Article  Google Scholar 

  89. Pinto M, Zenner PP, Langer TM et al (2020) Putative degraders of low-density polyethylene-derived compounds are ubiquitous members of plastic-associated bacterial communities in the marine environment. Environ Microbiol 22:4779–4793. https://doi.org/10.1111/1462-2920.15232

    Article  Google Scholar 

  90. Liu X, Hille P, Zheng M et al (2019) Diversity of polyester degrading bacteria in surface sediments from Yangtze River Estuary. AIP Conf Proc 2122:020063. https://doi.org/10.1063/1.5116502

    Article  Google Scholar 

  91. Sekiguchi T, Sato T, Enoki M et al (2011) Isolation and characterization of biodegradable plastic degrading bacteria from deep-sea environments. JAMSTEC Rep Res Dev 11:33–41. https://doi.org/10.5918/jamstecr.11.33

    Article  Google Scholar 

  92. Rizzo C, Conte A, Azzaro M et al (2020) Cultivable bacterial communities in brines from perennially ice-covered and pristine Antarctic lakes: ecological and biotechnological implications. Microorganisms 8:819

    Article  Google Scholar 

  93. Kyaw BM, Champakalakshmi R, Sakharkar MK et al (2012) Biodegradation of low density polythene (LDPE) by Pseudomonas species. Indian J Microbiol 52:411–419

    Article  Google Scholar 

  94. Muhonja CN, Makonde H, Magoma G, Imbuga M (2018) Biodegradability of polyethylene by bacteria and fungi from Dandora dumpsite Nairobi-Kenya. PloS One 13:e0198446

  95. Olanrewaju-Kehinde D, Oni M, Thomas B, Dele-Osibanjo T (2016) Polyethylene degradation by pseudomonas aeruginosa harboring catabolic plasmids. Intl J 7:43–47

    Google Scholar 

  96. Wilkes RA, Aristilde L (2017) Degradation and metabolism of synthetic plastics and associated products by Pseudomonas sp.: capabilities and challenges. J Appl Microbiol 123:582–593. https://doi.org/10.1111/jam.13472

    Article  Google Scholar 

  97. Yogalakshmi KN, Singh S (2020) Plastic waste: environmental hazards, its biodegradation, and challenges. In: Saxena G, Bharagava RN (eds) Bioremediation of Industrial Waste for Environmental Safety, vol I. Industrial Waste and Its Management. Springer, Singapore, pp 99–133

    Chapter  Google Scholar 

  98. Zheng Y, Yanful EK, Bassi AS (2005) A Review of Plastic Waste Biodegradation. Crit Rev Biotechnol 25:243–250. https://doi.org/10.1080/07388550500346359

    Article  Google Scholar 

  99. Viršek MK, Lovšin MN, Koren Š et al (2017) Microplastics as a vector for the transport of the bacterial fish pathogen species Aeromonas salmonicida. Mar Pollut Bull 125:301–309. https://doi.org/10.1016/j.marpolbul.2017.08.024

    Article  Google Scholar 

  100. Moura V, Ribeiro I, Moriggi P et al (2018) The influence of surface microbial diversity and succession on microbiologically influenced corrosion of steel in a simulated marine environment. Arch Microbiol 200:1447–1456. https://doi.org/10.1007/s00203-018-1559-2

    Article  Google Scholar 

  101. Procópio L (2019) The role of biofilms in the corrosion of steel in marine environments. World J Microbiol Biotechnol 35:73. https://doi.org/10.1007/s11274-019-2647-4

    Article  Google Scholar 

  102. Richter K, Schicklberger M, Gescher J (2012) Dissimilatory reduction of extracellular electron acceptors in anaerobic respiration. Appl Environ Microbiol 78:913–921. https://doi.org/10.1128/AEM.06803-11

    Article  Google Scholar 

  103. Rosato A, Barone M, Negroni A et al (2020) Microbial colonization of different microplastic types and biotransformation of sorbed PCBs by a marine anaerobic bacterial community. Sci Total Environ 705:135790. https://doi.org/10.1016/j.scitotenv.2019.135790

    Article  Google Scholar 

  104. Barreto CR, Morrissey EM, Wykoff DD, Chapman SK (2018) Co-occurring Mangroves and Salt Marshes Differ in Microbial Community Composition. Wetlands 38:497–508. https://doi.org/10.1007/s13157-018-0994-9

    Article  Google Scholar 

  105. Cui J, Mai G, Wang Z et al (2019) Metagenomic Insights Into a Cellulose-Rich Niche Reveal Microbial Cooperation in Cellulose Degradation. Front Microbiol 10:618. https://doi.org/10.3389/fmicb.2019.00618

    Article  Google Scholar 

  106. Gomez-Flores M, Nakhla G, Hafez H (2017) Hydrogen production and microbial kinetics of Clostridium termitidis in mono-culture and co-culture with Clostridium beijerinckii on cellulose. AMB Express 7:84. https://doi.org/10.1186/s13568-016-0256-2

    Article  Google Scholar 

  107. Nakazono-Nagaoka E, Fujikawa T, Shikata A et al (2019) Draft genome sequence data of Clostridium thermocellum PAL5 possessing high cellulose-degradation ability. Data Brief 25:104274. https://doi.org/10.1016/j.dib.2019.104274

    Article  Google Scholar 

  108. Singh N, Mathur AS, Gupta RP et al (2018) Enhanced cellulosic ethanol production via consolidated bioprocessing by Clostridium thermocellum ATCC 31924☆. Bioresour Technol 250:860–867. https://doi.org/10.1016/j.biortech.2017.11.048

    Article  Google Scholar 

  109. Auta HS, Emenike CU, Fauziah SH (2017) Screening of Bacillus strains isolated from mangrove ecosystems in Peninsular Malaysia for microplastic degradation. Environ Pollut 231:1552–1559. https://doi.org/10.1016/j.envpol.2017.09.043

    Article  Google Scholar 

  110. Giacomucci L, Raddadi N, Soccio M et al (2019) Polyvinyl chloride biodegradation by Pseudomonas citronellolis and Bacillus flexus. New Biotechnol 52:35–41. https://doi.org/10.1016/j.nbt.2019.04.005

    Article  Google Scholar 

  111. Roager L, Sonnenschein EC (2019) Bacterial candidates for colonization and degradation of marine plastic debris. Environ Sci Technol 53:11636–11643. https://doi.org/10.1021/acs.est.9b02212

    Article  Google Scholar 

  112. Syranidou E, Karkanorachaki K, Amorotti F et al (2017) Biodegradation of weathered polystyrene films in seawater microcosms. Sci Rep 7:17991. https://doi.org/10.1038/s41598-017-18366-y

    Article  Google Scholar 

  113. Ławniczak Ł, Marecik R, Chrzanowski Ł (2013) Contributions of biosurfactants to natural or induced bioremediation. Appl Microbiol Biotechnol 97:2327–2339. https://doi.org/10.1007/s00253-013-4740-1

    Article  Google Scholar 

  114. Yang Y, Chen J, Wu W-M et al (2015) Complete genome sequence of Bacillus sp. YP1, a polyethylene-degrading bacterium from waxworm’s gut. J Biotechnol 200:77–78. https://doi.org/10.1016/j.jbiotec.2015.02.034

    Article  Google Scholar 

  115. Yin C-F, Xu Y, Zhou N-Y (2020) Biodegradation of polyethylene mulching films by a co-culture of Acinetobacter sp. strain NyZ450 and Bacillus sp. strain NyZ451 isolated from Tenebrio molitor larvae. Int Biodeterior Biodegrad 155:105089. https://doi.org/10.1016/j.ibiod.2020.105089

Download references

Acknowledgements

The authors are grateful to the Central Analytical and Applied Research Unit (CAARU) at Sultan Qaboos University (SQU) for giving access to SEM and XRD. The authors also acknowledge the access to analytical facilities provided by Nano Lab at College of Engineering (SQU).

Funding

This research was financially supported by the Gulf Cooperation Council (GCC) grant collaborating between Kuwait University, Kuwait (grant #2017003) and Sultan Qaboos University, Oman (grant #SQU-GCC/CL/17/02).

Author information

Authors and Affiliations

Authors

Contributions

Raeid M. M. Abed, Thirumahal Muthukrishnan, Mahmoud M.A. Nassar, and Khalid I. Alzebdeh designed the project and planned all experiments. Raeid M. M. Abed, Thirumahal Muthukrishnan, and Huda Al Battashi performed the experiments and did the molecular and microbiological analyses. Mahmoud M.A. Nassar and Khalid I. Alzebdeh fabricated the biocomposites and analyzed their attributes before and after immersion in the sea. All authors contributed to the writing of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Raeid M. M. Abed.

Ethics declarations

Ethics approval

Not applicable.

Informed consent

Informed consent is not required due to the nature of this study.

Consent to participate

All authors consent to participate in this article.

Consent for publication

All authors consent to the publication of this article.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1.74 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abed, R.M.M., Muthukrishnan, T., Nassar, M.M.A. et al. Degradation of newly developed date palm agro-residues-filled polyethylene biocomposites in the planktonic and benthic zones of a marine environment. Biomass Conv. Bioref. 14, 1793–1808 (2024). https://doi.org/10.1007/s13399-022-02514-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02514-0

Keywords

Navigation