Skip to main content
Log in

Piezoelectric Flexible LCP–PZT Composites for Sensor Applications at Elevated Temperatures

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

In this paper fabrication of piezoelectric ceramic–polymer composites is demonstrated via filament extrusion enabling cost-efficient large-scale production of highly bendable pressure sensors feasible for elevated temperatures. These composites are fabricated by utilizing environmentally resistant and stable liquid crystal polymer matrix with addition of lead zirconate titanate at loading levels of 30 vol%. These composites, of approximately 0.99 mm thick and length of  > 50 cm, achieved excellent bendability with minimum bending radius of ~ 6.6 cm. The maximum piezoelectric coefficients d33 and g33 of the composites were > 14 pC/N and > 108 mVm/N at pressure < 10 kPa. In all cases, the piezoelectric charge coefficient (d33) of the composites decreased as a function of pressure. Also, piezoelectric coefficient (d33) further decreased in the case of increased frequency press-release cycle sand pre-stress levels by approximately 37–50%. However, the obtained results provide tools for fabricating novel piezoelectric sensors in highly efficient way for environments with elevated temperatures.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wang, Xin, Jiang, Man, Zhou, Zuowan, Gou, Jihue, Hui, David: 3D printing of polymer matrix composites: a review and prospective. Compos. Part B 110, 442–458 (2017). https://doi.org/10.1016/j.compositesb.2016.11.034

    Article  Google Scholar 

  2. Leigh, S.J., Bradley, R.J., Purssell, C.P., Billson, D.R., Hutchins, D.A.: a simple, low-cost conductive composite material for 3D printing of electronic sensors. PLoS ONE 7(11), e49365 (2012)

    Article  Google Scholar 

  3. Isokov, D.V., Lei, Q., Castles, F., Stevens, C.J., Grovenor, C.R.M., Grant, P.S.: 3D printed anisotropic dielectric composite with meta-material features. Mater. Des. 93, 423–430 (2016). https://doi.org/10.1016/j.matdes.2015.12.176

    Article  Google Scholar 

  4. Carriro, J.D., Traeden, N.W., Aureli, M., Leang, K.K.: Fused filament 3D printing of ionic polymer-metal composites (IPMCs). Smart Mater. Struct. 24, 125021 (2015). https://doi.org/10.1088/0964-1726/24/12/125021

    Article  Google Scholar 

  5. Tekinalp, H.L., Kunc, V., Velez-Garcia, G.M., Duty, C.E., Love, L.J., Naskar, A.K., Blue, C.A., Ozcan, S.: Highly oriented carbon fiber-polymer composites via additive manufacturing. Compos. Sci. Technol 105, 144–150 (2014). https://doi.org/10.1016/j.compscitech.2014.10.009

    Article  Google Scholar 

  6. Wang, Y., Castles, F., Grant, P.S.: 3D printing of NiZn ferrite/ABS magnetic composites for electromagnetic devices. Mater. Res. Soc. Symp. Proc. (2015). https://doi.org/10.1557/opl.2015.661

    Google Scholar 

  7. Castles, F., Isakov, D., Lui, A., Lei, Q., Dancer, C.E.J., Wang, Y., Januruding, J.M., Speller, S.C., Grovenor, C.R.M., Grant, P.S.: Microwave dielectric characterization of 3D-printed BaTiO3/ABS polymer composites. Sci. Rep. 6, 22714 (2016). https://doi.org/10.1038/srep22714

    Article  Google Scholar 

  8. Castro, J., Rojas, E., Ross, A., Weller, T., Wang, J.: High-k and low-loss thermoplastic composites for fused deposition modeling and their application to 3D-Printed Ku-band antennas, microwave symposium. IEEE MTT-S Int (2016). https://doi.org/10.1109/MWSYM.2016.7540068

    Google Scholar 

  9. Ferreira, A., Ferreira, F., Paiva, C.: Textile sensor applications with composite monofilaments or polymer/carbon nanotubes. Adv. Sci. Technol. 80, 65–70 (2012). https://doi.org/10.4028/www.scientific.net/AST.80.65

    Article  Google Scholar 

  10. Matsuzaki, R., Ueda, M., Namiki, M., Jeong, T.-K., Asahara, H., Horiguchi, K., Nakamura, T., Todoroki, A., Hirona, Y.: Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation. Sci. Rep. 6, 23058 (2016). https://doi.org/10.1038/srep23058

    Article  Google Scholar 

  11. Kim, Kanguk, Zhu, Wei, Xin, Qu, Aaronson, Chase, McCall, William R., Chen, Shaochen, Sirbuly, Donald J.: 3D optical printing of piezoelectric nanoparticle—polymer composite materials. ACS Nano 8(10), 9799–9806 (2014). https://doi.org/10.1021/nn503268f

    Article  Google Scholar 

  12. Jain, A., Prashanth, K.J., Sharma, A.K., Jain, A., Rashmi, P.N.: Dielectric and piezoelectric properties of PVDF/PZT Composites: a review. Polym. Eng. Sci. 55(7), 1589–1616 (2015). https://doi.org/10.1002/pen.24088/

    Article  Google Scholar 

  13. Volkan, K., Ibrahim, Ç., Timucin, M.: Dielectric and piezoelectric properties of PZT ceramics doped with strontium and lanthanum. Ceram. Int. 37(4), 1265–1275 (2011). https://doi.org/10.1016/j.ceramint.2010.12.003

    Article  Google Scholar 

  14. Kechiche, M.B., Bauer, F., Harzallah, O., Drean, J.-Y.: Development of piezoelectric coaxial filament sensors P(VDF-TrFE)/copper for textile structure instrumentation. Sens. Actuators A 204, 124–130 (2013). https://doi.org/10.1016/j.sna.2013.10.007

    Article  Google Scholar 

  15. Martins, R.S., Goncalves, R., Azevedo, T., Rocha, J.G., Nóbrega, J.M., Carvalho, H., Lanceros-Mendez, S.: Piezoelectric coaxial filament produced by coextrusion of poly(vinylidene fluoride) and electrically conductive inner and outer layers. J. Appl. Polym. Sci. (2014). https://doi.org/10.1002/app.40710

    Google Scholar 

  16. Bayramol, D.V.: Effects of tourmaline on the voltage response of PVDF filaments. Ind. Text. 68, 47–53 (2017)

    Google Scholar 

  17. Porter, D., Hoang, T., Berfield, T.: Effects of in situ poling and process parameters on fused filament fabrication printed PVDF sheet mechanical and electrical properties. Addit. Manuf. 13, 81–92 (2017)

    Article  Google Scholar 

  18. Ferroperm: High Quality Components and Materials for the Electronic Industry. http://www.ferroperm-piezo.com/files/files/Ferroperm%20Catalogue.pdf

  19. Elmore, T.: Instruction and Assembly Manual for Filastruder. http://www.soliforum.com/topic/2036/filastruder-documentation-and-cadstl-files/

  20. Tolvanen, J., Hannu, J., Nelo, M., Juuti, J., Jantunen, H.: Dielectric properties of novel polyurethane-PZT-graphite foam composites. Smart Mater. Struct. 25, 095039 (2016)

    Article  Google Scholar 

  21. Sharma, N.D., Maranganti, R., Sharma, P.: On the possibility of piezoelectric nanocomposites without using piezoelectric materials. J. Mech. Phys. Solids 55(11), 2328–2350 (2007). https://doi.org/10.1016/j.jmps.2007.03.016

    Article  Google Scholar 

  22. Chu, B., Salem, D.R.: Flexoelectricity in several thermoplastic and thermosetting polymers. Appl. Phys. Lett. 101, 103905 (2012). https://doi.org/10.1063/1.4750064

    Article  Google Scholar 

  23. Jaitanong, N., Yimnirun, R., Zeng, H.R., Li, G.R., Yin, Q.R., Chaipanich, A.: Piezoelectric properties of cement based PVDF/PZT composites. Mater. Lett. 130, 146–149 (2014)

    Article  Google Scholar 

  24. Li, Z., Gong, H., Zhang, Y.: Fabrication and piezoelectricity of 0-3 cement based composite with nano-PZT powder. Curr. Appl. Phys. 9, 588–591 (2009)

    Article  Google Scholar 

  25. Chaipanich, A.: Effect of PZT particle size on dielectric and piezoelectric properties of PZT-cement composites. Curr. Appl. Phys. 7, 574–577 (2007)

    Article  Google Scholar 

  26. Guan, X., Zhang, Y., Li, H., Ou, J.: PZT/PVDF composites doped with carbon nanotubes. Sens. Actuator A-Phys. 194, 228–231 (2013)

    Article  Google Scholar 

  27. Babu, I., de With, G.: Highly flexible piezoelectric 0-3 PZT-PDMS composites with high filler content. Compos. Sci. Technol. 91, 91–97 (2014)

    Article  Google Scholar 

  28. Kirkpatrick, M., Tarbutton, J., Le, T., Lee, C.: Characterization of 3D printed piezoelectric sensors: determination of d33 piezoelectric coefficient for 3D printed polyvinylidene fluoride sensors. Sensors (2016). https://doi.org/10.1109/ICSENS.2016.7808876

    Google Scholar 

Download references

Acknowledgements

Financial support of the Hybrid materials project (2105/31/2013) of Tekes program of the Finnish Metals and Engineering Competence Cluster (FIMECC Ltd) is gratefully acknowledged. Author J.J. acknowledges the funding of the Academy of Finland (project numbers 267573). Author JT was supported by Riitta and Jorma J. Takanen Foundation, Walter Ahlström Foundation, Tauno Tönning Foundation, and Finnish Foundation for Technology Promotion. Also, authors would like to acknowledgment Dr. Maciej Sobocinski for introducing the filament extruding technique and Dr. Mikko Nelo for helping to find possible solutions to fabricate filaments with higher PZT loadings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarkko Tolvanen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tolvanen, J., Hannu, J., Juuti, J. et al. Piezoelectric Flexible LCP–PZT Composites for Sensor Applications at Elevated Temperatures. Electron. Mater. Lett. 14, 113–123 (2018). https://doi.org/10.1007/s13391-018-0027-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-018-0027-0

Keywords

Navigation