Skip to main content
Log in

Activities of CeO2/TiO2 catalyst for SCR of NO with NH3 at low temperature according to operating conditions

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

A catalyst based on CeO2/TiO2 was prepared by the impregnation method, and its activities for low temperature selective catalytic reduction (SCR) of NO with NH3 were investigated at temperature from 373 to 573 K. As the cerium oxide loading was increased until 40 wt. %, NO conversion of CeO2/TiO2 catalyst increased significantly, whereas that of the catalyst with 50 wt. % cerium oxide loading decreased due to the change of the main phase. The effects of the operating conditions were also studied at various gas hourly space velocities (GHSV), reaction temperatures, O2 concentrations and NH3/NO ratios. The reaction temperature has a greater effect on the activity of the catalyst than the GHSV. The lattice oxygen of CeO2 contributes to the SCR of NO with NH3 at low O2 concentration. When an excess NH3 concentration, further NH3 addition could not improve the NO conversion efficiency due to the limited amount of adsorption sites. The experimental results showed that the best CeO2/TiO2 catalyst yielded more than 92% NO conversion at 523 K at a space velocity of 10,000 h−1. The reaction orders of NO, NH3, and O2 were determined to be 1, 0, and 0.5, respectively, and the apparent activation energy was calculated to be 32.5 kJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Nakajima and I. Hamada, Catal. Today 29, 109 (1996).

    Article  CAS  Google Scholar 

  2. M. V. Twigg, Appl. Catal. B 70, 2 (2007).

    Article  CAS  Google Scholar 

  3. H. Bosch and F. Janssen, Catal. Today 2, 369 (1988).

    Article  CAS  Google Scholar 

  4. I. Nova, C. Ciardelli, E. Tronconi, D. Chatterjee, and B. Bandl-Konrad, Catal. Today 114, 3 (2006).

    Article  CAS  Google Scholar 

  5. X. Gao, Y. Jiang, Y. Fu, Y. Zhong, Z. Luo, and K. Cen, Catal. Commun. 11, 465 (2010).

    Article  CAS  Google Scholar 

  6. Z. Huang, Z. Zhu, Z. Liu, and Q. Liu, J. Catal. 214, 213 (2003).

    Article  CAS  Google Scholar 

  7. G. Qi, R. T. Yang, and R. Chang, Appl. Catal. B 51, 93 (2004).

    Article  CAS  Google Scholar 

  8. I. Giakoumelou, C. Fountzoula, C. Kordulis, and S. Boghosian, J. Catal. 239, 1 (2006).

    Article  CAS  Google Scholar 

  9. I. Nova, L. Lietti, L. Casagrande, L. Dall’Acqua, E. Giamello, and P. Forzatti, Appl. Catal. B 17, 245 (1998).

    Article  CAS  Google Scholar 

  10. Z. Wu, B. Jiang, Y. Liu, W. Zhao, and B. Guan, J. Hazard. Mater. 145, 488 (2007).

    Article  CAS  Google Scholar 

  11. D. A. Pena, B. S. Uphade, and P. G. Smirniotis, J. Catal. 221, 421 (2004).

    Article  CAS  Google Scholar 

  12. J. Li, J. Chen, R. Ke, C. Luo, and J. Hao, Catal. Commun. 8, 1896 (2007).

    Article  CAS  Google Scholar 

  13. S. Roy, B. Viswanath, M. S. Hedge, and G. Madras, J. Phys. Chem. C 112, 6002 (2008).

    Article  CAS  Google Scholar 

  14. G. Qi and R. T. Yang, J. Phys. Chem. B 108, 15738 (2004).

    Article  CAS  Google Scholar 

  15. R. Q. Long and R. T. Yang, Appl. Catal. B 27, 87 (2000).

    Article  CAS  Google Scholar 

  16. A. Trovarelli, M. Boaro, E. Rocchini, C. Leitenburg, and G. Dolcetti, J. Alloy. Comp. 323, 584 (2001).

    Article  Google Scholar 

  17. W. Xu, Y. Yu, C. Zhang, and H. He, Catal. Commun. 9, 1453 (2008).

    Article  CAS  Google Scholar 

  18. S. A. Stevenson, J. C. Vartuli, and C. F. Brooks, J. Catal. 190, 228 (2000).

    Article  CAS  Google Scholar 

  19. R. T. Yang, J. P. Chen, E. S. Kikkinides, L. S. Cheng, and J. E. Cichanowicz, Ind. Eng. Chem. Res. 31, 1440 (1992).

    Article  CAS  Google Scholar 

  20. L. Casagrande, L. Lietti, I. Nova, P. Forzatti, and A. Baiker, Appl. Catal. B 22, 63 (1999).

    Article  CAS  Google Scholar 

  21. L. K. Boudali, A. Ghorbel, and P. Grange, Appl. Catal. A 305, 7 (2006).

    Article  CAS  Google Scholar 

  22. M. Inomata, A. Miyamoto, T. Ui, K. Kobayashi, and Y. Murakami, Ind. Eng. Chem. Prod. Res. Dev. 21, 424 (1982).

    Article  CAS  Google Scholar 

  23. G. Qi and R. T. Yang, Appl. Catal. B 22, 217 (2003).

    Google Scholar 

  24. E. Ito, R. J. Hultermans, P. M. Lugt, M. H. W. Burgers, M. S. Rigutto, H. van Bekkum, and C. M. van den Bleek, Appl. Catal. B 4, 95 (1994).

    Article  CAS  Google Scholar 

  25. G. Busca, L. Lietti, G. Ramis, and F. Berti, Appl. Catal. B 18, 1 (1998).

    Article  CAS  Google Scholar 

  26. R. Q. Long and R. T. Yang, J. Catal. 190, 22 (2000).

    Article  CAS  Google Scholar 

  27. H. T. Huang, R. Q. Long, and R. T. Yang, Appl. Catal. A 235, 241 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heesoo Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, MC., Cha, JS., Shin, B. et al. Activities of CeO2/TiO2 catalyst for SCR of NO with NH3 at low temperature according to operating conditions. Electron. Mater. Lett. 9, 71–76 (2013). https://doi.org/10.1007/s13391-012-2100-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-012-2100-4

Keywords

Navigation