Skip to main content

Advertisement

Log in

Characterization of cardinal vine shoot waste as new resource of lignocellulosic biomass and valorization into value-added chemical using Plackett–Burman and Box Behnken

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

A Correction to this article was published on 27 November 2023

This article has been updated

Abstract

The objective of this work was to valorize a waste from cardinal vine shoot into a hydrolysate rich in reducing sugars. Plackett–Burman design was considered to identify the significant factors, while a Box Behnken design was considered to optimize the extraction in the following experimental conditions: 100 °C, 750 rpm, trifluoracetic acid (CF3O2H) concentration (TFA) in the range (1–10%), for 20 to 180 min and considering the following solid–liquid (S/V) ratios (1:1, 3:1, 5:1). The optimal result was 2.53% in sugars equivalent to a yield of 50.64% per gram of dry matter. Shoot vine waste was characterized by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), simultaneous thermal analysis (STA), and X-ray fluorescence (XRF). The chemical composition was 43.38% cellulose, 23.58% hemicellulose, 21.22% lignin, 2.53% ash, 5.82% crude protein, 11.7% moisture, and extractives (0.81% fat, 0.56% total sugars, 2.3% extractive (hexane-ethanol)). The promising potential of shoot vine waste to produce sugar and other added-value compounds was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  1. Patel M, Patel HM, Dave S (2020) Determination of bioethanol production potential from lignocellulosic biomass using novel Cel-5m isolated from cow rumen metagenome. International Journal of Biological Macromolecules 153:1099–1106. https://doi.org/10.1016/j.ijbiomac.2019.10.240

    Article  Google Scholar 

  2. Mishra RK, Mohanty K (2018) Characterization of non-edible lignocellulosic biomass in terms of their candidacy towards alternative renewable fuels. Biomass Conv Bioref 8:799–812. https://doi.org/10.1007/s13399-018-0332-8

    Article  Google Scholar 

  3. Indira D, Jayabalan R (2020) Saccharification of lignocellulosic biomass using seawater and halotolerant cellulase with potential application in second-generation bioethanol production. Biomass Conv Bioref 10:639–650. https://doi.org/10.1007/s13399-019-00468-4

    Article  Google Scholar 

  4. Rocha-Meneses L, Raud M, Orupõld K, Kikas T (2019) Potential of bioethanol production waste for methane recovery. Energy 173:133–139. https://doi.org/10.1016/j.energy.2019.02.073

    Article  Google Scholar 

  5. Ip C, R. S, (2020) Characterization of a new natural cellulosic fiber extracted from Derris scandens stem. International Journal of Biological Macromolecules 165:2303–2313. https://doi.org/10.1016/j.ijbiomac.2020.10.086

    Article  Google Scholar 

  6. Sabarinathan P, Rajkumar K, Annamalai VE, Vishal K (2020) Characterization on chemical and mechanical properties of silane treated fish tail palm fibres. International Journal of Biological Macromolecules 163:2457–2464. https://doi.org/10.1016/j.ijbiomac.2020.09.159

    Article  Google Scholar 

  7. Messaoudi Y, Smichi N, Bouachir F, Gargouri M (2019) Fractionation and biotransformation of lignocelluloses-based wastes for bioethanol, xylose and vanillin production. Waste Biomass Valor 10:357–367. https://doi.org/10.1007/s12649-017-0062-3

    Article  Google Scholar 

  8. Ehman NV, Lourenço AF, McDonagh BH et al (2020) Influence of initial chemical composition and characteristics of pulps on the production and properties of lignocellulosic nanofibers. International Journal of Biological Macromolecules 143:453–461. https://doi.org/10.1016/j.ijbiomac.2019.10.165

    Article  Google Scholar 

  9. Nuchdang S, Thongtus V, Khemkhao M et al (2020) Enhanced production of reducing sugars from paragrass using microwave-assisted alkaline pretreatment. Biomass Conv Bioref. https://doi.org/10.1007/s13399-020-00624-1

    Article  Google Scholar 

  10. Sewsynker-Sukai Y, Gueguim Kana EB (2018) Simultaneous saccharification and bioethanol production from corn cobs: process optimization and kinetic studies. Bioresource Technology 262:32–41. https://doi.org/10.1016/j.biortech.2018.04.056

    Article  Google Scholar 

  11. Dutra ED, Santos FA, Alencar BRA et al (2018) Alkaline hydrogen peroxide pretreatment of lignocellulosic biomass: status and perspectives. Biomass Conv Bioref 8:225–234. https://doi.org/10.1007/s13399-017-0277-3

    Article  Google Scholar 

  12. De S, Mishra S, Poonguzhali E et al (2020) Fractionation and characterization of lignin from waste rice straw: biomass surface chemical composition analysis. International Journal of Biological Macromolecules 145:795–803. https://doi.org/10.1016/j.ijbiomac.2019.10.068

    Article  Google Scholar 

  13. Raja Sathendra E, Baskar G, Praveenkumar R, Gnansounou E (2019) Bioethanol production from palm wood using Trichoderma reesei and Kluveromyces marxianus. Bioresource Technology 271:345–352. https://doi.org/10.1016/j.biortech.2018.09.134

    Article  Google Scholar 

  14. Azzouz Z, Bettache A, Djinni I et al (2020) Biotechnological production and statistical optimization of fungal xylanase by bioconversion of the lignocellulosic biomass residues in solid-state fermentation. Biomass Conv Bioref. https://doi.org/10.1007/s13399-020-01018-z

    Article  Google Scholar 

  15. Cunha M, Romaní A, Carvalho M, Domingues L (2018) Boosting bioethanol production from Eucalyptus wood by whey incorporation. Bioresource Technology 250:256–264. https://doi.org/10.1016/j.biortech.2017.11.023

    Article  Google Scholar 

  16. Sarawan C, Suinyuy TN, Sewsynker-Sukai Y, Gueguim Kana EB (2019) Optimized activated charcoal detoxification of acid-pretreated lignocellulosic substrate and assessment for bioethanol production. Bioresource Technology 286:121403. https://doi.org/10.1016/j.biortech.2019.121403

    Article  Google Scholar 

  17. Nguyen TVT, Unpaprom Y, Manmai N et al (2020) Impact and significance of pretreatment on the fermentable sugar production from low-grade longan fruit wastes for bioethanol production. Biomass Conv Bioref. https://doi.org/10.1007/s13399-020-00977-7

    Article  Google Scholar 

  18. Harini K, Ramya K, Sukumar M (2018) Extraction of nano cellulose fibers from the banana peel and bract for production of acetyl and lauroyl cellulose. Carbohydrate Polymers 201:329–339. https://doi.org/10.1016/j.carbpol.2018.08.081

    Article  Google Scholar 

  19. Ibarra-Díaz N, Castañón-Rodríguez JF, Gómez-Rodríguez J, Aguilar-Uscanga MG (2020) Optimization of peroxide-alkaline pretreatment and enzymatic hydrolysis of barley straw (Hordeum vulgare L.) to produce fermentable sugars using a Box–Behnken design. Biomass Conv Bioref. https://doi.org/10.1007/s13399-020-00853-4

  20. Manmai N, Unpaprom Y, Ramaraj R (2020) Bioethanol production from sunflower stalk: application of chemical and biological pretreatments by response surface methodology (RSM). Biomass Conv Bioref. https://doi.org/10.1007/s13399-020-00602-7

    Article  Google Scholar 

  21. Wang B, Song Q, Zhao F et al (2019) Production optimization, partial characterization and properties of an exopolysaccharide from Lactobacillus sakei L3. International Journal of Biological Macromolecules 141:21–28. https://doi.org/10.1016/j.ijbiomac.2019.08.241

    Article  Google Scholar 

  22. Saleh AK, Soliman NA, Farrag AA et al (2020) Statistical optimization and characterization of a biocellulose produced by local Egyptian isolate Komagataeibacter hansenii AS.5. International Journal of Biological Macromolecules 144:198–207. https://doi.org/10.1016/j.ijbiomac.2019.12.103

    Article  Google Scholar 

  23. Silva TP, Ferreira AN, de Albuquerque FS et al (2021) Box-Behnken experimental design for the optimization of enzymatic saccharification of wheat bran. Biomass Conv Bioref. https://doi.org/10.1007/s13399-021-01378-0

    Article  Google Scholar 

  24. John I, Pola J, Appusamy A (2019) Optimization of ultrasonic assisted saccharification of sweet lime peel for bioethanol production using Box-Behnken method. Waste Biomass Valor 10:441–453. https://doi.org/10.1007/s12649-017-0072-1

    Article  Google Scholar 

  25. Chan YT, Tan MC, Chin NL (2019) Application of Box-Behnken design in optimization of ultrasound effect on apple pectin as sugar replacer. LWT 115:108449. https://doi.org/10.1016/j.lwt.2019.108449

    Article  Google Scholar 

  26. Dávila I, Remón J, Gullón P et al (2019) Production and characterization of lignin and cellulose fractions obtained from pretreated vine shoots by microwave assisted alkali treatment. Bioresource Technology 289:121726. https://doi.org/10.1016/j.biortech.2019.121726

    Article  Google Scholar 

  27. Moreira MM, Barroso MF, Porto JV et al (2018) Potential of Portuguese vine shoot wastes as natural resources of bioactive compounds. Science of The Total Environment 634:831–842. https://doi.org/10.1016/j.scitotenv.2018.04.035

    Article  Google Scholar 

  28. Troilo M, Difonzo G, Paradiso VM et al (2021) Bioactive compounds from vine shoots, grape stalks, and wine lees: their potential use in agro-food chains. Foods 10:342. https://doi.org/10.3390/foods10020342

    Article  Google Scholar 

  29. El Achaby M, El Miri N, Hannache H et al (2018) Production of cellulose nanocrystals from vine shoots and their use for the development of nanocomposite materials. International Journal of Biological Macromolecules 117:592–600. https://doi.org/10.1016/j.ijbiomac.2018.05.201

    Article  Google Scholar 

  30. Dávila I, Gullón P, Labidi J (2021) Influence of the heating mechanism during the aqueous processing of vine shoots for the obtaining of hemicellulosic oligosaccharides. Waste Management 120:146–155. https://doi.org/10.1016/j.wasman.2020.11.014

    Article  Google Scholar 

  31. Garita-Cambronero J, Paniagua-García AI, Hijosa-Valserohij M, Díez-Antolínez R (2021) Biobutanol production from pruned vine shoots. Renewable Energy S0960148121007758https://doi.org/10.1016/j.renene.2021.05.093

  32. Senila L, Kovacs E, Scurtu DA et al (2020) Bioethanol production from vineyard waste by autohydrolysis pretreatment and chlorite delignification via simultaneous saccharification and fermentation. Molecules 25:2606. https://doi.org/10.3390/molecules25112606

    Article  Google Scholar 

  33. Pachón ER, Mandade P, Gnansounou E (2020) Conversion of vine shoots into bioethanol and chemicals: Prospective LCA of biorefinery concept. Bioresource Technology 303:122946. https://doi.org/10.1016/j.biortech.2020.122946

    Article  Google Scholar 

  34. Benito-González I, Jaén-Cano CM, López-Rubio A et al (2020) Valorisation of vine shoots for the development of cellulose-based biocomposite films with improved performance and bioactivity. International Journal of Biological Macromolecules 165:1540–1551. https://doi.org/10.1016/j.ijbiomac.2020.09.240

    Article  Google Scholar 

  35. Moisture in pulp, paper and paperboard, Test Method TAPPI/ANSI T 412 om-16

  36. T. Tappi, Ash in wood, pulp, paper and paperboard: combustion at 525 C, TAPPI Test Methods T 211, 1993.

  37. Solvent Extractives of wood and pulp, Test Method T 204 cm-17

  38. Acid-insoluble lignin in wood and pulp, Test Method T 222 om-15

  39. Candelier K Caractérisation des transformations physico-chimiques intervenant lors de la thermodégradation du bois. Influence de l’intensité de traitement, de l’essence et de l’atmosphère. 141

  40. Alpha-, beta- and gamma-cellulose in pulp, Test Method T 203 cm-09

  41. Bicsak RC, Collaborators: Boles R, et al (1993) Comparison of Kjeldahl method for determination of crude protein in cereal grains and oilseeds with generic combustion method: collaborative study. Journal of AOAC INTERNATIONAL 76:780–786. https://doi.org/10.1093/jaoac/76.4.780

    Article  Google Scholar 

  42. Nam S, French AD, Condon BD, Concha M (2016) Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II. Carbohydrate Polymers 135:1–9. https://doi.org/10.1016/j.carbpol.2015.08.035

    Article  Google Scholar 

  43. Thangavelu SK, Rajkumar T, Pandi DK et al (2019) Microwave assisted acid hydrolysis for bioethanol fuel production from sago pith waste. Waste Management 86:80–86. https://doi.org/10.1016/j.wasman.2019.01.035

    Article  Google Scholar 

  44. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical chemistry 31:426–428

    Article  Google Scholar 

  45. Rastogi A, Banerjee R (2019) Production and characterization of cellulose from Leifsonia sp. Process Biochemistry 85:35–42. https://doi.org/10.1016/j.procbio.2019.06.008

    Article  Google Scholar 

  46. Xu A-R, Chen L, Guo X et al (2018) Biodegradable lignocellulosic porous materials: fabrication, characterization and its application in water processing. International Journal of Biological Macromolecules 115:846–852. https://doi.org/10.1016/j.ijbiomac.2018.04.133

    Article  Google Scholar 

  47. Jiang F, Hsieh Y-L (2015) Cellulose nanocrystal isolation from tomato peels and assembled nanofibers. Carbohydrate Polymers 122:60–68. https://doi.org/10.1016/j.carbpol.2014.12.064

    Article  Google Scholar 

  48. Belouadah Z, Toubal L, Belhaneche-Bensemra N, Ati A (2021) Characterization of ligno-cellulosic fiber extracted from Atriplex halimus L. plant. International Journal of Biological Macromolecules 168:806–815. https://doi.org/10.1016/j.ijbiomac.2020.11.142

    Article  Google Scholar 

  49. Moshi AAM, Ravindran D, Bharathi SRS et al (2020) Characterization of a new cellulosic natural fiber extracted from the root of Ficus religiosa tree. International Journal of Biological Macromolecules 142:212–221. https://doi.org/10.1016/j.ijbiomac.2019.09.094

    Article  Google Scholar 

  50. Alotaibi MD, Alshammari BA, Saba N et al (2019) Characterization of natural fiber obtained from different parts of date palm tree (Phoenix dactylifera L.). International Journal of Biological Macromolecules 135:69–76. https://doi.org/10.1016/j.ijbiomac.2019.05.102

    Article  Google Scholar 

  51. Jc CS, George N, Narayanankutty SK (2016) Isolation and characterization of cellulose nanofibrils from arecanut husk fibre. Carbohydrate Polymers 142:158–166. https://doi.org/10.1016/j.carbpol.2016.01.015

    Article  Google Scholar 

  52. Vijay R, Lenin Singaravelu D, Vinod A et al (2019) Characterization of raw and alkali treated new natural cellulosic fibers from Tridax procumbens. International Journal of Biological Macromolecules 125:99–108. https://doi.org/10.1016/j.ijbiomac.2018.12.056

    Article  Google Scholar 

  53. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal 29:786–794. https://doi.org/10.1177/004051755902901003

    Article  Google Scholar 

  54. Jabihulla Shariff Md SCK (2020) Characterization of novel natural cellulosic fiber extracted from the stem of Cissus vitiginea plant. International Journal of Biological Macromolecules 161:1358–1370. https://doi.org/10.1016/j.ijbiomac.2020.07.230

    Article  Google Scholar 

  55. Ganapathy T, Sathiskumar R, Senthamaraikannan P et al (2019) Characterization of raw and alkali treated new natural cellulosic fibres extracted from the aerial roots of banyan tree. International Journal of Biological Macromolecules 138:573–581. https://doi.org/10.1016/j.ijbiomac.2019.07.136

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Didaoui Amine: Writing—original draft, methodology, conceptualization, software, data curation, validation, investigation, and formal analysis.

Amrane Abdeltif: Conceptualization, visualization, supervision, and writing-review and editing.

Aksil Tounsia: Software, validation, supervision, writing—review and editing, and project administration.

Boudieb Naima: Methodology, visualization, supervision, writing—original draft, and project administration.

Corresponding author

Correspondence to Amine Didaoui.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The given and family names of all authors were incorrectly structured.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Didaoui, A., Amrane, A., Aksil, T. et al. Characterization of cardinal vine shoot waste as new resource of lignocellulosic biomass and valorization into value-added chemical using Plackett–Burman and Box Behnken. Biomass Conv. Bioref. 13, 6331–6344 (2023). https://doi.org/10.1007/s13399-021-01717-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01717-1

Keywords

Navigation