Skip to main content
Log in

Conversion of methane to methanol: technologies and future challenges

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

In the current period, there is a high demand for the production of liquid fuel which is used for transport purposes all over the world. Therefore, the conversion of methane to methanol fuel is reported as an alternative option for natural gas. Some approaches such as the two-step syngas process, direct single step, and bacterial agent catalyzed reaction use steam reform of methane, methane oxidation processes (via methane selectivity), and methane gaseous form (via methane monooxygenase enzymes) respectively to produce methanol fuel from methane. Also, chemical routes have applied high temperature/pressure catalytic conversion of syngas to methanol. Most conventional approaches discussed are gas to liquid technologies that exploit and monetize nontraditional methanol sources. The utility of methanol as liquid fuel is discussed and now researchers have invented the greatest potential of methanol as a robust product that is produced or synthesized by using a commercial scale conversion process from methane. Normal conversion for methane to methanol via chemical routes is exploited by high temperature and pressure as an energy-intensive process. However, the biological modes of conversion of methane to methanol occur by using methanotrophic bacteria, exhibiting desired transformation capacity at ambient conditions via methane monooxygenase enzyme. Biotechnological modes of conversion have shown the potentiality for their application in an industrially relevant process in eco-friendly ways. Some approaches of biotechnological modes of conversion of methane to methanol by whole-cell, wild-type, and methanotroph cultures are discussed along with many chemical route approaches. In this paper, the authors emphasize the different chemical and biological approaches for methane to methanol conversion with their limitations and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

Yes.

Code availability

Not applicable.

Abbreviations

γ-Al2O3 :

Alumina oxide

µmol/g.cat.h:

Micromoles per gram.catalyst hour

13C:

Carbon thirteen

BET:

Brunauer-Emmett-Teller

CCU:

Carbon capturing and utilization

C-H bond:

Carbon-hydrogen bond

CH3OH:

Methanol

CH4 :

Methane

CO:

Carbon monoxide

CO2 :

Carbon dioxide

Co3O4 :

Cobalt oxide

Cu/ZnO:

Copper/zinc oxide

Cu:

Copper

Cu+ :

Cuprous ion

CuO/ZnO:

Cuprous oxide/zinc oxide

DBD:

Dielectric barrier discharge

DCKMs:

Detail chemical kinetic models

ETDA:

Ethylenediaminetetraacetic acid

FE-SEM:

Field emission scanning electron microscopy

FTIR:

Fourier transform infrared

GA:

Gliding arc

GDM:

Gaussian dispersion methodology

GHGs:

Greenhouses gases

GtM:

Gas to methanol

HP separator:

High pressure separator

KPIs:

Input as selected key performances

MDH:

Methanol dehydrogenase

MgCl2 :

Magnesium chloride

MGO:

Magnesium oxide

MMA:

Methyl methacrylate

MMO:

Methane monooxygenase

MTBE:

Methyl tertiary butyl ether

Mt CO2 yr:

Metric ton carbon dioxide

N2O:

Nitrous oxide

NaCl:

Sodium chloride

NH4Cl:

Ammonium chloride

O2 :

Oxygen

OC:

Oxidation coefficient

-OH:

Hydroxyl group

PC:

Pulverised coal

pMMO:

Particulate MMO

PO:

Paraffin oil

RCW:

Reforming in supercritical water

RSM:

Response surface methodology

RWGS:

Reverse water–gas shift

SC:

Supercritical

SCW:

Super-critical water

SCWO:

Supercritical water oxidation

sMMO:

Soluble MMO

TC:

Thermal catalysis process

TiO2 :

Titanium dioxides

TOC:

Total organic carbon

TPC:

Thermo-photocatalysis

UV-Vis:

Ultraviolet–visible spectroscopy

XRD:

X-ray powder diffraction

ZnFe2O4/TiO2 :

Zinc iron oxide/titanium dioxide

ZnFe2O4 :

Zinc ferrites

ZnFe2O4 :

Zinc iron oxide

ZrO2 :

Zirconium dioxide

References

  1. Günthel M, Donis D, Kirillin G, Ionescu D, Bizic M, McGinnis DF, Grossart HP, Tang KW (2019) Contribution of oxic methane production to surface methane emission in lakes and its global importance. Nat Commun. 10:5497 https://doi.org/10.1038/s41467-019-13320-0

  2. Liu X, Gao Y, Zhang Z, Luo J, Yan S (2017) Sediment-water methane flux in a eutrophic pond and primary influential factors at different time scales. Water 9:601. https://doi.org/10.3390/w9080601

    Article  Google Scholar 

  3. Manzoor N, Sadiq M, Naqvi M, Sikandar U, Naqvi SR (2020) Experimental study of CO2 conversion into methanol by synthesized photocatalyst (ZnFe2O4/TiO2) using visible light as an energy source. Cataly 10(2):163. https://doi.org/10.3390/catal10020163

    Article  Google Scholar 

  4. Li H, Lei Y, Huang Y, Fang Y, Xu Y, Zhu X, Li X (2011) Photocatalytic reduction of carbon dioxide to methanol by Cu2O/SiC nanocrystallite under visible light irradiation. J Nat Gas Chem 20:142–151. https://doi.org/10.1016/s10039953(10)60166-1

    Article  Google Scholar 

  5. Ola O, Maroto-Valer MM (2015) Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. J Photochem Photobiol C Photochem Rev 24:13–49. https://doi.org/10.1016/j.jphotochemrev.2015.06.001

    Article  Google Scholar 

  6. Xia S, Meng Y, Zhou X, Xue J, Pan G, Ni Z (2016) Ti/ZnO–Fe2O3 composite: synthesis, characterization and application as a highly efficient photo-electron catalyst for methanol from CO2 reduction. Appl Catal B Environ 187:122–133. https://doi.org/10.1016/j.apcatb.2016.01.027

    Article  Google Scholar 

  7. Hameeda A, Ismail IMI, Aslama M, Gondal MA (2014) Photocatalytic conversion of methane into methanol: performance of silver impregnated WO3. Appl Cataly A: Gen 470:327–335. https://doi.org/10.1016/j.apcata.2013.10.045

    Article  Google Scholar 

  8. Kim HJ, Huh J, Kwon YW, Park D, Yu Y, Jang YE, Lee BR, Jo E, Lee EJ, Heo Y, Lee W, Lee J (2019) Biological conversion of methane to methanol through genetic reassembly of native catalytic domains. Nat Catal 2:342–353. https://doi.org/10.1038/s41929-019-0255-1

    Article  Google Scholar 

  9. Ro SY, Ross MO, Deng YW, Batelu S, Lawton TJ, Hurley JD, Stemmler TL, Hoffman B M, Rosenzweig AC (2018) From micelles to bicelles: effect of the membrane on particulate methane monooxygenase activity. J. Biol. Chem. 293: 10457–10465 https://doi.org/10.1074/jbc.RA118.003348

  10. Culpepper MA, Cutsail GE, Gunderson, WA, Hoffman BM, Rosenzweig AC (2014) Identification of the valence and coordination environment of the particulate methane monooxygenase copper centers by advanced EPR characterization. J. Am. Chem. Soc., 2014, 136, 11767–11775 https://doi.org/10.1021/ja5053126

  11. Park MB, Park ED, Ahn WS (2019) Recent progress in direct conversion of methane to methanol over copper-exchanged zeolites. Front Chem 7:514

    Article  Google Scholar 

  12. Mahyuddin MH, Shiota Y, Staykov A, Yoshizawa K (2018) Theoretical overview of methane hydroxylation by copper–oxygen species in enzymatic and zeolitic catalysts. Acc Chem Res 51:2382–2390

    Article  Google Scholar 

  13. Ross MO, MacMillan F, Wang J, Nisthal A (2019) Lawton particulate methane monooxygenase contains only mononuclear copper centers. Science 364:566

    Article  Google Scholar 

  14. Zakaria Z, Kamarudin SK (2016) Direct conversion technologies of methane to methanol: an overview. Renew Sustain Energy Rev 65:250–261

    Article  Google Scholar 

  15. Bhatia L, Garlapati VK, Chandel A (2019) In Scalable technologies for lignocellulosic biomass processing into cellulosic ethanol. R. Pogaku (ed.) Springer Nature Switzerland AG. Horizons in Bioprocess Engineering 73–90 https://doi.org/10.1007/978-3-030-29069-6

  16. Bhatia, L., Sarangi, P.K., Nanda, S., (2020) Current advancements in microbial fuel cell technologies. In: Biorefinery of alternative resources: targeting green fuels and platform chemicals. Springer Nature Singapore Pte Ltd. 2020 S. Nanda et al. (eds.). 129–148 https://doi.org/10.1007/978-981-15-1804-1_20

  17. Sarangi, P.K., Nanda, S., (2019) Valorization of pineapple wastes for biomethane generation. In: Biogas technology. New India Publishing Agency, New Delhi, India, Mishra S., Adhya T.K., Ojha S.K. (Eds.); pp. 169–180

  18. Bhatia L, Singh AK, Chandel AK (2021) Role of thermophiles in production of aviation biofuels: fueling the future. In: Springer Nature Singapore Pte Ltd. A. Singh et al. (eds.), Environmental Microbiology and Biotechnology https://doi.org/10.1007/978-981-15-7493-1_3

  19. Fujimoto Z, KishineN TK (2021) Structure-based substrate specificity analysis of GH11 xylanase from Streptomyces olivaceoviridis E-86. Appl Microbiol Biotechnol 105(5):1–10. https://doi.org/10.1007/s00253-021-11098-0

    Article  Google Scholar 

  20. Kamachi T, Okura I (2018) Methanol biosynthesis using methanotrophs. In Methane biocatalysis: paving the way to sustainability; Kalyuzhnaya MG, Xing XH, Eds.; Springer International Publishing: Cham, Switzerland, pp. 169–182

  21. Zheng X, Fan R, Li C, Yang X, Li H, Lin J, Zhou X, Lv R (2019) A fast-response and highly linear humidity sensor based on quartz crystal microbalance. Sens Actuators B Chem 283:659–665

    Article  Google Scholar 

  22. Tomkins P, Mansouri A, Bozbag SE, Krumeich F, Park MB (2016) Isothermal cyclic conversion of methane into methanol over copper-exchanged zeolite at low temperature. Angew Chem Int Ed 55:5467–5471

    Article  Google Scholar 

  23. Park D, Lee J (2013) Biological conversion of methane to methanol. Korean J Chem Eng 30:977–987

    Article  Google Scholar 

  24. Sharma R, Poelman H, Marin GB, Galvita VV (2020) Approaches for selective oxidation of methane to methanol. Catalysts 10(2):194. https://doi.org/10.3390/catal10020194

    Article  Google Scholar 

  25. Dolan G (2019) Overview of global methanol fuel blending, touching on benefits of methanol blending methanol fuel forum in Trinidad and Tobago in association with Proman and MI Member MHTL

  26. Usman M, Wan Daud WMA (2015) Recent advances in the methanol synthesis via methane reforming processes. RSC Advances 28

  27. Sarangi PK, Nanda S, Vo D V N (2020) Technological advancements in the production and application of biomethanol. In: Biorefinery of alternative resources: targeting green fuels and platform chemicals. Springer Nature Singapore Pte Ltd. 2020 S. Nanda et al. (eds.). 127–140

  28. Lustemberg PG, Palomino RM, Gutiérrez RA, Grinter DC, Vorokhta M (2018) Direct conversion of methane to methanol on Ni-ceria surfaces: metal–support interactions and water-enabled catalytic conversion by site blocking. J Am Chem Soc 140:7681–7687

    Article  Google Scholar 

  29. Dalena F, Senatore A, Basile M, Knani S, Basile A, Iulianelli A (2018) Advances in methanol production and utilization, with particular emphasis toward hydrogen generation via membrane reactor technology. Membranes 8: 98 https://doi.org/10.3390/membranes8040098

  30. Singha RK, Tsuji Y, Mahyuddin MH (2019) Yoshizawa, K. Methane activation at the metal–support interface of Ni4–CeO2(111) catalyst: a theoretical study. J Phys Chem C 123:9788–9798

    Article  Google Scholar 

  31. Wang X, Du X, Yu W, Zhang J, Wei J (2019) Coproduction of hydrogen and methanol from methane by chemical looping reforming. Ind Eng Chem Res 58:10296–10306

    Article  Google Scholar 

  32. Khoshtinat M, Amin NAS, Noshadi I (2010) A review of methanol production from methane oxidation via non-thermal plasma reactor. World Academy of Science, Engineering and Technology 62

  33. Lange JP, Sushkevich VL, Knorpp AJ, van Bokhoven JA (2019) Methane-to- methanol via chemical looping: economic potential and guidance for future research. Ind Eng Chem Res 58:8674–8680

    Article  Google Scholar 

  34. Kapran AY, Orlyk SM (2017) Hydrogen production in methanol reforming on modified copper–zinc catalysts: a review. Theor Exp Chem 53:1–16. https://doi.org/10.1007/s11237-017-9495-9

    Article  Google Scholar 

  35. Silva MJD (2016) Synthesis of methanol from methane: challenges and advances on the multi-step (syngas) and one-step routes (DMTM). Fuel Process Technol 145:42–61. https://doi.org/10.1016/j.fuproc.2016.01.023

    Article  Google Scholar 

  36. Brown NJ, García-Trenco A, Weiner J, White ER, Allinson M, Chen Y, Wells PP, Gibson EK, Hellgardt K, Shaffer MSP, Williams CK (2015) From organometallic zinc and copper complexes to highly active colloidal catalysts for the conversion of CO2 to methanol. ACS Catal 5:2895–2902. https://doi.org/10.1021/cs502038y

    Article  Google Scholar 

  37. Zhang C, Jun KW, Gao R, Kwak G, Park HG (2017) Carbon dioxide utilization in a gas-to-methanol process combined with CO2/Steam-mixed reforming: techno-economic analysis. Fuel 190:303–311. https://doi.org/10.1016/j.fuel.2016.11.008

    Article  Google Scholar 

  38. Yang Y, Liu J, Shen W, Li J, Chien IL (2018) High-efficiency utilization of CO2 in the methanol production by a novel parallel-series system combining steam and dry methane reforming. Energy 158:820–829. https://doi.org/10.1016/j.energy.2018.06.061

    Article  Google Scholar 

  39. Van de Water LGA, Wilkinson SK, Smith RAP, Watson MJ (2018) Understanding methanol synthesis from CO/H2 feeds over Cu/CeO2 catalysts. J Catalys 364:57–68. https://doi.org/10.1016/j.jcat.2018.04.026

    Article  Google Scholar 

  40. Kajaste R, Hurme M, Oinas P (2018) Methanol-managing greenhouse gas emissions in the production chain by optimizing the resource base. AIMS Ener. 6(6): 1074–1102 https://doi.org/10.3934/energy.2018.6.1074

  41. Shindell D, Borgford PN, Brauer M, Haines A, Kuylenstierna JCI, Leonard SA, Ramanathan V, Ra A (2017) A climate policy pathway for near- and long-term benefits. Sci. 356: 493–494 https://doi.org/10.1126/science.aak9521

  42. Sheldon D (2017) Methanol production – a technical history. J Johnson Matthey Technol. Rev. 61:172–182 https://doi.org/10.1595/205651317X695622

  43. Khirsariya P, Mewada RK (2013) Single step oxidation of methane to methanol–towards better understanding. Procedia Eng 51:409–415. https://doi.org/10.1016/j.proeng.2013.01.057

    Article  Google Scholar 

  44. Aresta M, Dibenedetto A, Quaranta E (2016) State of the art and perspectives in catalytic processes for CO2 conversion into chemicals and fuels: the distinctive contribution of chemical catalysis and biotechnology. J. Catal. 343: 2–45 https://doi.org/10.1016/j.j

  45. Park MB, Park ED, Ahn WS (2019) Recent progress in direct conversion of methane to methanol over copper-exchanged zeolites. Front. Chem. 7:514 https://doi.org/10.3389/fchem.2019.00514

  46. Marlin DS, Sarron E, Sigurbjörnsson Ó (2018) Process advantages of direct CO2 to methanol synthesis. Front. Chem. 6:446 https://doi.org/10.3389/fchem.2018.00446

  47. Tomkins P, Mansouri A, Bozbag SE, Krumeich F, Park MB, Alayon EMC, Ranocchiari M, van Bokhoven JA (2016) Isothermal cyclic conversion of methane into methanol over copper-exchanged zeolite at low temperature. Angew. Chem. Int. Ed. 55:5467–5471 https://doi.org/10.1002/anie.201511065

  48. Sushkevich VL, Palagin D, Ranocchiari M, van Bokhoven JA (2017) Selective anaerobic oxidation of methane enables direct synthesis of methanol. Sci. 356: 523–527 https://doi.org/10.1126/science.aam9035

  49. Witoon T, Bumrungsalee S, Chareonpanich M, Limtrakul J (2015) Effect of hierarchical meso macroporous alumina-supported copper catalyst for methanol synthesis from CO2 hydrogenation. Ener. Conver. Manag. 103: 886–894 https://doi.org/10.1016/j.enconman.2015

  50. Wiesberg IL, Medeiros JL, Alves RMB, Coutinho PLA, Araújo OQF (2016) Carbon dioxide management by chemical conversion to methanol: hydrogenation and Bi –reforming. Energy Convers. Manag 125:320–335 https://doi.org/10.1016/j.enconman.2016.04.04107.033

  51. Borisut P, Nuchitprasittichai A (2019) Methanol production via CO2 hydrogenation: sensitivity analysis and simulation—based optimization. Front. Energy Res. 7: 81. https://doi.org/10.3389/fenrg.2019.00081

  52. Leonzio G (2017) Optimization through response surface methodology of a reactor producing methanol by the hydrogenation of carbon dioxide. Proc. 5:62 https://doi.org/10.3390/pr5040062

  53. Samimi F, Rahimpour MR, Shariati A (2017) Development of an efficient methanol production process for direct CO2 hydrogenation over a Cu/ZnO/Al2O3 catalyst. Catalys. 7: 332 https://doi.org/10.3390/catal7110332

  54. Phongamwong T, Chantaprasertporn U, Witoon T, Numpilai T, Poo-Arporn Y, Limphirat W, Donphai W, Dittanel P, Chareonpanich M, Limtrakul J (2017) CO2 hydrogenation to methanol over CuO–ZnO–ZrO2–SiO2 catalysts: effects of SiO2 contents. Chem. Eng. J. 316: 692–703 https://doi.org/10.1016/j.cej.2017.02.010

  55. Stangeland K, Li H, Yu Z (2018) Thermodynamic analysis of chemical and phase equilibria in CO2 hydrogenation to methanol, dimethyl ether, and higher alcohols. Ind Eng Chem Res 57:4081–4094. https://doi.org/10.1021/acs.iecr.7b04866

    Article  Google Scholar 

  56. Bowker M (2019) Methanol synthesis from CO2 hydrogenation. ChemCatChem 11(17):4238–4246. https://doi.org/10.1002/cctc.201900401

    Article  Google Scholar 

  57. Xu D, Hong X, Liu G (2021) Highly dispersed metal doping to ZnZr oxide catalyst for CO2 hydrogenation to methanol: insight into hydrogen spillover. J.Catalys. 393: 207–214 https://doi.org/10.1016/j.jcat.2020.11.039

  58. Zhang X, Zhang G, Song C, Guo X (2021) Catalytic conversion of carbon dioxide to methanol: current status and future perspective. Front. Energy Res. 8: 621119 https://doi.org/10.3389/fenrg.2020.621119

  59. Hwang IY, Hur DH, Lee JH, Park CH, Chang IS, Lee JW, Lee EY (2015) Batch conversion of methane to methanol using Methylosinus trichosporium OB3b as biocatalyst. J. Microbiol. Biotechnol. 25(3): 375–80 https://doi.org/10.4014/jmb.1412.12007

  60. It H, Yoshimori K, Ishikawa M, Hori K, Kamachi T (2021) Switching between methanol accumulation and cell growth by expression control of methanol dehydrogenase in Methylosinus trichosporium OB3b mutant. Front Microbiol 12:639266. https://doi.org/10.3389/fmicb.2021.639266

    Article  Google Scholar 

  61. Ren J, Lee HM, Thai TD, Na D (2020) Identification of a cytosine methyltransferase that improves transformation efficiency in Methylomonas sp. DH-1. Biotechnol Biof. 13: 200 https://doi.org/10.1186/s13068-020-01846-1

  62. Nguyen AD, Hwang IY, Lee OK, Hur DH, Jeon YC, Hadiyati S, Kim MS, Yoon S H, Jeong H, Lee EY (2018) Functional analysis of Methylomonas sp. DH-1 genome as a promising biocatalyst for bioconversion of methane to valuable chemicals. Catalysts 8(3):117 https://doi.org/10.3390/catal8030117

  63. Xin JY, Cui JR, Niu JZ, Hua SF, Xia CG, Li SB, Zhu LM (2009) Production of methanol from methane by methanotrophic bacteria. Biocatalys Biotransform 22(3):225–229. https://doi.org/10.1080/10242420412331283305

    Article  Google Scholar 

  64. Lebrero R, Chandran K (2017) Biological conversion and revalorization of waste methane streams. Crit Rev.Environ Sci Technol. 47(22):2133–2157 https://doi.org/10.1080/10643389.2017.1415059

  65. Zhang J, Hu Z, Liu T, Wang Z, Guo J, Yuan Z, Zheng M (2021) Feasibility of methane bioconversion to methanol by acid-tolerant ammonia-oxidizing bacteria. Water Res 197:117077. https://doi.org/10.1016/j.watres.2021.117077

    Article  Google Scholar 

  66. Han B, Su T, Wu H, Gou Z, Xing XH, Jiang H, Chen Y, Li X, Murrell J C (2009) Paraffin oil as a “methane vector” for rapid and high cell density cultivation of Methylosinus trichosporium OB3b. Appl Microbiol Biotechnol. 83:669–677 https://doi.org/10.1007/s00253-009-1866-2

  67. Yamashita S, Satoi M, Iwasa Y, Honda K, Sameshima Y, Omasa T, Kato J, Otake H (2007) Utilization of hydrophobic bacterium Rhodococcus opacus B-4 as whole-cell catalyst in anhydrous organic solvents. Appl Microbiol Biotechnol. 74:761–767 https://doi.org/10.1007/s00253-006-0729-3

  68. Bjorck CE, Dobson PD, Pandhal J (2018) Biotechnological conversion of methane to methanol: evaluation of progress and potential. AIMS Bioeng. 5(1): 1–38 https://doi.org/10.3934/bioeng.2018.1.1

  69. Patel SKS, Kalia VC, Joo JB, Kang YC, Lee JK (2020) Biotransformation of methane into methanol by methanotrophs immobilized on coconut coir. Bioresour Technol 297:122433. https://doi.org/10.1016/j.biortech.2019.122433

    Article  Google Scholar 

  70. Singh R, Ryu J, Kim SW (2019) Microbial consortia including methanotrophs: some benefits of living together. J. Microbiol. 57(11): 939–952 https://doi.org/10.1007/s12275-019-9328-8

  71. Ma X, Li S, Ronda-Lloret M, Chaudhary R, Lin L et al (2018) Plasma assisted catalytic conversion of CO2 and H2O over Ni/Al2O3 in a DBD reactor. Plasma Chem Plasma Process 39(1):109–124. https://doi.org/10.1007/s11090-018-9931-1

    Article  Google Scholar 

  72. Baier J, Schneider G, Heel A (2018) A cost estimation for CO2 reduction and reuse by methanation from cement industry sources in Switzerland Front. Energy Res 6:1–9. https://doi.org/10.3389/fenrg.2018.00005

    Article  Google Scholar 

  73. Van Rooij GJ, Akse HN, Bongers WA, van de Sanden MCM (2018) Plasma for electrification of chemical industry: a case study on CO2 reduction. Plasma Phys Cont Fus 60(1):014019. https://doi.org/10.1088/1361-6587/aa8f7d

    Article  Google Scholar 

  74. Snoeckx R, Wang W, Zhang X, Cha MS, Bogaerts A (2018) Plasma-based multi-reforming for gas-to-liquid: tuning the plasma chemistry towards methanol. Sci Rep 8:15929. https://doi.org/10.1038/s41598-018-34359-x

    Article  Google Scholar 

  75. Snoeckx R, Rabinovich A, Dobrynin D, Bogaerts A, Fridman A (2017) Plasma-based liquefaction of methane: the road from hydrogen production to direct methane liquefaction. Plasma Process Polym 14:1600115. https://doi.org/10.1002/ppap.201600115

    Article  Google Scholar 

  76. Snoeckx R, Bogaerts A (2017) Plasma technology – a novel solution for CO2 conversion? Chem Soc Rev 46:5805–5863. https://doi.org/10.1039/C6CS00066E

    Article  Google Scholar 

  77. Nikoo MK, Amin NAS, Noshadi I (2010) A review of methanol production from methane oxidation via non-thermal plasma reactor. Internat J Chemic Mater Biomolec Sci 3(2):354–358. https://doi.org/10.5281/zenodo.1329213

    Article  Google Scholar 

  78. Martens JA, Bogaerts A, Kimpe ND, Jacobs PA et al. (2017) The Chemical route to a carbon dioxide neutral world. ChemSusChem, Catalys. CO2 Convers. 10(6): 1039–1055 https://doi.org/10.1002/cssc.201601051

  79. Baalbaki HA, Roshandel H, Hein JE, Mehrkhodavandi P (2021) Conversion of dilute CO 2 to cyclic carbonates at sub-atmospheric pressures by a simple indium catalyst, Catalysis Sci. Technol 11:2119–2129. https://doi.org/10.1039/D0CY02028A

    Article  Google Scholar 

  80. Soldatov S, Link G, Silberer L, Schmedt CM et al (2020) Time-resolved optical emission spectroscopy reveals nonequilibrium conditions for CO 2 splitting in atmospheric plasma sustained with ultrafast microwave pulsation. ACS Ener Lett 6(1):124–130. https://doi.org/10.1021/acsenergylett.0c01983

    Article  Google Scholar 

  81. Zeppilli M, Chouchane H, Scardigno MM et al (2020) Bioelectrochemical vs hydrogenophilic approach for CO2 reduction into methane and acetate. Chem Eng J 396:125243. https://doi.org/10.1016/j.cej.2020.125243

    Article  Google Scholar 

  82. Dobladez JAD, Maté VIÁ, Torrellas SÁ, Larriba M, Brea P (2021) Efficient recovery of syngas from dry methane reforming product by a dual pressure swing adsorption process. Internat J Hydrogen Ener 46(33):17522–17533. https://doi.org/10.1016/j.ijhydene.2020.02.153

    Article  Google Scholar 

  83. Wu X, Lang J, Jiang Y, Lin Y, Hu YH (2019) Thermo–photo catalysis for methanol synthesis from syngas. ACS Sustain Chem Eng 7(23):19277–19285. https://doi.org/10.1021/acssuschemeng.9b05657

    Article  Google Scholar 

  84. Shi C, M, Elgarni N, Mahinpey, (2021) Process design and simulation study: CO2 utilization through mixed reforming of methane for methanol synthesis. Chem Eng Sci 233:116364. https://doi.org/10.1016/j.ces.2020.116364

    Article  Google Scholar 

  85. Zhao J, Shi R, Li Z, Zhou C, Zhang T (2020) How to make use of methanol in green catalytic hydrogen production? Nano Select 1(1): 12–29 https://doi.org/10.1002/nano.202000010

  86. Khalafalla SS, Zahid U, Jameel AG.A, Ahmed U, Alenazey FS, Lee C J (2020) Conceptual design development of coal-to-methanol process with carbon capture and utilization. Energ. 13:6421 https://doi.org/10.3390/en13236421

  87. Rivarolo M, Bellotti D, Magistri L, Massardo AF (2016) Feasibility study of methanol production from different renewable sources and thermo-economic analysis. Int. J. Hydrogen Ener. 41:2105–2116 https://doi.org/10.1016/j.ijhydene.2015.12.128

  88. Qin Z, Zhai G, Wu X, Yu Y, Zhang Z (2016) Carbon footprint evaluation of coal-to-methanol chain with the hierarchical attribution management and life cycle assessment. Energy Convers Manag 124:168–179. https://doi.org/10.1016/j.enconman.2016.07.005

    Article  Google Scholar 

  89. Pérez-Fortes M, Schöneberger JC, Boulamanti A, Tzimas E (2016) Methanol synthesis using captured CO2 as raw material: techno-economic and environmental assessment. Appl Ener 161:718–732. https://doi.org/10.1016/j.apenergy.2015.07.067

    Article  Google Scholar 

  90. Li B, Duan Y, Luebke D, Morreale B (2013) Advances in CO2 capture technology: a patent review. Appl Ener 102:1439–1447. https://doi.org/10.1016/j.apenergy.2012.09.009

    Article  Google Scholar 

  91. Hu B, Guild C, Sui SL (2013) Thermal, electrochemical, and photochemical conversion of CO2 to fuels and value-added products. J CO2 Utiliz. 1:18–27 https://doi.org/10.1016/j.jcou.2013.03.004

  92. Dutta A, Farooq S, Karimi IA, Khan SA (2017) Assessing the potential of CO2 utilization with an integrated framework for producing power and chemicals. J. CO2 Utiliz. 19:49–57 https://doi.org/10.1016/j.jcou.2017.03.005

  93. Pocoví-Martínez S, Zumeta-Dube I, Diaz D (2019) Production of methanol from aqueous CO2 by using Co3O4 nanostructures as photocatalysts. J Nanomater 10:6461493. https://doi.org/10.1155/2019/6461493

    Article  Google Scholar 

  94. Iglesias-Juez A, Coronado JM (2018) Light and heat joining forces: methanol from photothermal CO2 hydrogenation. Chem 4(7):1490–1491. https://doi.org/10.1016/j.chempr.2018.06.015

    Article  Google Scholar 

  95. Meng X, Wang T, Liu L et al (2014) Photothermal conversion of CO2 into CH4 with H2 over group VIII nanocatalysts: an alternative approach for solar fuel production. Angew Chem 126:11662–11666. https://doi.org/10.1002/ange.201404953

    Article  Google Scholar 

  96. Sastre F, Puga AV, Liu L, Corma A, García H (2014) Complete photocatalytic reduction of CO2 to methane by H2 under solar light irradiation. J Am Chem Soc 136:6798–6801. https://doi.org/10.1021/ja500924t

    Article  Google Scholar 

  97. Jia J, Wang H, Lu Z, O’Brien PG, Ghoussoub M, Duchesne, et al (2017) Photothermal catalyst engineering: hydrogenation of gaseous CO2 with high activity and tailored selectivity. Adv Sci 4:1700252. https://doi.org/10.1002/advs.201700252

    Article  Google Scholar 

  98. Wang L, Ghoussoub M, Wang H, Shao Y, Sun W et al (2018) Photocatalytic hydrogenation of carbon dioxide with high selectivity to methanol at atmospheric pressure. Joul 2(7):1369–1381. https://doi.org/10.1016/j.joule.2018.03.007

    Article  Google Scholar 

  99. Ma T, Hu T, Jiang D, Zhang J, Li W, Han Y, Örmeci B (2018) Treatment of penicillin with super critical water oxidation: experimental study of combined ReaxFF molecular dynamics. Korean J. Chem. Eng. 35: 900–908 https://doi.org/10.1007/s11814-017-0341-5

  100. Li Y, Wang S, Cui C, Yang C, Li J, Jiang Z (2020) Review on mechanisms and kinetics for supercritical water oxidation processes, Appl. Sci. 10: 4937. https://doi.org/10.3390/app10144937

  101. Zhang J, Gu J, Han Y, Li W, Gan Z, Gu J (2015) Analysis of degradation mechanism of disperse orange 25 in supercritical water oxidation using molecular dynamic simulations based on the reactive force field. J Mol Model 21:54. https://doi.org/10.1007/s00894-015-2603-7

    Article  Google Scholar 

  102. Zhang J, Gu J, Han Y, Li W, Gan Z, Gu J (2015b) Supercritical water oxidation vs super critical water gasification: which process is better for explosive wastewater treatment? Ind. Eng. Chem. Res. 54: 1251–1260 https://doi.org/10.1021/ie5043903

  103. Jiang Z, Li Y, Wang S, Cui C, Yang C, Li J (2020) Review on mechanisms and kinetics for supercritical water oxidation processes. Appl Sci 10(14):4937. https://doi.org/10.3390/app10144937

    Article  Google Scholar 

  104. Ashraful AM, da Silva G (2020) A detailed chemical kinetic model for the supercritical water oxidation of methylamine: the importance of imine formation. Int J Chem Kinet 52(10):701–711. https://doi.org/10.1002/kin.21393

    Article  Google Scholar 

  105. Boukis N, Diem V, Habicht W, Dinjus E (2003) Methanol reforming in supercritical water. nd. Eng. Chem. Res. 42 (4): 728–735 https://doi.org/10.1021/ie020557i.

  106. Jiang Z, Li Y, Wang S, Cui C, Yang C, Li J (2020) Review on mechanisms and kinetics for supercritical water oxidation processes. Appl. Sci. 10:4937; https://doi.org/10.3390/app10144937

  107. Cabeza P, Al-Duri B, Bermejo MD, Cocero MJ (2014) Co-oxidation of ammonia and isopropanol in supercritical water in a tubular reactor. Chem Eng Res Des 92:2568–2574. https://doi.org/10.1016/j.cherd.2014.01.017

    Article  Google Scholar 

  108. Dong X, Zhang Y, Xu Y, Zhang M (2015) Catalytic mechanism study on manganese oxide in the catalytic supercritical water oxidation of nitrobenzene. RSC Adv 5:47488–47497. https://doi.org/10.1039/C5RA04322K

    Article  Google Scholar 

  109. Gong Y, Guo Y, Sheehan JD, Chen Z, Wang S (2018) Oxidative degradation of landfill leachate by catalysis of CeMnOx/TiO2 in supercritical water: mechanism and kinetic study. Chem Eng J 331:578–586. https://doi.org/10.1016/j.cej.2017.08.122

    Article  Google Scholar 

  110. Mylapilli SVP, Reddy SN (2020) Supercritical water oxidation of recalcitrant acetaminophen with methanol, ethanol, n-propanol, isopropanol and glycerol as co-fuels. Chem Eng J Adv 3:100028. https://doi.org/10.1016/j.ceja.2020.100028

    Article  Google Scholar 

  111. Patcharavorachot Y, Chatrattanawet N (2018) Optimization of hydrogen production from three reforming approaches of glycerol via using supercritical water with in situ CO2 separation Int. J Hydrogen Ener 44:2128–2140. https://doi.org/10.1016/j.ijhydene.2018.07.053

    Article  Google Scholar 

  112. Al-duri B, Alsoqyani F (2017) Supercritical water oxidation (SCWO) for the removal of nitrogen containing heterocyclic waste hydrocarbons. Part II: system kinetics. J Supercrit Fluids 128:412–418. https://doi.org/10.1016/j.supflu.2017.05.010

    Article  Google Scholar 

  113. Barati M, Baseri GK (2018) Hydrogen, alcohols, and ethers production from biomass in supercritical methanol–subcritical water medium with Cu–K nanocatalysts. Environ Progr Sustain Ener 37(2):861–869. https://doi.org/10.1002/ep.12713

    Article  Google Scholar 

  114. Aghilinategh M, Barati M, Hamadanian M (2020) The modified supercritical media for one-pot biodiesel production from Chlorella vulgaris using photochemically-synthetized SrTiO3 nanocatalyst. Renew Ener 160:176–184. https://doi.org/10.1016/j.renene.2020.06.081

    Article  Google Scholar 

  115. Aghilinategh M, Barati M, Hamadanian M (2019) Supercritical methanol for one put biodiesel production from chlorella vulgaris microalgae in the presence of CaO/TiO2 nano-photocatalyst and subcritical water. Biomass Bioener 123:34–40. https://doi.org/10.1016/j.biombioe.2019.02.011

    Article  Google Scholar 

  116. Sharma R, Poelman H, Marin GB, Galvita VV (2020) Approaches for selective oxidation of methane to methanol. Catalysts 10:194. https://doi.org/10.3390/catal10020194

    Article  Google Scholar 

  117. Starokon EV, Parfenov MV, Arzumanov SS, Pirutko LV, Stepanov AG, Panov GI (2013) Oxidation of methane to methanol on the surface of FeZSM-5 zeolite. J Catal 300:47–54. https://doi.org/10.1016/j.jcat.2012.12.030

    Article  Google Scholar 

  118. Reddy PVL, Kim KH, Song H (2013) Emerging green chemical technologies for the conversion of methane to value added products. Renew Sustain Energy Rev 24:578–585. https://doi.org/10.1016/j.rser.2013.03.035

    Article  Google Scholar 

  119. Masaru Watanabe TS (2004) Chemical reactions of C(1) compounds in near-critical and supercritical water. Chem Rev 104:5803–5821. https://doi.org/10.1021/cr020415y

    Article  Google Scholar 

  120. Wagner W, Pruß A (2002) The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J Phys Chem Ref Data 31:387–535. https://doi.org/10.1063/1.1461829

    Article  Google Scholar 

  121. Kruse A, Dinjus E (2007) Hot compressed water as reaction medium and reactant: properties and synthesis reactions. J Supercrit Fluids 39:362–380. https://doi.org/10.1016/j.supflu.2006.03.016

    Article  Google Scholar 

  122. Delavari S, Amin NAS (2014) Photocatalytic conversion of carbon dioxide and methane over titania nanoparticles coated mesh: optimization study. Energy Procedia 61:2485–2488. https://doi.org/10.1016/j.egypro.2014.12.028

    Article  Google Scholar 

  123. Li K, An X, Park KH, Khraisheh M, Tang J (2014) A critical review of CO2 photoconversion: catalysts and reactors. Catal Today 224:3–12. https://doi.org/10.1016/j.cattod.2013.12.006

    Article  Google Scholar 

  124. Yang J, Hao J, Wei J, Dai J, Li Y (2020) Visible-light-driven selective oxidation of methane to methanol on amorphous FeOOH coupled m-WO3. Fuel 266:117104. https://doi.org/10.1016/j.fuel.2020.117104

    Article  Google Scholar 

  125. Villa K, Murcia-López S, Morante JR, Andreu T (2016) An insight on the role of La in mesoporous WO3 for the photocatalytic conversion of methane into methanol. Appl Catal B Environ 187:30–36. https://doi.org/10.1016/j.apcatb.2016.01.032

    Article  Google Scholar 

  126. Meng X, Cui X, Rajan NP, Yu L, Deng D, Bao X (2019) Direct methane conversion under mild condition by thermo-, electro-, or photocatalysis. Inside Chem 5:2296–2325. https://doi.org/10.1016/j.chempr.2019.05.008

    Article  Google Scholar 

  127. Villa K, Murcia-López S, Andreu T, Morante JR (2015) Mesoporous WO3 photocatalyst for the partial oxidation of methane to methanol using electron scavengers. Appl Catal B: Environ 163:150–155. https://doi.org/10.1016/j.apcatb.2014.07.055

    Article  Google Scholar 

  128. Gondala MA, Hameed A, Suwaiyan A (2003) Photo-catalytic conversion of methane into methanol using visible laser. Appl Catal A: Gen 243:165–174 https://doi.org/10.1016/S0926-860X(02)00562-8

  129. Yuliati L, Yoshida H (2008) Photocatalytic conversion of methane. Chem Soc Rev 37:1592–1602. https://doi.org/10.1039/B710575B

    Article  Google Scholar 

  130. Mohamedali M, Ayodele O, Ibrahim H (2020) Challenges and prospects for the photocatalytic liquefaction of methane into oxygenated hydrocarbons. Renew Sustain Energy Rev 131:110024. https://doi.org/10.1016/j.rser.2020.110024

    Article  Google Scholar 

  131. Holmen A (2009) Direct conversion of methane to fuels and chemicals. Catal Today 142:2–8. https://doi.org/10.1016/j.cattod.2009.01.004

    Article  Google Scholar 

  132. Chen L, Zhang X, Huang L, Lei L (2010) Application of in-plasma catalysis and post-plasma catalysis for methane partial oxidation to methanol over a Fe–CuO/γ–Al2O3 catalyst. J Nat Gas Chem 19:628–637. https://doi.org/10.1016/S1003-9953(09)60129-8

    Article  Google Scholar 

  133. Nozaki T, giral AA, Yuzawa S, Gardeniers JGEH, Okazaki K, (2011) A single step methane conversion into synthetic fuels using micro-plasma reactor. Chem Eng J 166:288–293. https://doi.org/10.1016/j.cej.2010.08.001

    Article  Google Scholar 

  134. Alshihri S, Almegren H (2020) Advances in selective oxidation of methane. Biogas - recent advances and integrated approaches, Abd El-Fatah Abomohra, Mahdy Elsayed, Zuzeng Qin, Hongbing Ji and Zili Liu, IntechOpen. https://doi.org/10.5772/intechopen.86642

    Article  Google Scholar 

  135. Baltrusaitis J, Luyben WL (2015) Methane conversion to syngas for gas-to-liquids (GTL): is sustainable CO2 reuse via dry methane reforming (DMR) cost competitive with SMR and ATR processes? ACS Sustainable Chem Eng 3:2100–2111. https://doi.org/10.1021/acssuschemeng.5b00368

    Article  Google Scholar 

  136. Ge X, Yang L, Sheets JP, Yu Z, Li Y (2014) Biological conversion of methane to liquid fuels: status and opportunities. Biotechnol Adv 32:1460–1475 https://doi.org/10.1016/j.biotechadv.2014.09.004

  137. Fei Q, Guarniery MT, Tao L, Laurens LML, Dowe N, Pienkos PT (2014) Bioconversion of natural gas to liquid fuel: opportunities and challenges. Biotechnol Adv 32:596–614. https://doi.org/10.1016/j.biotechadv.2014.03.011

    Article  Google Scholar 

  138. Busca G (2014) Heterogeneous catalytic materials solid state chemistry, surface chemistry and catalytic behaviour United Kingdom: Elsevier. ISBN: 9780444595218

  139. Lemmens B, Elslander H, Vanderreydt I, Peys K, Diels L, Oosterlinck M, Joos M (2007) Assessment of plasma gasification of high caloric waste streams. Waste Manag 27:1562–1569 https://doi.org/10.1016/j.wasman.2006.07.027

  140. Anggoro DD, Chamdani FT, Buchori L (2021) One step catalytic oxidation process of methane to methanol at low reaction temperature: a brief review. IOP Conf Ser: Mater Sci Eng 1053–012056.

  141. Khirsariya P, Mewada RK (2013) Single step oxidation of methane to methanol-toward better understanding. Procedia Eng 51:409–415. https://doi.org/10.1016/j.proeng.2013.01.057

    Article  Google Scholar 

  142. Riaz A, Zahedi G, Klemeš JJ (2013) A review of cleaner production methods for the manufacture of methanol. J Clean Prod 57:19–37. https://doi.org/10.1016/j.jclepro.2013.06.017

    Article  Google Scholar 

  143. Baliban RC, Elia JA, Floudas CA (2013) Novel natural gas to liquids processes: process synthesis and global optimization strategies. AIChE J 59:505–531

    Article  Google Scholar 

  144. Schwarz H (2011) Chemistry with methane: concepts rather than recipes. Angew Chem Int Ed 50:10096–10115. https://doi.org/10.1002/anie.201006424

    Article  Google Scholar 

  145. Olah GA (2005) Beyond oil and gas: the methanol economy. Angew Chem Int Ed 44:2636–2639. https://doi.org/10.1002/9783527627806

    Article  Google Scholar 

  146. Boonamnuay T, Laosiripojan N, Assabumrungrat S, Kim-Lohsoontorn P (2021) Effect 3A and 5A molecular sieve on alcohol-assisted methanol synthesis from CO2 and H2 over Cu/ZnO catalyst. Int J Hydrog Energy (online 21 May). https://doi.org/10.1016/j.ijhydene.2021.04.161

  147. Chein R-Y, Chen W-H, Ong HC, Show PL, Singh Y (2021) Analysis of methanol synthesis using CO2 hydrogenation and syngas produced from biogas-based reforming processes. Chem Eng J 426:130835. https://doi.org/10.1016/j.cej.2021.130835

    Article  Google Scholar 

  148. Zhuang Y, Zhou C, Zhang L, Liu L, Du J, Shen S (2021) A simultaneous optimization model for a heat-integrated syngas-to-methanol process with Kalina cycle for waste heat recovery. Energy 227:120536. https://doi.org/10.1016/j.energy.2021.120536

    Article  Google Scholar 

  149. Chawdhury P, Ray D, Kumar TV, Subrahmanyam C (2019) Catalytic DBD plasma approach for methane partial oxidation to methanol under ambient conditions. Cataly Tod 337:117–125. https://doi.org/10.1016/j.cattod.2019.03.032

    Article  Google Scholar 

  150. Nguyen TTH, Yamaki T, Taniguchi S. Endo A, Kataoka S (2021) Integrating life cycle assessment for design and optimization of methanol production from combining methane dry reforming and partial oxidation. J Cleaner Product 292: 125970. https://doi.org/10.1016/j.jclepro.2021.125970

  151. Knorp AJ, Pinar AB, Newton M, Sushkevich VL, Van Bokhoven JA (2018) Copper-exchanged omega (MAZ) zeolite: copper-concentration dependent active sites and its unprecedented methane to methanol conversion. Chem Cat Chem, 10: 5593–5596 https://doi.org/10.1002/cctc.20180180

  152. Pappas DK, Martini A, Dyballa M, Kvande K, Teketel S, Lomachenko KA et al. (2018) The nuclearity of the active site for methane to methanol conversion in Cu-mordenite: a quantitative assessment. J Am Chem Soc 140(45):15270–15278 https://doi.org/10.1021/jacs.8b08071

  153. Li M, Shan J, Giannakakis G, Ouyang M, Cao S, Lee S et al (2021) Single-step selective oxidation of methane to methanol in the aqueous phase on iridium-based catalysts. Appl Catalysis B: Environ 292:120124. https://doi.org/10.1016/j.apcatb.2021.120124

    Article  Google Scholar 

  154. Santos GRS, Basha OM, Wang R, Ashkanania H, Morsi B (2021) Techno-economic assessment of Fischer-Tropsch synthesis and direct methane-to-methanol processes in modular GTL reactors. Catalys Tod 371:93–112. https://doi.org/10.1016/j.cattod.2020.07.012

    Article  Google Scholar 

  155. Chawdhury P, Ray D, Subrahmanyam C (2018) Single-step conversion of methane to methanol assisted by nonthermal plasma. Fuel Proc Technol 179:32–41. https://doi.org/10.1016/j.fuproc.2018.06.009

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Rajesh K. Srivastava: conceptualization and manuscript preparation.

Prakash Kumar Sarangi: correction, supervision, review and editing.

Latika Bhatia: some parts of manuscript preparation.

Akhilesh Kumar Singh: some parts of manuscript preparation.

Krushna Prasad Shadangi: correction, review and editing.

Corresponding authors

Correspondence to Prakash Kumar Sarangi or Krushna Prasad Shadangi.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

We provide the consent for publication of the manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, R.K., Sarangi, P.K., Bhatia, L. et al. Conversion of methane to methanol: technologies and future challenges. Biomass Conv. Bioref. 12, 1851–1875 (2022). https://doi.org/10.1007/s13399-021-01872-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01872-5

Keywords

Navigation