Skip to main content
Log in

Polyaniline-based organic memristive device fabricated by layer-by-layer deposition technique

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Memristors and memristive devices represent a splendid area of research due to the unique possibilities for the realization of new types of computer hardware elements and mimicking several essential properties of the nervous system of living beings. The organic memristive device was developed as an electronic single-device analogue of the synapse, suitable for the realization of circuits allowing Hebbian type of learning. This work is dedicated to the realization of the active channel of organic memristive devices by polyelectrolyte self-assembling (layer-by-layer technique). Stable and reproducible electrical characteristics of the device were obtained when the thickness of the active channel was more than seven bilayers. The device revealed rectifying behaviour and the presence of hysteresis—important properties for the realization of neuromorphic systems with synapse-like properties of the individual elements. Compared to previously reported results on organic memristive devices fabricated using other methods, the present device does not require any additional doping that is usually performed through acid treatment. Such a behaviour is extremely important for the cases in which biological systems (nervous cells, slime mould, etc.) must be interfaced with the system of organic memristive devices, since acid treatment can kill living beings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, Nature 453, 80 (2008).

    Article  Google Scholar 

  2. L. Chua, IEEE Trans. Circuit Theory 18, 507 (1971).

    Article  Google Scholar 

  3. J. Borghetti, Z. Li, J. Straznicky, X. Li, D. A. A. Ohlberg, W. Wu, D. R. Stewart, and R. S. Williams, Proc. Natl. Acad. Sci. USA 106, 1699 (2009).

    Article  Google Scholar 

  4. S. H. Jo, K.-H. Kim, and W. Lu, Nano Lett. 9, 496 (2009).

    Article  Google Scholar 

  5. Z. M. Liao, C. Hou, Q. Zhao, D.-S. Wang, Y.-D. Li, and D.-P. Yu, Small 21, 2377 (2009).

    Article  Google Scholar 

  6. A. Shkabko, M. H. Aguirre, I. Marozau, T. Lippert, and A. Weidenkaff, Appl. Phys. Lett. 95, 152109 (2009).

    Article  Google Scholar 

  7. L. A. Agapito, S. Alkis, J. L. Krause, and H.-P. Chen, J. Phys. Chem. C 113, 20713 (2009).

    Article  Google Scholar 

  8. Y. V. Pershin and M. Di Ventra, Adv. Phys. 60, 145 (2011).

    Article  Google Scholar 

  9. V. Erokhin and M. P. Fontana, J. Computational Theor. Nanosci. 8, 313 (2011).

    Article  Google Scholar 

  10. V. Erokhin, T. Berzina, and M. P. Fontana, J. Appl. Phys. 97, 064501 (2005).

    Article  Google Scholar 

  11. D. O. Hebb, The Organization of Behavior. A Neurophysiological Theory. Second Edition, Wiley and Sons, New York (1961).

    Google Scholar 

  12. D. B. Strukov, J. L. Borghetti, and R. S. Williams, Small 9, 1058 (2009).

    Article  Google Scholar 

  13. I. Valov, E. Linn, S. Tapperzhofen, S. Schmelzer, J. van den Hurk, F. Lentz, and R. Waser, Nature Communications 4, 1771 (2013).

    Article  Google Scholar 

  14. E. T. Kang, K. G. Neoh, and K. L. Tan, Progr. Polymer Sci. 23, 277 (1998).

    Article  Google Scholar 

  15. T. Berzina, V. Erokhin, and M. P. Fontana, J. Appl. Phys. 101, 024501 (2007).

    Article  Google Scholar 

  16. T. Berzina, S. Erokhina, P. Camorani, O. Konovalov, V. Erokhin, and M. P. Fontana, ACS Appl. Mater. Interfaces 1, 2115 (2009).

    Article  Google Scholar 

  17. V. Erokhin, T. Berzina, K. Gorshkov, P. Camorani, A. Pucci, L. Ricci, G. Ruggeri, R. Sigala, and A. Schuz, J. Mater. Chem. 22, 22881 (2012).

    Article  Google Scholar 

  18. V. I. Troitsky, T. S. Berzina, and M. P. Fontana, Mater. Sci. Engineer. C 22, 239 (2002).

    Article  Google Scholar 

  19. G. Decher, Science 277, 1232 (1997).

    Article  Google Scholar 

  20. J. S. Lee, J. Cho, C. Lee, I. Kim, J. Park, Y.-M. Kim, H. Shin, J. Lee, and F. Caruso, Nature Nanotechnology 2, 790 (2007).

    Article  Google Scholar 

  21. C. Lee, I. Kim, H. Shin, S. Kim, and J. Cho, Langmuir 25, 11276 (2009).

    Article  Google Scholar 

  22. J. H. Cheung, W. B. Stokton, and M. F. Rubner, Macromolecules 30, 2712 (1997).

    Article  Google Scholar 

  23. S. Erokhina, V. Erokhin, C. Nicolini, F. Sbrana, D. Ricci, and E. Di Zitti, Langmuir 19, 766 (2003).

    Article  Google Scholar 

  24. T. Berzina, A. Smerieri, G. Ruggeri, M. Bernabo, V. Erokhin, and M. P. Fontana, Mater. Sci. Engineer. C 30, 407 (2010).

    Article  Google Scholar 

  25. V. Erokhin, Int. J. Unconventional Computing 23, 1350112 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Erokhin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erokhina, S., Sorokin, V. & Erokhin, V. Polyaniline-based organic memristive device fabricated by layer-by-layer deposition technique. Electron. Mater. Lett. 11, 801–805 (2015). https://doi.org/10.1007/s13391-015-4329-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-015-4329-1

Keywords

Navigation