Skip to main content
Log in

Fractional Hamiltonian type system on \(\mathbb R\) with critical growth nonlinearity

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Aims and scope Submit manuscript

Abstract

This article investigates the existence and properties of ground state solutions to the following nonlocal Hamiltonian elliptic system:

$$\begin{aligned} {\left\{ \begin{array}{ll} (-\Delta )^\frac{1}{2} u +V_0 u =g(v),~x\in \mathbb R\\ (-\Delta )^\frac{1}{2} v +V_0 v =f(u),~x\in \mathbb R, \end{array}\right. } \end{aligned}$$

where \((-\Delta )^\frac{1}{2}\) is the square root Laplacian operator, \(V_0 >0\) and f,  g have critical exponential growth in \(\mathbb R\). Using minimization technique over some generalized Nehari manifold, we show that the set \(\mathcal S\) of ground state solutions is non empty. Moreover for \((u,v) \in \mathcal S\), u,  v are uniformly bounded in \(L^\infty (\mathbb R)\) and uniformly decaying at infinity. We also show that the set \(\mathcal S\) is compact in \(H^\frac{1}{2}(\mathbb R) \times H^\frac{1}{2}(\mathbb R)\) up to translations. Furthermore under locally lipschitz continuity of f and g we obtain a suitable Pohožaev type identity for any \((u,v) \in \mathcal S\). We deduce the existence of semi-classical ground state solutions to the singularly perturbed system

$$\begin{aligned} {\left\{ \begin{array}{ll} \epsilon (-\Delta )^\frac{1}{2} \varphi +V(x) \varphi =g(\psi ),~x\in \mathbb R\\ \epsilon (-\Delta )^\frac{1}{2} \psi +V(x) \psi =f(\varphi ),~x\in \mathbb R, \end{array}\right. } \end{aligned}$$

where \(\epsilon >0\) and \(V \in C(\mathbb R)\) satisfy the assumption (V) given below (see Sect. 1). Finally as \(\epsilon \rightarrow 0\), we prove the existence of minimal energy solutions which concentrate around the closest minima of the potential V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves, C.O., Do Ó, J.M., Miyagaki, O.H.: Concentration phenomena for fractional elliptic equations involving exponential critical growth. Adv. Nonlinear Stud. 16(4), 843–861 (2016)

  2. Ambrosio, V.: Concentration phenomena for critical fractional Schrödinger systems. Commun. Pure Appl. Anal. 17(5), 2085–2123 (2018)

    Article  MathSciNet  Google Scholar 

  3. Benci, V., Fortunato, D.: Variational Methods in Nonlinear Field Equations, Springer Monographs in Mathematics. Springer, Basel (2014)

    Book  Google Scholar 

  4. Benci, V., Rabinowitz, P.H.: Critical point theorems for indefinite functionals. Invent. Math. 52(3), 241–273 (1979)

    Article  MathSciNet  Google Scholar 

  5. Brasco, L., Lindgren, E., Parini, E.: The fractional Cheeger problem. Interfaces Free Bound. 16, 419–458 (2014)

    Article  MathSciNet  Google Scholar 

  6. Brasco, L., Mosconi, S., Squassina, M.: Pohožaev identity for the fractional \(p\)-Laplacian on \({\mathbb{R}}^n\). http://cvgmt.sns.it/media/doc/paper/3292/BMS-GlobalPohozaev.pdf

  7. Bueno, H.P., Caqui, E.H., Miyagaki, O.H.: Critical fractional elliptic equations with exponential growth. J. Elliptic Parabol. Equ. 7, 75–99 (2021)

    Article  MathSciNet  Google Scholar 

  8. Caffarelli, L.A.: Nonlocal equations, drifts and games. Nonlinear Partial Differ. Equa. Abel Symp. 7, 37–52 (2012)

    Article  Google Scholar 

  9. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32, 1245–1260 (2007)

    Article  MathSciNet  Google Scholar 

  10. Cassani, D., Zhang, J.: A priori estimates and positivity for semiclassical ground states for systems of critical Schrödinger equations in dimension two. Commun. Partial Differ. Equ. 42(5), 655–702 (2017)

    Article  Google Scholar 

  11. Chen, W., Deng, S.: The Nehari manifold for a fractional \(p\)-Laplacian system involving concave convex nonlinearities. Nonlinear Anal. Real World Appl. 27, 80–92 (2016)

    Article  MathSciNet  Google Scholar 

  12. Clément, P., de Figueiredo, D.G., Mitidieri, E.: Positive solutions of semilinear elliptic systems. Commun. Partial Differ. Equ. 17(5–6), 923–940 (1992)

    Article  MathSciNet  Google Scholar 

  13. Costa, A.C.R., Maia, B.B.V., Miyagaki, O.H.: On existence and concentration of solutions for Hamiltonian systems involving fractional operator with critical exponential growth. Math. Nachr. 295, 1–33 (2022)

    Article  MathSciNet  Google Scholar 

  14. de Albuquerque, J.C., Do Ó, J.M.: Coupled elliptic systems involving the square root of the Laplacian and Trudinger–Moser critical growth. Differ. Integr. Equ. 31(5/6), 403–434 (2018)

  15. de Figueiredo, D.G., Do Ó, J.M., Ruf, B.: Critical and subcritical elliptic systems in dimension two. Indiana Univ. Math. J. 53, 1037–1054 (2004)

  16. de Figueiredo, D.G., Do Ó, J.M., Zhang, J.: Ground state solutions of Hamiltonian system in dimension two. Proc. R. Soc. Edinburg Sect. A 150(4), 1737–1768 (2020)

  17. de Figueiredo, D.G., Felmer, P.L.: On superquadratic elliptic systems. Trans. Am. Math. Soc. 343(1), 99–116 (1994)

    Article  MathSciNet  Google Scholar 

  18. Do Ó, J.M., Giacomoni, J., Mishra, P.K.: Nonautonomous fractional Hamiltonian system with critical exponential growth. Nonlinear Differ. Equ. Appl. 26, 1–25 (2019)

  19. de Souza, M., Do Ó, J.M.: Hamiltonian elliptic systems in \({\mathbb{R}}^2\) with subcritical and critical exponential growth. Ann. Mat. 195, 935–956 (2016)

  20. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s Guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

    Article  MathSciNet  Google Scholar 

  21. Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

    Article  MathSciNet  Google Scholar 

  22. Giacomoni, J., Mishra, P., Sreenadh, K.: Critical growth fractional systems with exponential nonlinearity. Nonlinear Anal. 136, 117–135 (2016)

    Article  MathSciNet  Google Scholar 

  23. Giacomoni, J., Mishra, P., Sreenadh, K.: Critical growth problems for \(\frac{1}{2}\)- Laplacian in \({\mathbb{R} }\). Differ. Equ. Appl. 8(3), 295–317 (2016)

    MathSciNet  Google Scholar 

  24. He, X., Squassina, M., Zou, W.: The Nehari manifold for fractional systems involving critical nonlinearites. Commun. Pure Appl. Anal. 15(4), 1286–1308 (2016)

    Article  Google Scholar 

  25. Hulshof, J., van der Vorst, R.: Differential systems with strongly indefinite variational structure. J. Funct. Anal. 114(1), 32–58 (1993)

    Article  MathSciNet  Google Scholar 

  26. Iannizzotto, A., Squassina, M.: \(1/2\)-Laplacian problems with exponential nonlinearity. J. Math. Anal. Appl. 414, 372–385 (2014)

    Article  MathSciNet  Google Scholar 

  27. Iula, S., Maalaoui, A., Martinazzi, L.: A fractional Moser–Trudinger type inequality in one dimension and its critical points. Differ. Integr. Equ. 29(5–6), 455–492 (2016)

    MathSciNet  Google Scholar 

  28. Lam, N., Lu, G.: Elliptic equations and systems with subcritical and critical exponential growth without the Ambrosetti–Rabinowitz condition. J. Geom. Anal. 24(1), 118–143 (2014)

    Article  MathSciNet  Google Scholar 

  29. Li, G., Yang, J.: Asymptotically linear elliptic systems. Commun. Partial Differ. Equ. 29(5–6), 925–954 (2004)

    Article  MathSciNet  Google Scholar 

  30. Lions, P.L.: The concentration-compactness principle in the calculus of variations, the locally compact case, parts I and II. Ann. Inst. H. Poincaré Anal. Non Linéaire 1(2), 109–145 (1984)

    Article  MathSciNet  Google Scholar 

  31. Mengesha, T., Schikorra, A., Yeepo, S.: Calderon–Zygmund type estimates for nonlocal PDE with Hölder continuous kernel. Adv. Math. 383, 107692 (2021)

    Article  Google Scholar 

  32. Ozawa, T.: On critical cases of Sobolev’s inequalities. J. Funct. Anal. 127, 259–269 (1995)

    Article  MathSciNet  Google Scholar 

  33. Pankov, A.: Periodic nonlinear Schrödinger equation with application to photonic crystals. Milan J. Math. 73, 259–287 (2005)

    Article  MathSciNet  Google Scholar 

  34. Qin, D., Tang, X., Zhang, J.: Ground states for planar Hamiltonian elliptic systems with critical exponential growth. J. Differ. Equ. 308, 130–159 (2022)

    Article  MathSciNet  Google Scholar 

  35. Sirakov, B.: On the existence of solutions of Hamiltonian elliptic systems in \({\mathbb{R} }^n\). Adv. Differ. Equ. 5(10–12), 1445–1464 (2000)

    Google Scholar 

  36. Sirakov, B., Soares, S.H.M.: Soliton solutions to systems of coupled Schrödinger equations of Hamiltonian type. Trans. Am. Math. Soc. 362(11), 5729–5744 (2010)

    Article  Google Scholar 

  37. Szulkin, A., Weth, T.: The method of Nehari manifold. In: Gao, D.Y., Motreanu, D. (eds.) Handbook of Nonconvex Analysis and Applications, pp. 597–632. International Press, Boston (2010)

    Google Scholar 

  38. Zhang, J., Do Ó, J.M., Squassina, M.: Fractional Schrödinger–Poisson systems with a general subcritical or critical nonlinearity. Adv. Nonlinear Stud. 16(1), 15–30 (2016)

Download references

Acknowledgements

G. C. Anthal thanks the CSIR(India) for financial support in the form of a Senior Research Fellowship, Grant Number 09/086(1406)/2019-EMR-I. J. M. Do Ó is partially funded by IFCAM (Indo-French Centre for Applied Mathematics) IRL CNRS 3494. We thank the anonymous referee for a careful reading of our manuscript and valuable comments that help us to improve the quality of our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Giacomoni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anthal, G.C., Do Ó, J.M., Giacomoni, J. et al. Fractional Hamiltonian type system on \(\mathbb R\) with critical growth nonlinearity. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 118, 12 (2024). https://doi.org/10.1007/s13398-023-01511-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-023-01511-w

Keywords

Mathematics Subject Classification

Navigation