Skip to main content
Log in

Studies on RF magnetron sputtered HfO2 thin films for microelectronic applications

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

We investigated the effect of oxygen flow rate during the reactive magnetron sputtering on the compositional, structural, optical and electrical properties of HfO2 films. We also studied the influence of annealing temperature on the structural and electrical properties of optimized HfO2 films of 25 to 30 nm thick. X-ray photoelectron study reveals that the films deposited at 15 SCCM of oxygen flow rate are stoichiometric and have an optical band gap of 5.86 eV. X-ray diffraction indicates that films without oxygen flow are amorphous, and beyond an oxygen flow rate of 5 SCCM exhibit polycrystalline monoclinic structure. At an annealing temperature of 600℃, tetragonal phase was observed besides the monoclinic phase. The dielectric constant of 11 and low leakage currents of 1 × 10−7 A/cm2 were achieved for the stoichiometric films. As-deposited films show significant frequency dispersion due to the presence of defect states at the HfO2/Si interface, and it reduces after annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys. 89, 5243 (2001).

    Article  Google Scholar 

  2. J. Robertson, Rep. Prog. Phys. 69, 327 (2006).

    Article  Google Scholar 

  3. G. He, L. Zhu, Z. Sun, Q. Wan, and L. Zhang, Prog. Mater. Sci. 56, 475 (2011).

    Article  Google Scholar 

  4. L. Pereira, P. Branquinha, E. Fortunato, R. Martins, D. Kang, C. J. Kim, H. Lim, I. Song, and Y. Park, Thin Solid Films 516, 1544 (2008).

    Article  Google Scholar 

  5. B. H. Lee, L. Kang, R. Nieh, W. J. Qi, and J. C. Lee, Appl. Phys. Lett. 76, 1926 (2000).

    Article  Google Scholar 

  6. A. Domanowska, M. Miczek, R. Ucka, M. Matys, B. Adamowicz, J. Zywicki, A. Taube, K. Korwin-Mikke, S. Gieraltowska, and M. Sochacki, Appl. Surf. Sci. 258, 8354 (2012).

    Article  Google Scholar 

  7. A. Taube, S. Gieraltowska, T. Gutt, T. Malachowski, I. Pasternak, T. Woj-ciechowski, W. Rzodkiewicz, M. Sawicki, and A. Piotrowska, Acta Phys. Pol. A 119, 696 (2011).

    Google Scholar 

  8. A. Tarasov, M. Wip, R. L. Stoop, K. Bedner, W. Fu, V. A. Guzenko, O. Knopfmacher, M. Calame, and C. Schönenberger, ACS Nanoscale 5, 12104 (2013).

    Article  Google Scholar 

  9. M. F. Al-Kuhaili, S. M. A. Durrani, and E. E. Khawaja, J. Phys. D; Appl. Phys. 37, 1254 (2004).

    Article  Google Scholar 

  10. M. K Hudait, Y. Zhu, D. Maurya, and S. Priya, Appl. Phys. Lett. 102, 093109 (2013).

    Article  Google Scholar 

  11. I. P. Tyagulskyy, I. N. Osiyuk, V. S. Lysenko, A. N. Nazarov, S. Hall, and O. Buiu, Microelectron. Reliab. 47, 726 (2007).

    Article  Google Scholar 

  12. S. Hirofumi, A. Kyoichiro, K. Naoyuki, and N. Toshikazu, Jpn. J. Appl. Phys. 43, 6992 (2004).

    Article  Google Scholar 

  13. J. Zhu, Y. R. Li, and Z. G. Liu, J. Phys. D: Appl. Phys. 37, 2896 (2004).

    Article  Google Scholar 

  14. L. Khomenkova, C. Dufour, P. E. Coulon, C. Bonafos, and F. Gourbilleau, Nanotechnology 21, 095704 (2010).

    Article  Google Scholar 

  15. P. Zeman and S. Takabayashi, Surf. Coat. Technol. 153, 93 (2002).

    Article  Google Scholar 

  16. G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys. 87, 484 (2000).

    Article  Google Scholar 

  17. P. S. Bagus, F. Illas, G. Paccghioni, and F. Parmigiani, J. Electron Spectrosc. Related Phenom. 100, 215 (1999).

    Article  Google Scholar 

  18. M. S. Kim, Y. Don-Ko, M. Yuna, J. H. Hong, M. C. Jeong, J. M. Myoung, and I. Yun, Mater. Sci. Eng. B 123, 20 (2005).

    Article  Google Scholar 

  19. C. Morant, L. Galan, and J. M. Sanz, Surf. Inter. Anal. 16, 304 (1990).

    Article  Google Scholar 

  20. M. H. Cho, Y. S. Roh, C. N. Whang, K. Jeong, and S. W. Nahm, Appl. Phys. Lett. 81, 472 (2002).

    Article  Google Scholar 

  21. L. Wang, P. K. Chu, A. Anders, and N. W. Cheung, J. Appl. Phys. 104, 054117 (2008).

    Article  Google Scholar 

  22. V. Dave, P. Dubey, H. O. Gupta, and R. Chandra, Surf. Coat. Technol. 232, 425 (2013).

    Article  Google Scholar 

  23. J. C. Moreno-Martin, I. Abril, and R. Garcia-Molina, J. Vac. Sci. Technol. A 17, 528 (1999).

    Article  Google Scholar 

  24. H. F. Winters, H. J. Coufal, and W. Eckstein, J. Vac. Sci. Technol. A 11, 657 (1999).

    Article  Google Scholar 

  25. F. L. Martinez, M. Toledano-Luque, J. J. Gandia, J. Carabe, W. Bohne, J. Rohrich, E. Strub, and I. Martil, J. Phys. D; Appl. Phys. 40, 5256 (2007).

    Article  Google Scholar 

  26. K. Kamala-Bharathi, N. R Kalindi, and C. V. Ramana, J. Appl. Phys. 108, 083529 (2010).

    Article  Google Scholar 

  27. B. Ayupov, K. Zherikova, N. Gelfond, and N. Morozova, Phys. Status Solidi. A 206, 281 (2009).

    Article  Google Scholar 

  28. T. Tan, Z. Liu, H. Lu, W. Liu, and H. Tian, Opt. Mater. 32, 432 (2010).

    Article  Google Scholar 

  29. T. J. Brighta, J. I. Watjena, Z. M. Zhanga, C. Muratoreb, and A. A. Voevodinb, Thin Solid Films 520, 679 (2012).

    Google Scholar 

  30. P. Chindaudom and K. Vedam, Thin Solid Films 234, 439 (1993).

    Article  Google Scholar 

  31. S. K. Maidul-Haque, P. R. Sagdeo, S. Balaji, S. Kumar D. Bhattacharyya, and N. K. Sahoo, J. Vac. Sci. Technol. B 32, 03104 (2014).

    Article  Google Scholar 

  32. J. M. Khoshman, A. Khan, and M. E. Kordesch, Surf. Coat. Technol. 202, 2500 (2008).

    Article  Google Scholar 

  33. D. K. Schroder, In Semiconductor Material and Device characterization, 3rd Ed., Anonymous, p. 349, John Wiley & Sons, Inc., New Jersey (2006).

    Google Scholar 

  34. K. L. Ganapathi, N. Bhat, and S. Mohan, Appl. Phys. Lett. 103, 073105 (2013).

    Article  Google Scholar 

  35. P. Kondaiah, V. Madhavi, M. Chandra-Sekhar, G. Mohan-Rao, and S. Uthanna, Sci. Adv. Mater. 5, 398 (2013).

    Article  Google Scholar 

  36. S. Ramanathan, C. M. Park, and P. C. Mc-Intyre, J. Appl. Phys. 91, 452 (2002).

    Article  Google Scholar 

  37. J. W. Kim, S. Kim, H. Kang, J. Choi, H. Jeona, and M. Cho, K. Chung, S. Back, K. Yoo, and C. Bae, J. Appl. Phys. 98, 094504 (2005).

    Article  Google Scholar 

  38. S. M. Sze, Physics of Semiconductor and Devices, 2nd Ed., Wiley Interscience (1981).

    Google Scholar 

  39. K. Lehovec and A. Slobodskoy, Solid State Electron. 7, 59 (1964).

    Article  Google Scholar 

  40. L. T. Huang, M. L. Chang, J. J. Huang, C. L. Kuo, H. C. Lin, M. H. Liao, M. H. Lee, and M. J. Chen, J. Phys. D; Appl. Phys. 46, 055103 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Kondaiah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondaiah, P., Shaik, H. & Mohan Rao, G. Studies on RF magnetron sputtered HfO2 thin films for microelectronic applications. Electron. Mater. Lett. 11, 592–600 (2015). https://doi.org/10.1007/s13391-015-4490-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-015-4490-6

Keywords

Navigation