Skip to main content
Log in

ZrO2/MoS2 heterojunction photocatalysts for efficient photocatalytic degradation of methyl orange

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

We report a simple solution-chemistry approach for the synthesis of ZrO2/MoS2 hybrid photocatalysts, which contain MoS2 as a cocatalyst. The material is usually obtained by a wet chemical method using ZrO(NO3)2 or (NH4)6Mo7O24·4H2O and C8H6S as precursors. The structural features of obtained materials were characterized by X-ray diffraction (XRD), highresolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), thermal analysis (TG-DTA), N2 adsorption-desorption, and photoluminescence (PL). The influence on the photocatalytic activity of the MoS2 cocatalyst concentration with ZrO2 nanoparticles was studied. The MZr-2 hybrid sample had the highest photocatalytic activity for the degradation of methyl orange (MO), which was 8.45 times higher than that of pristine ZrO2 ascribed to high specific surface area and absorbance efficiency. Recycling experiments revealed that the reusability of the MZr-2 hybrid was due to the low photocorrosive effect and good catalytic stability. PL spectra confirmed the electronic interaction between ZrO2 and MoS2. The photoinduced electrons could be easily transferred from CB of ZrO2 to the MoS2 cocatalyst, which facilitate effective charge separation and enhanced the photocatalytic degradation in the UV region. A photocatalytic mechanism is proposed. It is believed that the ZrO2/MoS2 hybrid structure has promise as a photocatalyst with low cost and high efficiency for photoreactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Elaziouti, N. Laouedj, A. Bekka, and R. Vannier, J. King Saud Univ. Sci. 27, 120 (2015).

    Article  Google Scholar 

  2. F. Chen, W. Zou, W. Qu, and J. Zhang, Catal. Commun. 10, 1510 (2009).

    Article  Google Scholar 

  3. J. Wang, H. Fan, and H. Yu, Optik 127, 580 (2016).

    Article  Google Scholar 

  4. J. Liu, S. Yang, W. Wu, Q. Tian, S. Cui, Z. Dai, F. Ren, X. Xiao, and C. Jiang, ACS Sustainable Chem. Eng. 3, 2975 (2015).

  5. E. Abdelkader, L. Nadjia, B. Naceur, and B. Noureddine, J. Alloy. Compd. 679, 408 (2016).

    Article  Google Scholar 

  6. R. Singh, B. Pal, and W. Bun, J. Mol. Catal. A: Chem. 396, 15 (2015).

    Article  Google Scholar 

  7. S. V. P. Vattikuti, C. Byon, and C. V. Reddy, Superlattice. Microst. 85, 124 (2015).

    Article  Google Scholar 

  8. R. Khaparde and S. Acharya, Spectrochim. Acta Mol. Biomol. Spectros. 163, 49 (2016).

    Article  Google Scholar 

  9. S. V. P. Vattikuti, C. Byon, and V. Chitturi, Superlattice. Microst. 94, 39 (2016).

    Article  Google Scholar 

  10. A. Kudo and Y. Miseki, Chem. Soc. Rev. 38, 253 (2009).

    Article  Google Scholar 

  11. E. P. Melian, C. R. Lopez, A. O. Mendez, O. G. Diaz, M. N. Suarez, J. M. D. Rodriguez, J. A. Navio, and D. F. Hevia, Int. J. Hydrog. Energy 38, 11737 (2013).

    Article  Google Scholar 

  12. J. H. Yang, D. G. Wang, H. X. Han, and C. Li, Acc. Chem. Res. 46, 1900 (2013).

    Article  Google Scholar 

  13. J. H. Yang, H. J. Yan, X. L. Wang, F. Y. Wen, Z. J. Wang, D. Y. Fan, J. Y. Shi, and C. Li, J. Catal. 290, 151 (2012).

    Article  Google Scholar 

  14. C. Karunakaran, R. Dhanalakshmi, and P. Gomathisankar, Spectrochimica Acta Part A 92, 201 (2012).

    Article  Google Scholar 

  15. T. Sreethawong, S. Ngamsinlapasathian, and S. Yoshikawa, Chem. Eng. J. 228, 256 (2013).

    Article  Google Scholar 

  16. S. N. Basahel, T. T. Ali1, M. Mokhtar, and K. Narasimharao, Nanoscale Res. Lett. 10, 1 (2015).

    Article  Google Scholar 

  17. I. Fechete, Y. Wang, and J. C. Védrine, Catal. Today 189, 2 (2012).

    Article  Google Scholar 

  18. S. Polisetti, P. A. Deshpande, and G. Madras, Ind. Eng. Chem. Res. 50, 12915 (2011).

    Article  Google Scholar 

  19. A. Kambur, G. S. Pozan, and I. Boz, Appl. Catal. B: Environ. 115-116, 149 (2012).

    Article  Google Scholar 

  20. X. Wang, B. Zhai, M. Yang, W. Han, and X. Shao, Mater. Lett. 112, 90 (2013).

    Article  Google Scholar 

  21. S. Farhadi and S. Sepahvand, J. Mol. Catal. A: Chem. 318, 1-2, 75 (2010).

    Article  Google Scholar 

  22. H. R. Pouretedal, Z. Tofangsazi, and M. H. Keshavarz, J. Alloy. Compd. 513, 359 (2012).

    Article  Google Scholar 

  23. K. Vignesh, R. Priyanka, M. Rajarajan, and A. Suganthi, Mater. Sci. Eng: B 178, 149 (2013)

    Article  Google Scholar 

  24. X. Qu, Y. Guo, and C. Hu, J. Mol. Catal. A: Chem. 262, 128 (2007).

    Article  Google Scholar 

  25. J. A. Navío, G. Colón, M. Macías, P. J. Sánchez-Soto, V. Augugliaro, and L. Palmisano, J. Mol. Catal. A: Chem. 109, 239 (1996).

    Article  Google Scholar 

  26. L. Ye, H. Xu, D. Zhang, and S. Chen, Mater. Res. Bull. 55, 221 (2014).

    Article  Google Scholar 

  27. B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jorgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, and J. K. Norskov, J. Am. Chem. Soc. 127, 5308 (2005).

    Article  Google Scholar 

  28. J. Xu and X. Cao, Chem. Eng. J. 260, 642 (2015).

    Article  Google Scholar 

  29. G. Chen, D. Li, F. Li, Y. Fan, H. Zhao, Y. Luo, R. Yu, and Q. Meng, Appl. Catal. A-Gen 443, 138 (2012).

    Article  Google Scholar 

  30. K. Hu, X. Hu, Y. Xu, and J. Sun, J. Mater. Sci., 45, 2640 (2010).

    Article  Google Scholar 

  31. F. A. Frame and F. E. Osterloh, J. Phys. Chem. C 114 (2010).

    Google Scholar 

  32. S. Chen, Y. Zhang, W. Han, D. Wellburn, J. Liang, and C. Liu, Appl. Surf. Sci. 283, 422 (2013).

    Article  Google Scholar 

  33. Z. Matusinovic, R. Shukla, E. Manias, C. G. Hogshead, and C. A. Wilkie, Polym. Degrad. Stab. 97, 2481 (2012).

    Article  Google Scholar 

  34. N. Li, B. Dong, W. Yuan, Y. Gao, L. Zheng, and Y. Huang, J. Dispersion Sci. Technol. 28, 1030 (2007).

    Article  Google Scholar 

  35. S. G. Botta, J. A. Navio, M. C. Hidalgo, G. M. Restrepo, and M. I. Litter, J. Photochem. Photobiol. A Chem. 129, 89 (1999).

    Article  Google Scholar 

  36. J. Zhao, X. Wang, L. Zhang, X. Hou, Y. Li, and C. Tang, J. Hazard. Mater. 188, 231 (2011).

    Article  Google Scholar 

  37. Z. Shu, X. Jiao, and D. Chen, Cryst. Eng. Comm. 15, 4288 (2013).

    Article  Google Scholar 

  38. K. H. Hu, X. G. Hu, Y. F. Xu, and X. Z. Pan, Reac. Kinet. Mech. Cat. 100, 153 (2010).

    Google Scholar 

  39. W. Peng and X. Li, Catal. Commun. 49, 63 (2014).

    Article  Google Scholar 

  40. T. Yuming, G. Lei, W. Kaiyue, and C. Yuesheng, Mater. Charact. 87, 70 (2014).

    Article  Google Scholar 

  41. D. H. Jiang, W. Zhou, X. H. Zhong, Y. G. Zhang, and X. H. Li, ACS Appl. Mater. Inter. 6, 10958 (2014).

    Article  Google Scholar 

  42. A. K. Singh, V. Viswanath, and V. C. Janu, J. Lumin. 129, 874 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Surya Veerendra Prabhakar Vattikuti, Chan Byon or Chandragiri Venkata Reddy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prabhakar Vattikuti, S.V., Byon, C. & Reddy, C.V. ZrO2/MoS2 heterojunction photocatalysts for efficient photocatalytic degradation of methyl orange. Electron. Mater. Lett. 12, 812–823 (2016). https://doi.org/10.1007/s13391-016-6267-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-016-6267-y

Keywords

Navigation