Skip to main content

Advertisement

Log in

Graphene oxide applications in biorefinery catalysis to chemical commodities: critical review, prospects and challenges

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Graphene oxide (GO) is a carbon allotrope with favourable characteristics for a number of applications, in particular for electronic devices. While already commercially exploited for those, their utilisation as carbocatalysts or catalyst supports is still an active research area, with some reports now emerging for biorefinery-related conversions. The unique and tuneable nature of GO-based materials presents a tremendous opportunity to devise catalysts capable of efficiently converting highly oxidised biomass-derived compounds under processing conditions that are inherently different from those used in petrochemical processing. Tremendous potential exists for value creation from agricultural products, supporting many nations’ bioeconomy and circularity strategies. In order to progress the development of these highly promising materials in biorefinery-related applications, the current state of the art is critically discussed and future research avenues are identified. Current shortcomings for industrial implementation include the lack of understanding of structure-property relationships hampering knowledge-based design; concise and reported material purity protocols and broad systematic studies; studies on the transfer to continuous processing, including detailed recycling and regeneration studies; as well as efficient, reproducible and environmentally benign material production strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4

Similar content being viewed by others

Abbreviations

EMF:

Ethoxymethylfuran

FAME:

Fatty acid methyl ester

GO:

Graphene oxide

N-GO:

Nitrogen-doped graphene oxide

N-RGO:

Nitrogen-doped reduced graphene oxide

ODH:

Oxidative dehydration

RGO:

Reduced graphene oxide

TEMPO:

2,2,6,6-Tetramethylpiperidin-1-oxyl

TEP:

4,5,5-Triethoxypentan-2-one

2,5-DFF:

2,5-Diformylfuran, furan-2,5-dicarbaldehyde, 5-formylfurfural

2,5-DMF:

2,5-Dimethylfuran

2,5-FDCA:

2,5-Furandicarboxylic acid

5-HMF:

5-hydroxymethylfurfural

References

  1. Gitis V, Chung S-H, Raveendran Shiju N (2018) Conversion of furfuryl alcohol into butyl levulinate with graphite oxide and reduced graphite oxide. FlatChem 10:39–44. https://doi.org/10.1016/j.flatc.2018.08.002

    Article  Google Scholar 

  2. Pileidis FD, Titirici MM (2016) Levulinic acid biorefineries: new challenges for efficient utilization of biomass. ChemSusChem 9(6):562–582. https://doi.org/10.1002/cssc.201501405

    Article  Google Scholar 

  3. Zhu S, Chen C, Xue Y, Wu J, Wang J, Fan W (2014) Graphene oxide: an efficient acid catalyst for alcoholysis and esterification reactions. ChemCatChem 6(11):3080–3083. https://doi.org/10.1002/cctc.201402574

    Article  Google Scholar 

  4. Octave S, Thomas D (2009) Biorefinery: toward an industrial metabolism. Biochimie 91(6):659–664. https://doi.org/10.1016/j.biochi.2009.03.015

    Article  Google Scholar 

  5. Shi J, Wang Y, Yu X, Du W, Hou Z (2016) Production of 2,5-dimethylfuran from 5-hydroxymethylfurfural over reduced graphene oxides supported Pt catalyst under mild conditions. Fuel 163:74–79. https://doi.org/10.1016/j.fuel.2015.09.047

    Article  Google Scholar 

  6. Srivastava N, Srivastava M, Gupta VK, Ramteke PW, Mishra PK (2018) A novel strategy to enhance biohydrogen production using graphene oxide treated thermostable crude cellulase and sugarcane bagasse hydrolyzate under co-culture system. Bioresour Technol 270:337–345. https://doi.org/10.1016/j.biortech.2018.09.038

    Article  Google Scholar 

  7. Yan Y, Li K, Zhao J, Cai W, Yang Y, Lee J-M (2017) Nanobelt-arrayed vanadium oxide hierarchical microspheres as catalysts for selective oxidation of 5-hydroxymethylfurfural toward 2.5-diformylfuran. Appl Catal B Environ 207:358–365. https://doi.org/10.1016/j.apcatb.2017.02.035

    Article  Google Scholar 

  8. Mohan SV, Nikhil GN, Chiranjeevi P, Reddy CN, Rohit MV, Kumar AN, Sarkar O (2016) Waste biorefinery models towards sustainable circular bioeconomy: critical review and future perspectives. Bioresour Technol 215:2–12. https://doi.org/10.1016/j.biortech.2016.03.130

    Article  Google Scholar 

  9. Cherubini F (2010) The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Convers Manag 51(7):1412–1421. https://doi.org/10.1016/j.enconman.2010.01.015

    Article  Google Scholar 

  10. Kamm B (2007) Production of platform chemicals and synthesis gas from biomass. Angew Chem Int Ed Engl 46(27):5056–5058. https://doi.org/10.1002/anie.200604514

    Article  Google Scholar 

  11. Stark A (2011) Ionic liquids in the biorefinery: a critical assessment of their potential. Energy Environ Sci 4(1):19–32. https://doi.org/10.1039/c0ee00246a

    Article  Google Scholar 

  12. Maity SK (2015) Opportunities, recent trends and challenges of integrated biorefinery: part I. Renew Sust Energ Rev 43:1427–1445. https://doi.org/10.1016/j.rser.2014.11.092

    Article  Google Scholar 

  13. Beuchelt TD, Nassl M (2019) Applying a sustainable development lens to global biomass potentials. Sustainability 11(18). https://doi.org/10.3390/su11185078

  14. Rohstoffe FN, Gülzow-Prüzen (2021) Basisdaten biobasierte Produkte. 5th revised edition edn, Germany

  15. Mondal D, Chaudhary JP, Sharma M, Prasad K (2014) Simultaneous dehydration of biomass-derived sugars to 5-hydroxymethyl furfural (HMF) and reduction of graphene oxide in ethyl lactate: one pot dual chemistry. RSC Adv 4(56):29834–29839. https://doi.org/10.1039/c4ra05049e

    Article  Google Scholar 

  16. Jong KP (2009) General aspects. Synthesis of solid catalysts. Wiley-VCH Verlag GmbH & Co KGaA. https://doi.org/10.1002/9783527626854

  17. Moncada BJ, Aristizábal MV, Cardona ACA (2016) Design strategies for sustainable biorefineries. Biochem Eng J 116:122–134. https://doi.org/10.1016/j.bej.2016.06.009

    Article  Google Scholar 

  18. Lange J-P (2016) Catalysis for biorefineries – performance criteria for industrial operation. Catal Sci Technol 6(13):4759–4767. https://doi.org/10.1039/c6cy00431h

    Article  Google Scholar 

  19. Özdenkçi K, De Blasio C, Muddassar HR, Melin K, Oinas P, Koskinen J, Sarwar G, Järvinen M (2017) A novel biorefinery integration concept for lignocellulosic biomass. Energy Convers Manag 149:974–987. https://doi.org/10.1016/j.enconman.2017.04.034

    Article  Google Scholar 

  20. Wang H, Pu Y, Ragauskas A, Yang B (2019) From lignin to valuable products-strategies, challenges, and prospects. Bioresour Technol 271:449–461. https://doi.org/10.1016/j.biortech.2018.09.072

    Article  Google Scholar 

  21. Wang H, Deng T, Wang Y, Cui X, Qi Y, Mu X, Hou X, Zhu Y (2013) Graphene oxide as a facile acid catalyst for the one-pot conversion of carbohydrates into 5-ethoxymethylfurfural. Green Chem 15(9):2379–2383. https://doi.org/10.1039/c3gc41109e

    Article  Google Scholar 

  22. Wang H, Kong Q, Wang Y, Deng T, Chen C, Hou X, Zhu Y (2014) Graphene oxide catalyzed dehydration of fructose into 5-hydroxymethylfurfural with isopropanol as cosolvent. ChemCatChem 6(3):728–732. https://doi.org/10.1002/cctc.201301067

    Article  Google Scholar 

  23. Akansha M, Arzoo A, Jyoti D, Arindam K, Vinay S (2017) Microreactor technology for biodiesel production: a review. Biomass Conversion and Biorefinery 8(2):485–496. https://doi.org/10.1007/s13399-017-0296-0

    Article  Google Scholar 

  24. Garg B, Bisht T, Ling YC (2014) Graphene-based nanomaterials as heterogeneous acid catalysts: a comprehensive perspective. Molecules 19(9):14582–14614. https://doi.org/10.3390/molecules190914582

    Article  Google Scholar 

  25. de Jong E, Jungmeier G (2015) Biorefinery concepts in comparison to petrochemical refineries. In: Höfer R, Taherzadeh M, Nampoothiri KM, Larroche C (eds) Pandey A. Elsevier, Industrial Biorefineries & White Biotechnology, pp 3–33. https://doi.org/10.1016/b978-0-444-63453-5.00001-x

  26. Morais AR, da Costa Lopes AM, Bogel-Lukasik R (2015) Carbon dioxide in biomass processing: contributions to the green biorefinery concept. Chem Rev 115(1):3–27. https://doi.org/10.1021/cr500330z

    Article  Google Scholar 

  27. Palmeros Parada M, Osseweijer P, Posada Duque JA (2017) Sustainable biorefineries, an analysis of practices for incorporating sustainability in biorefinery design. Ind Crop Prod 106:105–123. https://doi.org/10.1016/j.indcrop.2016.08.052

    Article  Google Scholar 

  28. Tang PD, Du QS, Li DP, Dai J, Li YM, Du FL, Long SY, Xie NZ, Wang QY, Huang RB (2018) Fabrication and characterization of graphene microcrystal prepared from lignin refined from sugarcane bagasse. Nanomaterials 8(8):1–14. https://doi.org/10.3390/nano8080565

    Article  Google Scholar 

  29. Li J, Yan Q, Zhang X, Zhang J, Cai Z (2019) Efficient conversion of lignin waste to high value bio-graphene oxide nanomaterials. Polymers 11(4):1–12. https://doi.org/10.3390/polym11040623

    Article  Google Scholar 

  30. Korkmaz S, Kariper İA (2020) Graphene and graphene oxide based aerogels: synthesis, characteristics and supercapacitor applications. Journal of Energy Storage 27(101038):101038. https://doi.org/10.1016/j.est.2019.101038

    Article  Google Scholar 

  31. Korkmaz S, Tezel FM, Kariper İA (2018) Synthesis and characterization of GO/IrO2 thin film supercapacitor. J Alloys Compd 754:14–25. https://doi.org/10.1016/j.jallcom.2018.04.170

    Article  Google Scholar 

  32. Mombeshora ET, Nyamori VO (2015) A review on the use of carbon nanostructured materials in electrochemical capacitors. Int J Energy Res 39(15):1955–1980. https://doi.org/10.1002/er.3423

    Article  Google Scholar 

  33. Korkmaz S, Tezel FM, Kariper İA (2018) Synthesis and characterization of GO/V2O5 thin film supercapacitor. Synth Met 242:37–48. https://doi.org/10.1016/j.synthmet.2018.05.002

    Article  Google Scholar 

  34. Korkmaz S, Tezel FM, Kariper IA (2020) Facile synthesis and characterization of graphene oxide tungsten oxide thin film supercapacitor for electrochemical energy storage. Physica E: Low-dimensional Systems and Nanostructures 116 (113718):1-17. doi:https://doi.org/10.1016/j.physe.2019.113718, 113718

  35. Korkmaz S, Tezel FM, Kariper İA, Serin A (2021) Effects of deposition temperatures on the supercapacitor cathode performances of GO:SnSbS/Si thin films. Journal of Energy Storage 33 (102116):1-9. doi:https://doi.org/10.1016/j.est.2020.102116, 102116

  36. Tezel FM, Korkmaz S, Serin A, Kariper İA (2020) The synthesis of GO: SnSbS thin films and the analysis of its electrochemical performance. J Alloys Compd 838(154908):1–9. https://doi.org/10.1016/j.jallcom.2020.154908

    Article  Google Scholar 

  37. Wang Y, Hu Y, Han D, Yuan Q, Cao T, Chen N, Zhou D, Cong H, Feng L (2019) Ammonia-treated graphene oxide and PEDOT:PSS as hole transport layer for high-performance perovskite solar cells with enhanced stability. Org Electron 70:63–70. https://doi.org/10.1016/j.orgel.2019.03.048

    Article  Google Scholar 

  38. Redondo-Obispo C, Ripolles TS, Cortijo-Campos S, Álvarez AL, Climent-Pascual E, Ad A, Coy C (2020) Enhanced stability and efficiency in inverted perovskite solar cells through graphene doping of PEDOT:PSS hole transport layer. Mater Des 191(108587):1–10. https://doi.org/10.1016/j.matdes.2020.108587

    Article  Google Scholar 

  39. Dadashbeik M, Fathi D, Eskandari M (2020) Design and simulation of perovskite solar cells based on graphene and TiO2/graphene nanocomposite as electron transport layer. Sol Energy 207:917–924. https://doi.org/10.1016/j.solener.2020.06.102

    Article  Google Scholar 

  40. Suragtkhuu S, Tserendavag O, Vandandoo U, Bati ASR, Bat-Erdene M, Shapter JG, Batmunkh M, Davaasambuu S (2020) Efficiency and stability enhancement of perovskite solar cells using reduced graphene oxide derived from earth-abundant natural graphite. RSC Adv 10:9133–9139. https://doi.org/10.1039/D0RA01423K

    Article  Google Scholar 

  41. Yavuz S, Erkal A, Kariper İA, Solak AO, Jeon S, Mulazimoglu IE, Ustundag Z (2016) Carbonaceous materials-12: a novel highly sensitive graphene oxide-based carbon electrode: preparation, characterization, and heavy metal analysis in food samples. Food Anal Methods 9(2):322–331

    Article  Google Scholar 

  42. Georgakilas V, Tiwari JN, Kemp KC, Perman JA, Bourlinos AB, Kim KS, Zboril R (2016) Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical application. Chem Rev 116(9):5464–5519. https://doi.org/10.1021/acs.chemrev.5b00620

    Article  Google Scholar 

  43. Nie L, Chuah CY, Bae T-H, Lee J-M (2020) Graphene-based advanced membrane applications in organic solvent nanofiltration. Adv Funct Mater 2006949:1–36. https://doi.org/10.1002/adfm.202006949

    Article  Google Scholar 

  44. Kariper İA, Çağlayan MO, Üstündağ Z (2019) Heterogeneous Au/Ru hybrid nanoparticle decorated graphene oxide nanosheet catalyst for the catalytic reduction of nitroaromatics. Res Chem Intermed 45:801–813. https://doi.org/10.1007/s11164-018-3644-1

    Article  Google Scholar 

  45. Liu Y, Jin W, Zhao Y, Zhang G, Zhang W (2017) Enhanced catalytic degradation of methylene blue by α-Fe2O3/graphene oxide via heterogeneous photo-Fenton reactions. Appl Catal B Environ 206:642–652. https://doi.org/10.1016/j.apcatb.2017.01.075

    Article  Google Scholar 

  46. Ahn Y, Oh H, Yoon Y, Park WK, Yang WS, Kang J-W (2017) Effect of graphene oxidation degree on the catalytic activity of graphene for ozone catalysis. J Environ Chem Eng 5(4):3882–3894

    Article  Google Scholar 

  47. Rashotte N (2020) Investing in graphene companies. Accessed on 07 September 2020

  48. Hegab HM, ElMekawy A, van den Akker B, Ginic-Markovic M, Saint C, Newcombe G, Pant D (2018) Innovative graphene microbial platforms for domestic wastewater treatment. Rev Environ Sci Biotechnol 17(1):147–158. https://doi.org/10.1007/s11157-018-9459-0

    Article  Google Scholar 

  49. Zhou X, Qiao J, Yang L, Zhang J (2014) A review of graphene-based nanostructural materials for both catalyst supports and metal-free catalysts in PEM fuel cell oxygen reduction reactions. Adv Energy Mater 4(8):1–25. https://doi.org/10.1002/aenm.201301523

    Article  Google Scholar 

  50. Hu M, Yao Z, Wang X (2017) Graphene-based nanomaterials for catalysis. Ind Eng Chem Res 56(13):3477–3502. https://doi.org/10.1021/acs.iecr.6b05048

    Article  Google Scholar 

  51. Cheng Y, Fan Y, Pei Y, Qiao M (2015) Graphene-supported metal/metal oxide nanohybrids: synthesis and applications in heterogeneous catalysis. Catal Sci Technol 5(8):3903–3916. https://doi.org/10.1039/c5cy00630a

    Article  Google Scholar 

  52. Sengupta D, Ghosh S, Basu B (2017) Advances and prospects of graphene oxide (GO) as heterogeneous ‘carbocatalyst’. Curr Org Chem 21(9):834–854. https://doi.org/10.2174/1385272820666161021102757

    Article  Google Scholar 

  53. Navalon S, Dhakshinamoorthy A, Alvaro M, Garcia H (2014) Carbocatalysis by graphene-based materials. Chem Rev 114(12):6179–6212. https://doi.org/10.1021/cr4007347

    Article  Google Scholar 

  54. Li YX, Sun CY, Yu CJ, Wang CX, Liu YJ, Song YB (2012) Graphene oxide and its applications in catalysis. Adv Mater Res 476-478:1488–1495. https://doi.org/10.4028/www.scientific.net/AMR.476-478.1488

    Article  Google Scholar 

  55. Ilčíková M, Mrlík M, Špitalský Z, Mičušík M, Csomorová K, Sasinková V, Kleinová A, Mosnáček J (2015) A tertiary amine in two competitive processes: reduction of graphene oxide vs. catalysis of atom transfer radical polymerization. RSC Adv 5(5):3370–3376. https://doi.org/10.1039/c4ra12915f

    Article  Google Scholar 

  56. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924. https://doi.org/10.1002/adma.201001068

    Article  Google Scholar 

  57. Lam E, Luong JHT (2014) Carbon materials as catalyst supports and catalysts in the transformation of biomass to fuels and chemicals. ACS Catal 4(10):3393–3410. https://doi.org/10.1021/cs5008393

    Article  Google Scholar 

  58. Zhao X, Wang J, Chen C, Huang Y, Wang A, Zhang T (2014) Graphene oxide for cellulose hydrolysis: how it works as a highly active catalyst? Chem Commun 50(26):3439–3442. https://doi.org/10.1039/c3cc49634a

    Article  Google Scholar 

  59. Yan Q, Li J, Zhang X, Zhang J, Cai Z (2019) Mass production of graphene materials from solid carbon sources using a molecular cracking and welding method. J Mater Chem A 7(23):13978–13985. https://doi.org/10.1039/c9ta01332f

    Article  Google Scholar 

  60. Hummers W, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339. https://doi.org/10.1021/ja01539a017

    Article  Google Scholar 

  61. Chin SX, Chook SW, Chia CH, Lau KS, Zakaria S, Tasirin SM (2017) Graphene oxide as support and regenerative substrate for lead ions in catalytic conversion of lactic acid. BioResources 12(4):7133–7144. https://doi.org/10.15376/biores.12.4.7133-7144

    Article  Google Scholar 

  62. Mombeshora ET, Ndungu PG, Nyamori VO (2017) Effect of graphite/sodium nitrate ratio and reaction time on the physicochemical properties of graphene oxide. New Carbon Mater 32(2):174–187. https://doi.org/10.1016/s1872-5805(17)60114-8

    Article  Google Scholar 

  63. Brodie BC (1860) Sur le poids atomique de graphite. Annales de Chimie et de Physique 59:466–472

    Google Scholar 

  64. Staudenmaier L (1898) Verfahren zur Darstellung der Graphitsäure. Ber Dtsch Chem Ges 31(148):1481–1487. https://doi.org/10.1002/cber.18980310237

    Article  Google Scholar 

  65. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814. https://doi.org/10.1021/nn1006368

    Article  Google Scholar 

  66. Piñas JAV, Andrade TS, Oliveira AT, Salomão PEA, Rodriguez M, Silva AC, Oliveira HS, Monteiro DS, Pereira MC (2019) Production of reduced graphene oxide platelets from graphite flakes using the Fenton reaction as an alternative to harmful oxidizing agents. J Nanomater 2019:1–8. https://doi.org/10.1155/2019/5736563

    Article  Google Scholar 

  67. Ranjan P, Agrawal S, Sinha A, Rao TR, Balakrishnan J, Thakur AD (2018) A low-cost non-explosive synthesis of graphene oxide for scalable applications. Sci Rep 8(1):1–13. https://doi.org/10.1038/s41598-018-30613-4

    Article  Google Scholar 

  68. Jedrzejczyk M, Makowski T, Svyntkivska M, Piorkowska E, Mizerska U, Fortuniak W, Brzezinski S, Kowalczyk D (2019) Conductive cotton fabric through thermal reduction of graphene oxide enhanced by commercial antioxidants used in the plastics industry. Cellulose 26(4):2191–2199. https://doi.org/10.1007/s10570-018-02233-8

    Article  Google Scholar 

  69. Lee W-J, Jang H-R, Kim M-J, Kim H-M, Oh J-M, Paek S-M (2019) Microwave-irradiated reduced graphene oxide nanosheets for highly reversible and ultrafast sodium storage. J Alloys Compd 778:382–390. https://doi.org/10.1016/j.jallcom.2018.11.173

    Article  Google Scholar 

  70. Tseng K-H, Ku H-C, Tien D-C, Stobinski L (2019) Novel preparation of reduced graphene oxide-silver complex using an electrical spark discharge method. Nanomaterials 9(7):1–12. https://doi.org/10.3390/nano9070979

    Article  Google Scholar 

  71. Mombeshora ET, Ndungu PG, Nyamori VO (2017) The physicochemical properties and capacitive functionality of pyrrolic- and pyridinic-nitrogen, and boron-doped reduced graphene oxide. Electrochim Acta 258:467–476. https://doi.org/10.1016/j.electacta.2017.11.084

    Article  Google Scholar 

  72. Haag D, Kung HH (2013) Metal free graphene based catalysts: a review. Top Catal 57(6-9):762–773. https://doi.org/10.1007/s11244-013-0233-9

    Article  Google Scholar 

  73. Dreyer DR, Jia HP, Bielawski CW (2010) Graphene oxide: a convenient carbocatalyst for facilitating oxidation and hydration reactions. Angew Chem Int Ed Engl 49(38):6813–6816. https://doi.org/10.1002/anie.201002160

    Article  Google Scholar 

  74. Stylianakis MM, Viskadouros G, Polyzoidis C, Veisakis G, Kenanakis G, Kornilios N, Petridis K, Kymakis E (2019) Updating the role of reduced graphene oxide ink on field emission devices in synergy with charge transfer materials. Nanomaterials 9(2):1–15. https://doi.org/10.3390/nano9020137

    Article  Google Scholar 

  75. Yu IKM, Xiong X, Tsang DCW, Ng YH, Clark JH, Fan J, Zhang S, Hu C, Ok YS (2019) Graphite oxide- and graphene oxide-supported catalysts for microwave-assisted glucose isomerisation in water. Green Chem 21:4341–4353. https://doi.org/10.1039/c9gc00734b

    Article  Google Scholar 

  76. Muzyka R, Drewniak S, Pustelny T, Chrubasik M, Gryglewicz G (2018) Characterization of graphite oxide and reduced graphene oxide obtained from different graphite precursors and oxidized by different methods using Raman spectroscopy. Materials 11(7):1–15. https://doi.org/10.3390/ma11071050

    Article  Google Scholar 

  77. Dhakshinamoorthy A, Alvaro M, Puche M, Fornes V, Garcia H (2012) Graphene oxide as catalyst for the acetalization of aldehydes at room temperature. ChemCatChem 4(12):2026–2030. https://doi.org/10.1002/cctc.201200461

    Article  Google Scholar 

  78. Mannan MA, Hirano Y, Quitain AT, Koinuma M, Kida T (2019) Graphene oxide to B, N co-doped graphene through tris-dimethylaminoborane complex by hydrothermal implantation. Am J Mater Sci 9(1):22–28. https://doi.org/10.5923/j.materials.20190901.04

    Article  Google Scholar 

  79. He J, Anouar A, Primo A, García H (2019) Quality improvement of few-layers defective graphene from biomass and application for H2 generation. Nanomaterials 9(895):1–15. https://doi.org/10.3390/nano9060895

    Article  Google Scholar 

  80. Shams SS, Zhang LS, Hu R, Zhang R, Zhu J (2015) Synthesis of graphene from biomass: a green chemistry approach. Mater Lett 161:476–479. https://doi.org/10.1016/j.matlet.2015.09.022

    Article  Google Scholar 

  81. Chen F, Yang J, Bai T, Long B, Zhou X (2016) Facile synthesis of few-layer graphene from biomass waste and its application in lithium ion batteries. J Electroanal Chem 768:18–26. https://doi.org/10.1016/j.jelechem.2016.02.035

    Article  Google Scholar 

  82. Supriyanto G, Rukman NK, Nisa AK, Jannatin M, Piere B, Abdullah, Fahmi MZ, Kusuma HS (2018) Graphene oxide from Indonesian biomass: synthesis and characterization. BioResources 13(3):4832–4840. https://doi.org/10.15376/biores.13.3.4832-4840

    Article  Google Scholar 

  83. Putri LK, Ng B-J, Ong W-J, Orcid HWL, Chang WS, Chai S-P (2017) Heteroatom nitrogen- and boron-doping as a facile strategy to improve photocatalytic activity of standalone reduced graphene oxide in hydrogen evolution. ACS Appl Mater Interfaces 9(5):4558–4569. https://doi.org/10.1021/acsami.6b12060

    Article  Google Scholar 

  84. Zhang H, Kuila T, Kim NH, Yu DS, Lee JH (2014) Simultaneous reduction, exfoliation, and nitrogen doping of graphene oxide via a hydrothermal reaction for energy storage electrode materials. Carbon 69:66–78. https://doi.org/10.1016/j.carbon.2013.11.059

    Article  Google Scholar 

  85. Lv G, Wang H, Yang Y, Deng T, Chen C, Zhu Y, Hou X (2015) Graphene oxide: a convenient metal-free carbocatalyst for facilitating aerobic oxidation of 5-hydroxymethylfurfural into 2,5-diformylfuran. ACS Catal 5(9):5636–5646. https://doi.org/10.1021/acscatal.5b01446

    Article  Google Scholar 

  86. Shaikh M, Singh SK, Khilari S, Sahu M, Ranganath KVS (2018) Graphene oxide as a sustainable metal and solvent free catalyst for dehydration of fructose to 5-HMF: a new and green protocol. Catal Commun 106:64–67. https://doi.org/10.1016/j.catcom.2017.12.018

    Article  Google Scholar 

  87. Hou Q, Li W, Ju M, Liu L, Chen Y, Yang Q (2016) One-pot synthesis of sulfonated graphene oxide for efficient conversion of fructose into HMF. RSC Adv 6(106):104016–104024. https://doi.org/10.1039/c6ra23420h

    Article  Google Scholar 

  88. Lam E, Chong JH, Majid E, Liu Y, Hrapovic S, Leung ACW, Luong JHT (2012) Carbocatalytic dehydration of xylose to furfural in water. Carbon 50(3):1033–1043. https://doi.org/10.1016/j.carbon.2011.10.007

    Article  Google Scholar 

  89. Lv G, Wang H, Yang Y, Deng T, Chen C, Zhu Y, Hou X (2016) Direct synthesis of 2,5-diformylfuran from fructose with graphene oxide as a bifunctional and metal-free catalyst. Green Chem 18(8):2302–2307. https://doi.org/10.1039/c5gc02794b

    Article  Google Scholar 

  90. Zhu W, Tao F, Chen S, Li M, Yang Y, Lv G (2019) Efficient oxidative transformation of furfural into succinic acid over acidic metal-free graphene oxide. ACS Sustain Chem Eng 7(1):296–305. https://doi.org/10.1021/acssuschemeng.8b03373

    Article  Google Scholar 

  91. Upare PP, Yoon J-W, Kim MY, Kang H-Y, Hwang DW, Hwang YK, Kung HH, Chang J-S (2013) Chemical conversion of biomass-derived hexose sugars to levulinic acid over sulfonic acid-functionalized graphene oxide catalysts. Green Chem 15(10):2935–2943. https://doi.org/10.1039/c3gc40353j

    Article  Google Scholar 

  92. Wang H, Wang Y, Deng T, Chen C, Zhu Y, Hou X (2015) Carbocatalyst in biorefinery: selective etherification of 5-hydroxymethylfurfural to 5,5′oxy-bis(methylene)bis-2-furfural over graphene oxide. Catal Commun 59:127–130. https://doi.org/10.1016/j.catcom.2014.10.009

    Article  Google Scholar 

  93. Vu THT, Nguyen MH, Nguyen MD (2019) Synthesis of acidic heterogeneous catalysts with high stability based on graphene oxide/activated carbon composites for the esterification of lactic acid. J Chem 2019:1–7. https://doi.org/10.1155/2019/7815697

    Article  Google Scholar 

  94. Upare PP, Hwang DK, Hong D-Y, Cha G, Chang J-S, Hwanga YK (2018) Catalytic conversion of xylan into furfural over sulfonic acid-functionalized graphene oxide. In: 8th Tokyo Conference on Advanced Catalytic Science and Technology, Japan

  95. Antunes MM, Russo PA, Wiper PV, Veiga JM, Pillinger M, Mafra L, Evtuguin DV, Pinna N, Valente AA (2014) Sulfonated graphene oxide as effective catalyst for conversion of 5-(hydroxymethyl)-2-furfural into biofuels. ChemSusChem 7(3):804–812. https://doi.org/10.1002/cssc.201301149

    Article  Google Scholar 

  96. Cheng J, Qiu Y, Huang R, Yang W, Zhou J, Cen K (2016) Biodiesel production from wet microalgae by using graphene oxide as solid acid catalyst. Bioresour Technol 221:344–349. https://doi.org/10.1016/j.biortech.2016.09.064

    Article  Google Scholar 

  97. Lee H, Tran MH, Jeong HK, Han J, Jang SH, Lee C (2014) Nonspecific cleavage of proteins using graphene oxide. Anal Biochem 451:31–34. https://doi.org/10.1016/j.ab.2014.01.017

    Article  Google Scholar 

  98. Zhang Y, Zhao Y, Luo Y, Xiao L, Huang Y, Li X, Peng Q, Liu Y, Yang B, Zhu C, Zhou X, Zhang J (2017) Directed aromatic C-H activation/acetoxylation catalyzed by Pd nanoparticles supported on graphene oxide. Org Lett 19(24):6470–6473. https://doi.org/10.1021/acs.orglett.7b02967

    Article  Google Scholar 

  99. Montes-Navajas P, Asenjo NG, Santamaria R, Menendez R, Corma A, Garcia H (2013) Surface area measurement of graphene oxide in aqueous solutions. Langmuir 29(44):13443–13448. https://doi.org/10.1021/la4029904

    Article  Google Scholar 

  100. Wanga F, Haftka JJ-H, Sinnige TL, Hermens JLM, Chen W (2014) Adsorption of polar, nonpolar, and substituted aromatics to colloidal graphene oxide nanoparticles. Environ Pollut 186:226–233. https://doi.org/10.1016/j.envpol.2013.12.010

    Article  Google Scholar 

  101. Majumdar B, Sarma D, Sarma TK (2018) Carbocatalytic activity of graphene oxide in organic synthesis. In: Kamble GS (ed) Graphene oxide - applications and opportunities. BoD – Books on Demand, pp 25–37. https://doi.org/10.5772/intechopen.77361

  102. Pyun J (2011) Graphene oxide as catalyst: application of carbon materials beyond nanotechnology. Angew Chem Int Ed Engl 50(1):46–48. https://doi.org/10.1002/anie.201003897

    Article  Google Scholar 

  103. Liang A, Li C, Wang X, Luo Y, Wen G, Jiang Z (2017) Immunocontrolling graphene oxide catalytic nanogold reaction and its application to SERS quantitative analysis. ACS Omega 2(10):7349–7358. https://doi.org/10.1021/acsomega.7b01335

    Article  Google Scholar 

  104. Su C, Loh KP (2013) Carbocatalysts: graphene oxide and its derivatives. ACS Accounts of Chemical Research 46(10):2275–2285. https://doi.org/10.1021/ar300118v

    Article  Google Scholar 

  105. Wu S-Y, Ho J-J (2014) Adsorption of a Pt13 cluster on graphene oxides at varied ratios of oxygen to carbon and its catalytic reactions for CO removal investigated with quantum-chemical calculations. J Phys Chem C 118(46):26764–26771. https://doi.org/10.1021/jp507453h

    Article  Google Scholar 

  106. Kong XK, Chen CL, Chen QW (2014) Doped graphene for metal-free catalysis. Chem Soc Rev 43(8):2841–2857. https://doi.org/10.1039/c3cs60401b

    Article  Google Scholar 

  107. Mombeshora ET, Ndungu PG, Jarvis ALL, Nyamori VO (2018) The physical and electrochemical properties of nitrogen-doped carbon nanotube- and reduced graphene oxide-titania nanocomposites. Mater Chem Phys 213:102–112. https://doi.org/10.1016/j.matchemphys.2018.03.076

    Article  Google Scholar 

  108. Hou Q, Zhen M, Liu L, Chen Y, Huang F, Zhang S, Li W, Ju M (2018) Tin phosphate as a heterogeneous catalyst for efficient dehydration of glucose into 5-hydroxymethylfurfural in ionic liquid. Appl Catal B Environ 224:183–193. https://doi.org/10.1016/j.apcatb.2017.09.049

    Article  Google Scholar 

  109. Jiang N, Qi W, Wu Z, Su R, He Z (2018) “One-pot” conversions of carbohydrates to 5-hydroxymethylfurfural using Sn-ceramic powder and hydrochloric acid. Catal Today 302:94–99. https://doi.org/10.1016/j.cattod.2017.05.081

    Article  Google Scholar 

  110. Yu IKM, Tsang DCW (2017) Conversion of biomass to hydroxymethylfurfural: a review of catalytic systems and underlying mechanisms. Bioresour Technol 238:716–732. https://doi.org/10.1016/j.biortech.2017.04.026

    Article  Google Scholar 

  111. Stark A (2016) Ionic liquid-based processes in the biorefinery: a SWOT analysis. In: Bogel-Lukasik R (ed) Ionic liquids in the biorefinery concept: challenges and perspectives Green Chemistry Series, vol 36, pp 281–289

  112. Zhao J, Chen X, Du Y, Yang Y, Lee J-M (2018) Vanadium-embedded mesoporous carbon microspheres as effective catalysts for selective aerobic oxidation of 5-hydroxymethyl-2-furfural into 2, 5-diformylfuran. Appl Catal A Gen 568:16–22. https://doi.org/10.1016/j.apcata.2018.09.015

    Article  Google Scholar 

  113. Zhao J, Jayakumar A, Hu Z-T, Yan Y, Yang Y, Lee J-M (2018) MoO3-containing protonated nitrogen doped carbon as a bifunctional catalyst for one-step synthesis of 2,5-diformylfuran from fructose. ACS Sustain Chem Eng 6(1):284–291. https://doi.org/10.1021/acssuschemeng.7b02408

    Article  Google Scholar 

  114. Zhao J, Jayakumar A, Lee J-M (2018) Bifunctional sulfonated MoO3–ZrO2 binary oxide catalysts for the one-step synthesis of 2,5-diformylfuran from fructose. ACS Sustain Chem Eng 6(3):2976–2982. https://doi.org/10.1021/acssuschemeng.7b02671

    Article  Google Scholar 

  115. Zhao J, Yan Y, Hu Z-T, Jose V, Chen X, Lee J-M (2020) Bifunctional carbon nanoplatelets as metal-free catalysts for direct conversion of fructose to 2,5-diformylfuran. Catal Sci Technol 10:4179–4183. https://doi.org/10.1039/d0cy00489h

    Article  Google Scholar 

  116. Jia H-P, Dreyer DR, Bielawski CW (2011) Graphite oxide as an auto-tandem oxidation-hydration-aldol coupling catalyst. Adv Synth Catal 353(4):528–532. https://doi.org/10.1002/adsc.201000748

    Article  Google Scholar 

  117. Hu F, Patel M, Luo F, Flach C, Mendelsohn R, Garfunkel E, He H, Szostak M (2015) Graphene-catalyzed direct Friedel-Crafts alkylation reactions: mechanism, selectivity, and synthetic utility. J Am Chem Soc 137(45):14473–14480. https://doi.org/10.1021/jacs.5b09636

    Article  Google Scholar 

  118. Tang S, Cao Z (2012) Site-dependent catalytic activity of graphene oxides towards oxidative dehydrogenation of propane. Phys Chem Chem Phys 14(48):16558–16565. https://doi.org/10.1039/c2cp41343d

    Article  Google Scholar 

  119. Schwartz V, Fu W, Tsai YT, Meyer HM 3rd, Rondinone AJ, Chen J, Wu Z, Overbury SH, Liang C (2013) Oxygen-functionalized few-layer graphene sheets as active catalysts for oxidative dehydrogenation reactions. ChemSusChem 6(5):840–846. https://doi.org/10.1002/cssc.201200756

    Article  Google Scholar 

  120. Sun H, Liu S, Zhou G, Ang HM, Tade MO, Wang S (2012) Reduced graphene oxide for catalytic oxidation of aqueous organic pollutants. ACS Appl Mater Interfaces 4(10):5466–5471. https://doi.org/10.1021/am301372d

    Article  Google Scholar 

  121. Trzeciak A, Wojcik P, Lisiecki R, Gerasymchuk Y, Strek W, Legendziewicz J (2019) Palladium nanoparticles supported on graphene oxide as catalysts for the synthesis of diarylketones. Catalysts 9(4):1–12. https://doi.org/10.3390/catal9040319

    Article  Google Scholar 

  122. Zhang N, Qiu H, Liu Y, Wang W, Li Y, Wang X, Gao J (2011) Fabrication of gold nanoparticle/graphene oxide nanocomposites and their excellent catalytic performance. J Mater Chem 21(30):11080–11083. https://doi.org/10.1039/c1jm12539g

    Article  Google Scholar 

  123. Tao H, Ding J, Xie C, Gao Y, Song J, Sun Z (2018) Supercritical diethylamine facilitated loading of ultrafine Ru particles on few-layer graphene for solvent-free hydrogenation of levulinic acid to gamma-valerolactone. Nanotechnology 29(7):1–7. https://doi.org/10.1088/1361-6528/aa9b70

    Article  Google Scholar 

  124. Tan J, Cui J, Cui X, Deng T, Li X, Zhu Y, Li Y (2015) Graphene-modified Ru nanocatalyst for low-temperature hydrogenation of carbonyl groups. ACS Catal 5(12):7379–7384. https://doi.org/10.1021/acscatal.5b02170

    Article  Google Scholar 

  125. Fu SY, Li YZ, Chu W, Li C, Tong DG (2015) Monodisperse CuB23 nanoparticles grown on graphene as highly efficient catalysts for unactivated alkyl halide Heck coupling and levulinic acid hydrogenation. Catal Sci Technol 5(3):1638–1649. https://doi.org/10.1039/c4cy01331j

    Article  Google Scholar 

  126. Jeong J-M, Jin S, Yoon J, Yeo J, Lee G, Irshad M, Lee S, Seo D, Kwak B, Choi B, Kim D, Kim J (2019) High-throughput production of heterogeneous RuO2/graphene catalyst in a hydrodynamic reactor for selective alcohol oxidation. Catalysts 9(1):1–9. https://doi.org/10.3390/catal9010025

    Article  Google Scholar 

  127. Bohre A, Gupta D, Alam MI, Sharma RK, Saha B (2017) Aerobic oxidation of isoeugenol to vanillin with copper oxide doped reduced graphene oxide. Chemistry Select 2:3129–3136. https://doi.org/10.1002/slct.201700415

    Article  Google Scholar 

  128. Mei N, Liu B, Zheng J, Lv K, Tang D, Zhang Z (2015) A novel magnetic palladium catalyst for the mild aerobic oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid in water. Catal Sci Technol 5(6):3194–3202. https://doi.org/10.1039/c4cy01407c

    Article  Google Scholar 

  129. Zhao Q, Bai C, Zhang W, Li Y, Zhang G, Zhang F, Fan X (2014) Catalytic epoxidation of olefins with graphene oxide supported copper (salen) complex. Ind Eng Chem Res 53(11):4232–4238. https://doi.org/10.1021/ie500017z

    Article  Google Scholar 

  130. Lv G, Chen S, Zhu H, Li M, Yang Y (2018) Determination of the crucial functional groups in graphene oxide for vanadium oxide nanosheet fabrication and its catalytic application in 5-hydroxymethylfurfural and furfural oxidation. J Clean Prod 196:32–41. https://doi.org/10.1016/j.jclepro.2018.06.043

    Article  Google Scholar 

  131. Zhang K, Yang G, Lyu G, Jia Z, Lucia LA, Chen J (2019) One-pot solvothermal synthesis of graphene nanocomposites for catalytic conversion of cellulose to ethylene glycol. ACS Sustain Chem Eng 7(13):11110–11117. https://doi.org/10.1021/acssuschemeng.9b00006

    Article  Google Scholar 

  132. Xu J, Xu M, Wu J, Wu H, Zhang W-H, Li Y-X (2015) Graphene oxide immobilized with ionic liquids: facile preparation and efficient catalysis for solvent-free cycloaddition of CO2 to propylene carbonate. RSC Adv 5(88):72361–72368. https://doi.org/10.1039/c5ra13533h

    Article  Google Scholar 

  133. Li L, Chen M, Huang G, Yang N, Zhang L, Wang H, Liu Y, Wang W, Gao J (2014) A green method to prepare Pd–Ag nanoparticles supported on reduced graphene oxide and their electrochemical catalysis of methanol and ethanol oxidation. J Power Sources 263:13–21. https://doi.org/10.1016/j.jpowsour.2014.04.021

    Article  Google Scholar 

  134. Lv G, Wang H, Yang Y, Li X, Deng T, Chen C, Zhu Y, Hou X (2016) Aerobic selective oxidation of 5-hydroxymethyl-furfural over nitrogen-doped graphene materials with 2,2,6,6-tetramethylpiperidin-oxyl as co-catalyst. Catal Sci Technol 6:2377–2386. https://doi.org/10.1039/c5cy01149c10.1039/

    Article  Google Scholar 

  135. Rizescu C, Podolean I, Albero J, Parvulescu VI, Coman SM, Bucur C, Puche M, Garcia H (2017) N-doped graphene as a metal-free catalyst for glucose oxidation to succinic acid. Green Chem 19(8):1999–2005. https://doi.org/10.1039/c7gc00473g

    Article  Google Scholar 

  136. Singh AK, Jang S, Kim JY, Sharma S, Basavaraju KC, Kim M-G, Kim K-R, Lee JS, Lee HH, Kim D-P (2015) One-pot defunctionalization of lignin-derived compounds by dual-functional Pd50Ag50/Fe3O4/N-rGO catalyst. ACS Catal 5(11):6964–6972. https://doi.org/10.1021/acscatal.5b01319

    Article  Google Scholar 

  137. Vithalani R, Patel D, Modi CK, Som NN, Jha PK, Kane SR (2018) Enhancing the potency of surface hydroxyl groups of graphene oxide for selective oxidation of benzyl alcohol. Diam Relat Mater 90:154–165. https://doi.org/10.1016/j.diamond.2018.10.015

    Article  Google Scholar 

  138. Verma S, Aila M, Kaul S, Jain SL (2014) Immobilized oxo-vanadium Schiff base on graphene oxide as an efficient and recyclable catalyst for the epoxidation of fatty acids and esters. RSC Adv 4(58):30598–30604. https://doi.org/10.1039/c4ra03454f

    Article  Google Scholar 

  139. Song M, Song Y, Sha W, Xu B, Guo J, Wu Y (2020) Recent advances in non-precious transition metal/nitrogen-doped carbon for oxygen reduction electrocatalysts in PEMFCs. Catalysts 10(1):141. https://doi.org/10.3390/catal10010141

    Article  Google Scholar 

  140. Zhou S, Liu N, Wang Z, Zhao J (2017) Nitrogen-doped graphene on transition metal substrates as efficient bifunctional catalysts for oxygen reduction and oxygen evolution reactions. ACS Appl Mater Interfaces 9(27):22578–22587. https://doi.org/10.1021/acsami.7b05755

    Article  Google Scholar 

  141. Wan Y, Lee J-M (2021) Toward value-added dicarboxylic acids from biomass derivatives via thermocatalytic conversion. ACS Catal 11:2524–2560. https://doi.org/10.1021/acscatal.0c05419

    Article  Google Scholar 

  142. Prabhu P, Wan Y, Lee J-M (2020) Electrochemical conversion of biomass derived products into high-value chemicals. Matter 3(4):1162–1177

    Article  Google Scholar 

  143. Zhang W, Gu H, Li Z, Zhu Y, Li Y, Zhang G, Zhang F, Fan X (2014) General acid and base bifunctional graphene oxide for cooperative catalysis. J Mater Chem A 2(26):10239–10243. https://doi.org/10.1039/c4ta01446d

    Article  Google Scholar 

  144. Li Y, Zhao Q, Ji J, Zhang G, Zhang F, Fan X (2013) Cooperative catalysis by acid–base bifunctional graphene. RSC Adv 3(33):13655–13658. https://doi.org/10.1039/c3ra41970c

    Article  Google Scholar 

  145. Zhang W, Wang S, Ji J, Li Y, Zhang G, Zhang F, Fan X (2013) Primary and tertiary amines bifunctional graphene oxide for cooperative catalysis. Nanoscale 5(13):6030–6033. https://doi.org/10.1039/c3nr01323e

    Article  Google Scholar 

  146. Chen Z, Liao S, Ge L, Amaniampong PN, Min Y, Wang C, Li K, Lee J-M (2020) Reduced graphene oxide with controllably intimate bifunctionality for the catalytic transformation of fructose into 2,5-diformylfuran in biphasic solvent system. Chem Eng J 379(122284):122284. https://doi.org/10.1016/j.cej.2019.122284

    Article  Google Scholar 

  147. Zhang Z, Huber GW (2018) Catalytic oxidation of carbohydrates into organic acids and furan chemicals. Chem Soc Rev 47(4):1351–1390. https://doi.org/10.1039/c7cs00213k

    Article  Google Scholar 

  148. Sudarsanam P, Zhong R, Van den Bosch S, Coman SM, Parvulescu VI, Sels BF (2018) Functionalised heterogeneous catalysts for sustainable biomass valorisation. Chem Soc Rev 47(22):8349–8402. https://doi.org/10.1039/c8cs00410b

    Article  Google Scholar 

  149. Jurow M, Manichev V, Pabon C, Hageman B, Matolina Y, Drain CM (2013) Self-organization of Zr(IV) porphyrinoids on graphene oxide surfaces by axial metal coordination. Inorg Chem 52(18):10576–10582. https://doi.org/10.1021/ic401563f

    Article  Google Scholar 

  150. Amreen K, Kumar AS, Mani V, Huang S-T (2018) Axial coordination site-turned surface confinement, electron transfer, and bio-electrocatalytic applications of a hemin complex on graphitic carbon nanomaterial-modified electrodes. ACS Omega 3(5):5435–5444. https://doi.org/10.1021/acsomega.8b00322

    Article  Google Scholar 

  151. Verma S, Mungse HP, Kumar N, Choudhary S, Jain SL, Sain B, Khatri OP (2011) Graphene oxide: an efficient and reusable carbocatalyst for aza-Michael addition of amines to activated alkenes. Chem Commun 47(47):12673–12675. https://doi.org/10.1039/c1cc15230k

    Article  Google Scholar 

  152. Chieffi G, Giordano C, Antonietti M, Esposito D (2014) FeNi nanoparticles with carbon armor as sustainable hydrogenation catalysts: towards biorefineries. J Mater Chem A 2(30):11591–11596. https://doi.org/10.1039/c4ta02457e

    Article  Google Scholar 

  153. Heidari A, Talebi S, Rezaei M, Keshavarz-Mirzamohamadi H, Jafariyeh-Yazdi E (2017) In situ synthesis of ultrahigh molecular weight polyethylene/graphene oxide nanocomposite using the immobilized single-site catalyst. Polym-Plast Technol Eng 57(13):1313–1324. https://doi.org/10.1080/03602559.2017.1381246

    Article  Google Scholar 

  154. Lightcap IV, Kosel TH, Kamat PV (2010) Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. Storing and shuttling electrons with reduced graphene oxide. Nano Lett 10(2):577–583. https://doi.org/10.1021/nl9035109

    Article  Google Scholar 

  155. Pal S, Bawari S, Veettil Vineesh T, Shyaga N, Narayanan TN (2019) Selenium-coupled reduced graphene oxide as single-atom site catalyst for direct four-electron oxygen reduction reaction. ACS Appl Energy Mater 2(5):3624–3632. https://doi.org/10.1021/acsaem.9b00364

    Article  Google Scholar 

  156. Cheng Y, Zhao S, Li H, He S, Veder J-P, Johannessen B, Xiao J, Lu S, Pan J, Chisholm MF, Yang S-Z, Liu C, Chen JG, Jiang SP (2019) Unsaturated edge-anchored Ni single atoms on porous microwave exfoliated graphene oxide for electrochemical CO2. Appl Catal B Environ 243:294–303. https://doi.org/10.1016/j.apcatb.2018.10.046

    Article  Google Scholar 

  157. Akhavan O, Bijanzada K, Mirsepaha A (2014) Synthesis of graphene from natural and industrial carbonaceous wastes. RSC Adv 4:20441–20448. https://doi.org/10.1039/C4RA01550A

    Article  Google Scholar 

  158. Jia L, Dong L, Zhu L (2017) Stripping voltammetry at graphene oxide: the negative effect of carbonaceous debris. Appl Mater Today 8:26–30. https://doi.org/10.1016/j.apmt.2017.01.001

    Article  Google Scholar 

  159. Yang X, Li X, Ma X, Jia L, Zhu L (2014) Carbonaceous impurities contained in graphene oxide/reduced graphene oxide dominate their electrochemical capacitances. Electroanalysis 26(1):139–146. https://doi.org/10.1002/elan.201300128

    Article  Google Scholar 

  160. Mazánek V, Luxa J, Matějková S, Kučera J, Sedmidubský D, Pumera M, Sofer Z (2019) Ultrapure graphene is a poor electrocatalyst: definitive proof of the key role of metallic impurities in graphene-based electrocatalysis. ACS Nano 13(2):1574–1582. https://doi.org/10.1021/acsnano.8b07534

    Article  Google Scholar 

  161. Bhunia P, Kumar M, De S (2019) Rapid and efficient removal of ionic impurities from graphene oxide through hollow fiber diafiltration. Sep Purif Technol 209:103–111. https://doi.org/10.1016/j.seppur.2018.07.025

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the University of KwaZulu-Natal for supporting this work and providing the necessary research infrastructure.

Funding

This work is based on the research supported wholly by the National Research Foundation of South Africa (Grant Number: 116631) and in part (Grant Number: 115465).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin T. Mombeshora.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mombeshora, E.T., Stark, A. Graphene oxide applications in biorefinery catalysis to chemical commodities: critical review, prospects and challenges. Biomass Conv. Bioref. 13, 4619–4638 (2023). https://doi.org/10.1007/s13399-021-01499-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01499-6

Keywords

Navigation