Skip to main content

Advertisement

Log in

Polypyrrole-Coated Three-Dimensional Graphenized Surface for Superior Supercapacitor Performance

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A highly electrochemically active graphene/polypyrrole electrode is developed using a facile two-step method comprising top-down and bottom-up electrochemical processing of a graphite electrode, resulting in polypyrrole deposition into a three-dimensional surface graphene host matrix. The active surface graphene/polypyrrole layer is directly connected to the core graphite current collector with no need for external binders. The graphene/polypyrrole electrode is optimized by controlling the polypyrrole deposition via tuning the electrodeposition voltage and duration. The highly functional electrodes are tested as supercapacitors showing excellent performance with an areal capacitance of > 1400 mF/cm2 and a high rate capability of ~ 141 mF/cm2 at 20 mA/cm2. A symmetric cell based on the optimal electrode achieved ~ 213 mF/cm2 at 0.25 mA/cm2 with a high stability of ~ 90% after 2500 cycles. The high areal capacitance, rate capability, and stability are attributed to the unique electrode design that allows excellent graphene/polypyrrole connectivity over the entire surface with no isolated polypyrrole deposits. Our highly electrochemically active electrode has outstanding potential for further investigations in the energy storage field and electrochemical sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Crabtree, G.: The energy-storage revolution. Nature 526, S92 (2015)

    Google Scholar 

  2. Poonam, S.K.; Arora, A.; Tripathi, S.K.: Review of supercapacitors: Materials and devices. J. Energy Storage 21, 801–825 (2019)

    Google Scholar 

  3. Simon, P.; Gogotsi, Y.; Dunn, B.: Materials science: Where do batteries end and supercapacitors begin? Science 343(6176), 1210–1211 (2014)

    Google Scholar 

  4. Salanne, M., et al.: Efficient storage mechanisms for building better supercapacitors. Nat. Energy 1(6), 16070 (2016)

    Google Scholar 

  5. Afif, A., et al.: Advanced materials and technologies for hybrid supercapacitors for energy storage: a review. J. Energy Storage 25, 100852 (2019)

    Google Scholar 

  6. AbdelHamid, A.A., et al.: Graphene-wrapped nickel sulfide nanoprisms with improved performance for Li-ion battery anodes and supercapacitors. Nano Energy 26, 425–437 (2016)

    Google Scholar 

  7. Manasa, P.; Sambasivam, S.; Ran, F.: Recent progress on biomass waste derived activated carbon electrode materials for supercapacitors applications—a review. J. Energy Storage 54, 105290 (2022)

    Google Scholar 

  8. Banerjee, S., et al.: Applications of supercapacitors. In: Kar, K.K. (Ed.) Handbook of Nanocomposite Supercapacitor Materials I: Characteristics, pp. 341–350. Springer (2020)

    Google Scholar 

  9. Horn, M., et al.: Graphene-based supercapacitor electrodes: Addressing challenges in mechanisms and materials. Curr. Opin. Green Sustain. Chem. 17, 42–48 (2019)

    Google Scholar 

  10. Gohar, R.S., et al.: Hydrothermal preparation of LaNdZr2O7–SnSe nanocomposite for electrochemical supercapacitor and degradation of contaminants’ applications. J. Energy Storage 52, 104930 (2022)

    Google Scholar 

  11. Habib, S.A., et al.: Structural, magnetic, and AC measurements of nanoferrites/graphene composites. Nanomaterials 12(6), 931 (2022)

    Google Scholar 

  12. Wang, S., et al.: Niobium carbide as a promising pseudocapacitive sodium-ion storage anode. Energy Technol. 9(9), 2100298 (2021)

    Google Scholar 

  13. Qi, F., et al.: “Carbon quantum dots-glue” enabled high-capacitance and highly stable nickel sulphide nanosheet electrode for supercapacitors. J. Colloid Interface Sci. 601, 669–677 (2021)

    Google Scholar 

  14. Qi, F., et al.: Fabrication of hierarchical MoO3@NixCo2x(OH)6x core–shell arrays on carbon cloth as enhanced-performance electrodes for asymmetric supercapacitors. J. Colloid Interface Sci. 607, 1253–1261 (2022)

    Google Scholar 

  15. Chen, J., et al.: Pulsed electrochemical fabrication of graphene/polypyrrole composite gel films for high performance and flexible supercapacitors. Electrochim. Acta 361, 137036 (2020)

    Google Scholar 

  16. Shu, K., et al.: A “tandem” strategy to fabricate flexible graphene/polypyrrole nanofiber film using the surfactant-exfoliated graphene for supercapacitors. ACS Appl. Mater. Interfaces 10(26), 22031–22041 (2018)

    Google Scholar 

  17. Lee, S.H.; Kim, J.H.; Yoon, J.R.: Laser scribed graphene cathode for next generation of high performance hybrid supercapacitors. Sci. Rep. 8(1), 8179 (2018)

    Google Scholar 

  18. Elessawy, N.A.; El Nady, J.; Wazeer, W.; Kashyout, A.B.: Development of high-performance supercapacitor based on a novel controllable green synthesis for 3D nitrogen doped graphene. Sci. Rep. 9(1), 1129 (2019)

    Google Scholar 

  19. Yuan, Y., et al.: Laser photonic-reduction stamping for graphene-based micro-supercapacitors ultrafast fabrication. Nat. Commun. 11(1), 6185 (2020)

    MathSciNet  Google Scholar 

  20. Hou, M.; Xu, M.; Hu, Y.; Li, B.: Nanocellulose incorporated graphene/polypyrrole film with a sandwich-like architecture for preparing flexible supercapacitor electrodes. Electrochim. Acta 313, 245–254 (2019)

    Google Scholar 

  21. Choudhary, R.B.; Ansari, S.; Purty, B.: Robust electrochemical performance of polypyrrole (PPy) and polyindole (PIn) based hybrid electrode materials for supercapacitor application: A review. J. Energy Storage 29, 101302 (2020)

    Google Scholar 

  22. Park, H., et al.: Microporous polypyrrole-coated graphene foam for high-performance multifunctional sensors and flexible supercapacitors. Adv. Funct. Mater. 28(33), 1707013 (2018)

    Google Scholar 

  23. Wang, L.; Zhang, C.; Jiao, X.; Yuan, Z.: Polypyrrole-based hybrid nanostructures grown on textile for wearable supercapacitors. Nano Res. 12(5), 1129–1137 (2019)

    Google Scholar 

  24. Suriyakumar, S.; Bhardwaj, P.; Grace, A.N.; Stephan, A.M.: Role of polymers in enhancing the performance of electrochemical supercapacitors: A review. Batteries Supercaps 4(4), 571–584 (2021)

    Google Scholar 

  25. Kong, K., et al.: The fabrication of bowl-shaped polypyrrole/graphene nanostructural electrodes and its application in all-solid-state supercapacitor devices. J. Power Sources 470, 228452 (2020)

    Google Scholar 

  26. Baig, N.; Kawde, A.-N.; Elgamouz, A.: A cost-effective disposable graphene-based sensor for sensitive and selective detection of uric acid in human urine. Biosens. Bioelectron. X 11, 100205 (2022)

    Google Scholar 

  27. Baig, N., et al.: Graphene nanosheet-sandwiched platinum nanoparticles deposited on a graphite pencil electrode as an ultrasensitive sensor for dopamine. RSC Adv. 12(4), 2057–2067 (2022)

    Google Scholar 

  28. Mondal, S.; Aravindan, N.; Sangaranarayanan, M.V.: Controlled growth of polypyrrole microtubes on disposable pencil graphite electrode and their supercapacitor behavior. Electrochim. Acta 324, 134875 (2019)

    Google Scholar 

  29. Syugaev, A.V.; Lyalina, N.V.; Maratkanova, A.N.; Kurenya, A.G.: Effect of carbon nanotubes and finely-dispersed graphite particles on electrodeposition of polypyrrole. Synth. Met. 262, 116350 (2020)

    Google Scholar 

  30. Wan, S., et al.: Enhanced corrosion resistance of copper by synergetic effects of silica and BTA codoped in polypyrrole film. Prog. Org. Coat. 129, 187–198 (2019)

    Google Scholar 

  31. Abaci, U.; Guney, H.Y.; Kadiroglu, U.: Morphological and electrochemical properties of PPy, PAni bilayer films and enhanced stability of their electrochromic devices (PPy/PAni–PEDOT, PAni/PPy–PEDOT). Electrochim. Acta 96, 214–224 (2013)

    Google Scholar 

  32. Zhou, H., et al.: Facile preparation of polypyrrole/graphene oxide nanocomposites with large areal capacitance using electrochemical codeposition for supercapacitors. J. Power Sources 263, 259–267 (2014)

    Google Scholar 

  33. Dubal, D.P.; Patil, S.V.; Kim, W.B.; Lokhande, C.D.: Supercapacitors based on electrochemically deposited polypyrrole nanobricks. Mater. Lett. 65(17–18), 2628–2631 (2011)

    Google Scholar 

  34. Kim, S.; Jang, L.K.; Park, H.S.; Lee, J.Y.: Electrochemical deposition of conductive and adhesive polypyrrole-dopamine films. Sci. Rep. 6, 30475 (2016)

    Google Scholar 

  35. Firat, Y.E.; Peksoz, A.: Efficiently two-stage synthesis and characterization of CuSe/polypyrrole composite thin films. J. Alloys Compd 727, 177–184 (2017)

    Google Scholar 

  36. Wang, J.; Too, C.O.; Zhou, D.; Wallace, G.G.: Novel electrode substrates for rechargeable lithium/polypyrrole batteries. J. Power Sources 140(1), 162–167 (2005)

    Google Scholar 

  37. Yang, J.; Cho, M.; Pang, C.; Lee, Y.: Highly sensitive non-enzymatic glucose sensor based on over-oxidized polypyrrole nanowires modified with Ni(OH)2 nanoflakes. Sens. Actuators B Chem. 211, 93–101 (2015)

    Google Scholar 

  38. Rana, A.; Kawde, A.-N.: Open-circuit electrochemical polymerization for the sensitive detection of phenols. Electroanalysis 28(4), 898–902 (2016)

    Google Scholar 

  39. Ibrahim, M., et al.: A novel platform based on Au−CeO2@MWCNT functionalized glassy carbon microspheres for voltammetric sensing of valrubicin as bladder anticancer drug and its interaction with DNA. Electroanalysis 32(10), 2146–2155 (2020)

    Google Scholar 

  40. Bo, Z., et al.: One-step fabrication and capacitive behavior of electrochemical double layer capacitor electrodes using vertically-oriented graphene directly grown on metal. Carbon 50(12), 4379–4387 (2012)

    Google Scholar 

  41. Pingale, A.D., et al.: Facile synthesis of graphene by ultrasonic-assisted electrochemical exfoliation of graphite. Mater. Today: Proc. 44, 467–472 (2021)

    Google Scholar 

  42. Gebreegziabher, G.G., et al.: One-step synthesis and characterization of reduced graphene oxide using chemical exfoliation method. Mater. Today Chem. 12, 233–239 (2019)

    Google Scholar 

  43. Jung, Y.; Singh, N.; Choi, K.S.: Cathodic deposition of polypyrrole enabling the one-step assembly of metal-polymer hybrid electrodes. Angew. Chem. Int. Ed. 48(44), 8331–8334 (2009)

    Google Scholar 

  44. Turczyn, R., et al.: Fabrication and application of electrically conducting composites for electromagnetic interference shielding of remotely piloted aircraft systems. Compos. Struct. 232, 111498 (2020)

    Google Scholar 

  45. Umer, A.; Liaqat, F.; Mahmood, A.: MoO3 nanobelts embedded polypyrrole/SIS copolymer blends for improved electro-mechanical dual applications. Polymers 12(2), 353 (2020)

    Google Scholar 

  46. Marquez-Herrera, A., et al.: Facile synthesis of SrCO3-Sr(OH)2/PPy nanocomposite with enhanced photocatalytic activity under visible light. Materials 9(1), 30 (2016)

    Google Scholar 

  47. Costa, M.B.G., et al.: Synthesis and characterization of conducting polypyrrole/SBA-3 and polypyrrole/Na–AlSBA-3 composites. Mater. Res. Bull. 48(2), 661–667 (2013)

    Google Scholar 

  48. Cao, J., et al.: Three-dimensional graphene oxide/polypyrrole composite electrodes fabricated by one-step electrodeposition for high performance supercapacitors. J. Mater. Chem. A. 3(27), 14445–14457 (2015)

    Google Scholar 

  49. Feng, M., et al.: Synthesis of polypyrrole/nitrogen-doped porous carbon matrix composite as the electrode material for supercapacitors. Sci. Rep. 10(1), 15370 (2020)

    Google Scholar 

  50. Purkait, T., et al.: All-porous heterostructure of reduced graphene oxide–polypyrrole–nanoporous gold for a planar flexible supercapacitor showing outstanding volumetric capacitance and energy density. J. Mater. Chem. A. 6(45), 22858–22869 (2018)

    Google Scholar 

  51. Dong, Z.; Zhao, L.: Surface modification of cellulose microsphere with imidazolium-based ionic liquid as adsorbent: effect of anion variation on adsorption ability towards Au(III). Cellulose 25(4), 2205–2216 (2018)

    Google Scholar 

  52. Bao, W., et al.: Controlled preparation of Ni–Al LDH–NO3 by a dual-anion intercalating process for supercapacitors. Ionics 25(8), 3859–3866 (2019)

    Google Scholar 

  53. Neoh, K.G., et al.: Structure and degradation behavior of polypyrrole doped with sulfonate anions of different sizes subjected to undoping−redoping cycles. Chem. Mater. 8(1), 167–172 (1996)

    Google Scholar 

  54. Wang, J.; Xu, Y.; Chen, X.; Sun, X.: Capacitance properties of single wall carbon nanotube/polypyrrole composite films. Compos. Sci. Technol. 67(14), 2981–2985 (2007)

    Google Scholar 

  55. Bhattacharjya, D.; Kim, M.-S.; Bae, T.-S.; Yu, J.-S.: High performance supercapacitor prepared from hollow mesoporous carbon capsules with hierarchical nanoarchitecture. J. Power Sources 244, 799–805 (2013)

    Google Scholar 

  56. Chen, J., et al.: Facile co-electrodeposition method for high-performance supercapacitor based on reduced graphene oxide/polypyrrole composite film. ACS Appl. Mater. Interfaces 9(23), 19831–19842 (2017)

    Google Scholar 

  57. Yang, Y., et al., Polypyrrole hollow nanosphere intercalated graphene-based flexible supercapacitor. In: Presented at 19th International Conference on Electronic Packaging Technology (ICEPT) (2018)

  58. Wang, F., et al.: Tungsten oxide@polypyrrole core-shell nanowire arrays as novel negative electrodes for asymmetric supercapacitors. Small 11(6), 749–755 (2015)

    Google Scholar 

  59. Moreno Araújo Pinheiro Lima, R.; de Oliveira, H.P.: Carbon dots reinforced polypyrrole/graphene nanoplatelets on flexible eggshell membranes as electrodes of all-solid flexible supercapacitors. J. Energy Storage 28, 101284 (2020)

    Google Scholar 

  60. Qi, K., et al.: A core/shell structured tubular graphene nanoflake-coated polypyrrole hybrid for all-solid-state flexible supercapacitors. J. Mater. Chem. A. 6(9), 3913–3918 (2018)

    Google Scholar 

  61. Ge, Y., et al.: A facile approach for fabrication of mechanically strong graphene/polypyrrole films with large areal capacitance for supercapacitor applications. RSC Adv. 5(124), 102643–102651 (2015)

    Google Scholar 

Download references

Acknowledgements

The authors thank the Advanced Materials Research Center, University of Sharjah, Sharjah, United Arab Emirates, for FESEM and XPS analysis.

Funding

This research is funded by the Research Institute of Science and Engineering (RISE), University of Sharjah, Sharjah, United Arab Emirates, Seed Research Project No. (22021440119), V.C.R.G./R. 447/2022 and Collaborative Research Project No. (22021440122), V.C.R.G./R. 447/2022.

Author information

Authors and Affiliations

Authors

Contributions

AA: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Data curation, Writing- initial draft preparation, Visualization; AE, AK: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Resources, Data curation, Writing- Original draft preparation, Writing Review & Editing, Visualization, Supervision, Project administration, Funding acquisition.

Corresponding author

Correspondence to Abdel-Nasser Kawde.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 552 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AbdelHamid, A.A., Elgamouz, A. & Kawde, AN. Polypyrrole-Coated Three-Dimensional Graphenized Surface for Superior Supercapacitor Performance. Arab J Sci Eng 49, 129–146 (2024). https://doi.org/10.1007/s13369-023-07915-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07915-5

Keywords

Navigation