Skip to main content

Advertisement

Log in

Techno-economic analysis of low moisture anhydrous ammonia (LMAA) pretreatment for butanol production from oil palm frond

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Cellulosic butanol production has been of interest because of the attractive properties of butanol as a fuel and its ability in environmental preservation. Biological pathway for butanol production is currently a subject of development efforts from various processing aspects. One crucial stage is the pretreatment process, which has considerably affected the production cost of butanol. There are some concerns regarding the overall effectiveness of the process, including high total energy and liquid requirement, and production of inhibitory compounds from the pretreatment process. Low-moisture anhydrous ammonia (LMAA) pretreatment, which requires less water, work at atmospheric conditions, and gives milder pretreatment intensity, was developed to solve these problems. In this study, the techno-economic analysis (TEA) of butanol production from oil palm fronds (OPF) was conducted. The simulation employed LMAA pretreatment, followed by ABE fermentation and downstream processing. The lowest butanol production cost was $ 2.11/L, which was recorded from 95.34 × 106 L butanol/y plant capacity. Detail analysis of each cost component revealed that operating costs contributing nearly 63% of the production cost with 24% and 17% contribution from utility and material costs, respectively. Optimization of process parameters estimated the potential of production cost reduction to lower than $ 1.65/L by an increase in the enzyme hydrolysis yield. The study aimed to provide data towards utilization effort of OPF, especially for butanol production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Visioli LJ, Enzweiler H, Kuhn RC, Schwaab M, Mazutti MA (2014) Recent advances on biobutanol production. Sustain Chem Process 2:15. https://doi.org/10.1186/2043-7129-2-15

    Article  Google Scholar 

  2. Morone A, Pandey RA (2014) Lignocellulosic biobutanol production: gridlocks and potential remedies. Renew Sustain Energy Rev 37. https://doi.org/10.1016/j.rser.2014.05.009

  3. Huang HJ, Ramaswamy S, Liu Y (2014) Separation and purification of biobutanol during bioconversion of biomass. Sep Purif Technol 132:513–540. https://doi.org/10.1016/j.seppur.2014.06.013

    Article  Google Scholar 

  4. Kurkijärvi AJ, Melin K, Lehtonen J (2016) Comparison of reactive distillation and dual extraction processes for the separation of acetone, butanol, and ethanol from fermentation broth. Ind Eng Chem Res 55:1952–1964. https://doi.org/10.1021/acs.iecr.5b03196

    Article  Google Scholar 

  5. Buakhiaw B, Sanguanchaipaiwong V (2017) Effect of media on acetone-butanol-ethanol fermentation by isolated Clostridium spp. Energy Procedia 138:864–869. https://doi.org/10.1016/j.egypro.2017.10.104

    Article  Google Scholar 

  6. Lane J (2018) The top 10 advances in renewable butanol: what’s speeding up, where are the slow-downs?, BiofuelDigest. http://www.biofuelsdigest.com/bdigest/2018/08/02/the-top-10-advances-in-renewable-butanol-whats-speeding-up-where-are-the-slow-downs/ (accessed April 10, 2019)

  7. EPA (2018) EPA registers isobutanol for blending into gasoline, fuels regist. Reporting, Compliance Help

  8. U.S.DOE (n.d.) Biobutanol, Altern. Fuels Data Cent. www.afdc.energy.gov (accessed October 18, 2019)

  9. Hoekman SK (2009) Biofuels in the U.S. - challenges and opportunities. Renew Energy 34:14–22. https://doi.org/10.1016/j.renene.2008.04.030

    Article  Google Scholar 

  10. Capodaglio AG, Bolognesi S (2019) Ecofuel feedstocks and their prospects. In: Adv. Eco-Fuels a Sustain. Environ. Liq. Biofuels, Woodhead Publishing Series in Energy, pp 15–51

  11. Baral NR, Slutzky L, Shah A, Ezeji TC, Cornish K, Christy A (2016) Acetone-butanol-ethanol fermentation of corn stover: current production methods, economic viability and commercial use. FEMS Microbiol Lett 363. https://doi.org/10.1093/femsle/fnw033

  12. Birgen C, Dürre P, Preisig HA, Wentzel A (2019) Butanol production from lignocellulosic biomass: revisiting fermentation performance indicators with exploratory data analysis. Biotechnol Biofuels 12:167. https://doi.org/10.1186/s13068-019-1508-6

    Article  Google Scholar 

  13. Kolesinska B, Fraczyk J, Binczarski M, Modelska M, Berlowska J, Dziugan P, Antolak H, Kaminski ZJ, Witonska IA, Kregiel D (2019) Butanol synthesis routes for biofuel production: trends and perspectives. Materials (Basel) 12:350. https://doi.org/10.3390/ma12030350

    Article  Google Scholar 

  14. Cao G, Sheng Y, Zhang L, Song J, Cong H, Zhang J (2016) Biobutanol production from lignocellulosic biomass: prospective and challenges. J Bioremediation Biodegrad 7:363. https://doi.org/10.4172/2155-6199.1000363

    Article  Google Scholar 

  15. Lee KT, Ofori-Boateng C (2013) Sustainability of biofuel production from oil palm biomass. Springer. https://doi.org/10.1007/978-981-4451-70-3

  16. Awalludin MF, Sulaiman O, Hashim R, Nadhari WNAW (2015) An overview of the oil palm industry in Malaysia and its waste utilization through thermochemical conversion, specifically via liquefaction. Renew Sust Energ Rev 50:1469–1484. https://doi.org/10.1016/j.rser.2015.05.085

    Article  Google Scholar 

  17. Goh CS, Tan KT, Lee KT, Bhatia S (2010) Bio-ethanol from lignocellulose: status, perspectives and challenges in Malaysia. Bioresour Technol 101:4834–4841. https://doi.org/10.1016/j.biortech.2009.08.080

    Article  Google Scholar 

  18. Khalil HPSA, Jawaid M, Hassan A, Paridah MT, Zaidon A (2012) Oil palm biomass fibres and recent advancement in oil palm biomass fibres based hybrid biocomposites. In: Compos Their Appl, pp 187–220. doi:https://doi.org/10.5772/48235

  19. Khalil HPSA, Alwani MS, Omar AKM (2006) Chemical composition, anatomy, lignin distribution, and cell wall structure of Malaysian plant waste fibers. BioResources 1:220–232. https://doi.org/10.15376/biores.1.2.220-232

    Article  Google Scholar 

  20. Karimi K, Tabatabaei M, Horváth IS, Kumar R (2015) Recent trends in acetone, butanol, and ethanol (ABE) production. Biofuel Res J 8:301–308. https://doi.org/10.18331/BRJ2015.2.4.4

    Article  Google Scholar 

  21. Jönsson LJ, Martín C (2016) Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol 199:103–112. https://doi.org/10.1016/j.biortech.2015.10.009

    Article  Google Scholar 

  22. Shuai L, Yang Q, Zhu JY, Lu FC, Weimer PJ, Ralph J, Pan XJ (2010) Comparative study of SPORL and dilute-acid pretreatments of spruce for cellulosic ethanol production. Bioresour Technol 101:3106–3114. https://doi.org/10.1016/j.biortech.2009.12.044

    Article  Google Scholar 

  23. Maiti S, Gallastegui G, Sarma SJ, Brar SK, Le Bihan Y, Drogui P, Buelna G, Verma M (2016) A re-look at the biochemical strategies to enhance butanol production. Biomass Bioenergy 94:187–200. https://doi.org/10.1016/j.biombioe.2016.09.001

    Article  Google Scholar 

  24. Yoo CG, Nghiem NP, Hicks KB, Kim TH (2011) Pretreatment of corn Stover using low-moisture anhydrous ammonia (LMAA) process. Bioresour Technol 102:10028–10034. https://doi.org/10.1016/j.biortech.2011.08.057

    Article  Google Scholar 

  25. Nghiem NP, Senske GE, Kim TH (2016) Pretreatment of corn stover by low moisture anhydrous ammonia (LMAA) in a pilot-scale reactor and bioconversion to fuel ethanol and industrial chemicals. Appl Biochem Biotechnol 179:111–125. https://doi.org/10.1007/s12010-016-1982-2

    Article  Google Scholar 

  26. Yang M, Rosentrater KA (2015) Techno-economic analysis (TEA) of low-moisture anhydrous ammonia (LMAA) pretreatment method for corn Stover. Ind Crop Prod 76:55–61. https://doi.org/10.1016/j.indcrop.2015.06.023

    Article  Google Scholar 

  27. Yang M, Rosentrater KA (2017) Small-scale low-moisture anhydrous ammonia (LMAA) pretreatment of corn stover. Biomass Bioenergy 97:38–42. https://doi.org/10.1016/j.biombioe.2016.12.013

    Article  Google Scholar 

  28. Cheng M, Rosentrater KA (2016) Optimization of low moisture anhydrous ammonia (LMAA) pretreatment for corn stover enzymatic digestibility during hydrolysis process, 2016 ASABE Int. Meet. doi:https://doi.org/10.13031/aim.20162459784

  29. Zhang W (2013) Analysis of properties to distillers dried grains with solubles (DDGS) and using destoner and low moisture anhydrous ammonia (LMAA) to utilize DDGS, Iowa State University

  30. Baral NR, Shah A (2016) Techno-economic analysis of cellulosic butanol production from corn stover through acetone-butanol-ethanol fermentation. Energy and Fuels 30:5779–5790. https://doi.org/10.1021/acs.energyfuels.6b00819

    Article  Google Scholar 

  31. Tao L, He X, Tan ECD, Zhang M, Aden A (2014) Comparative techno-economic analysis and reviews of n-butanol production from corn grain and corn stover, biofuels. Bioprod Biorefining 8:342–361. https://doi.org/10.1002/bbb

    Article  Google Scholar 

  32. Tao L, Tan ECD, Mccormick R, Zhang M, Aden A, He X, Zigler BT (2014) Techno-economic analysis and life-cycle assessment of cellulosic isobutanol and comparison with cellulosic ethanol and n-butanol, biofuels. Bioprod Biorefining 8:30–48. https://doi.org/10.1002/bbb.1431

    Article  Google Scholar 

  33. Baral NR, Shah A (2014) Microbial inhibitors: formation and effects on acetone-butanol-ethanol fermentation of lignocellulosic biomass. Appl Microbiol Biotechnol 98. https://doi.org/10.1007/s00253-014-6106-8

  34. Humbird D, Davis R, Tao L, Kinchin C, Hsu D, Aden A, Schoen P, Lukas J, lthof B, Worley M, Sexton D, Dudgeon D (2011) Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol: dilute-acid pretreatment and enzymatic hydrolysis of corn stover. doi:https://doi.org/10.2172/1013269

  35. Kim JS, Lee YY, Kim TH (2016) A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour Technol 199:42–48. https://doi.org/10.1016/j.biortech.2015.08.085

    Article  Google Scholar 

  36. (2016) Department of Agriculture Peninsular Malaysia, Industrial Crops Statistics

  37. Mahmud N (2019) Low moisture anhydrous ammonia (LMAA) pretreatment of lignocellulosic biomass and assessments for biobutanol production. Iowa State University

  38. McCullagh M, Greene J, Fanning C (1988) How to reduce your risk of injury from exposure to anhydrous ammonia, NDSU Ext. Serv. doi:https://doi.org/10.1021/ie50270a004

  39. Ezeji TC, Blaschek HP (2008) Fermentation of dried distillers’ grains and solubles (DDGS) hydrolysates to solvents and value-added products by solventogenic clostridia. Bioresour Technol 99:5232–5242. https://doi.org/10.1016/j.biortech.2007.09.032

    Article  Google Scholar 

  40. Triwahyuni E, Hariyanti S, Dahnum D, Nurdin M, Abimanyu H (2015) Optimization of Saccharification and fermentation process in bioethanol production from oil palm fronds. Procedia Chem 16:141–148. https://doi.org/10.1016/j.proche.2015.12.002

    Article  Google Scholar 

  41. Qureshi N, Ezeji TC, Ebener J, Dien BS, Cotta MA, Blaschek HP (2008) Butanol production by Clostridium beijerinckii. Part I: use of acid and enzyme hydrolyzed corn fiber. Bioresour Technol 99:5915–5922. https://doi.org/10.1016/j.biortech.2007.09.087

    Article  Google Scholar 

  42. Ezeji TC, Qureshi N, Blaschek HP (2013) Microbial production of a biofuel (acetone-butanol-ethanol) in a continuous bioreactor: impact of bleed and simultaneous product removal. Bioprocess Biosyst Eng 36:109–116. https://doi.org/10.1007/s00449-012-0766-5

    Article  Google Scholar 

  43. Ezeji TC, Qureshi N, Blaschek HP (2003) Production of acetone, butanol and ethanol by Clostridium beijerinckii BA101 and in situ recovery by gas stripping. World J Microbiol Biotechnol 19:595–603. https://doi.org/10.1023/A:1025103011923

    Article  Google Scholar 

  44. Sánchez-Ramírez E, Quiroz-Ramírez JJ, Segovia-Hernández JG, Hernández S, Bonilla-Petriciolet A (2015) Process alternatives for biobutanol purification: design and optimization. Ind Eng Chem Res 54:351–358. https://doi.org/10.1021/ie503975g

    Article  Google Scholar 

  45. Wu M, Wang M, Liu J, Huo H (2008) Assessment of potential life-cycle energy and greenhouse gas emission effects from using corn-based butanol as a transportation fuel. Biotechnol Prog 24:1204–1214. https://doi.org/10.1021/bp.71

    Article  Google Scholar 

  46. Hussin MH, Samad NA, Latif NHA, Rozuli NA, Yusoff SB, Gambier F, Brosse N (2018) Production of oil palm (Elaeis guineensis) fronds lignin-derived non-toxic aldehyde for eco-friendly wood adhesive. Int J Biol Macromol 113:1266–1272. https://doi.org/10.1016/j.ijbiomac.2018.03.048

    Article  Google Scholar 

  47. Demirbaş A (2005) Estimating of structural composition of wood and non-wood biomass samples. Energy Sources 27:761–767. https://doi.org/10.1080/00908310490450971

    Article  Google Scholar 

  48. Morvay ZK, Gvozdenac DD (2008) Applied industrial energy and environmental management. John Wiley & Sons, Ltd

  49. Ofori-Boateng C, Lee KT (2014) Ultrasonic-assisted simultaneous saccharification and fermentation of pretreated oil palm fronds for sustainable bioethanol production. Fuel. 119:285–291. https://doi.org/10.1016/j.fuel.2013.11.064

    Article  Google Scholar 

  50. Kumneadklang S, Larpkiattaworn S, Niyasom C, O-Thong S (2015) Bioethanol production from oil palm frond by simultaneous saccharification and fermentation. Energy Procedia 79:784–790. https://doi.org/10.1016/j.egypro.2015.11.567

    Article  Google Scholar 

  51. Sabiha-Hanim S, Noor MAM, Rosma A (2011) Effect of autohydrolysis and enzymatic treatment on oil palm (Elaeis guineensis Jacq.) frond fibres for xylose and xylooligosaccharides production. Bioresour Technol 102:1234–1239. https://doi.org/10.1016/j.biortech.2010.08.017

    Article  Google Scholar 

  52. Jung YH, Kim S, Yang TH, Lee HJ, Seung D, Park Y-C, Seo J-H, Choi I-G, Kim KH (2012) Aqueous ammonia pretreatment, saccharification, and fermentation evaluation of oil palm fronds for ethanol production. Bioprocess Biosyst Eng 35:1497–1503. https://doi.org/10.1007/s00449-012-0739-8

    Article  Google Scholar 

  53. Tan JP, Jahim JM, Wu TY, Harun S, Mumtaz T (2016) Use of corn steep liquor as an economical nitrogen source for biosuccinic acid production by Actinobacillus succinogenes. IOP Conf Ser Earth Environ Sci 36:012058. https://doi.org/10.1088/1755-1315/36/1/012058

    Article  Google Scholar 

  54. Nurul-Adela B, Nasrin AB, Loh SK (2016) Palm oil mill effluent as a low-cost substrate for bioflocculant production by Bacillus marisflavi NA8. Bioresour Bioprocess 3:20–28. https://doi.org/10.1186/s40643-016-0096-6

    Article  Google Scholar 

  55. (2008) Richardson, Richardson International Construction Factors Manual™, Pahrump, NV

  56. Brown RC, Brown TR (2014) Economics of biorenewable resources. In: Biorenewable Resour. Eng. New Prod. from Agric. Second Ed., John Wiley & Sons, Inc. pp 287–326

  57. Heinzle E, Biwer AP, Cooney CL (2006) Development of sustainable bioprocesses: modelling and assessment. John Wiley & Sons, Ltd

  58. Kazi FK, Fortman JA, Anex RP, Hsu DD, Aden A, Dutta A, Kothandaraman G (2010) Techno-economic comparison of process technologies for biochemical ethanol production from corn Stover. Fuel. 89:S20–S28. https://doi.org/10.1016/j.fuel.2010.01.001

    Article  Google Scholar 

  59. Haigh KF, Petersen AM, Gottumukkala L, Mandegari M, Naleli K, Görgens JF (2018) Simulation and comparison of processes for biobutanol production from lignocellulose via ABE fermentation, biofuels. Bioprod Biorefining 12:1023–1036. https://doi.org/10.1002/bbb.1917

    Article  Google Scholar 

  60. Crawford JT, Shan CW, Budsberg E, Morgan H, Bura R, Gustafson R (2016) Hydrocarbon bio-jet fuel from bioconversion of poplar biomass: techno-economic assessment. Biotechnol Biofuels 9:141. https://doi.org/10.1186/s13068-016-0545-7

    Article  Google Scholar 

  61. da Silva ARG, Torres Ortega CE, Rong BG (2016) Techno-economic analysis of different pretreatment processes for lignocellulosic-based bioethanol production. Bioresour Technol 218:561–570. https://doi.org/10.1016/j.biortech.2016.07.007

    Article  Google Scholar 

Download references

Acknowledgments

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors, and the authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt A. Rosentrater.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmud, N., Rosentrater, K.A. Techno-economic analysis of low moisture anhydrous ammonia (LMAA) pretreatment for butanol production from oil palm frond. Biomass Conv. Bioref. 12, 3603–3617 (2022). https://doi.org/10.1007/s13399-019-00564-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-019-00564-5

Keywords

Navigation