Skip to main content

Advertisement

Log in

Current Trends in Readmission Prediction: An Overview of Approaches

  • RESEARCH ARTICLE - SPECIAL ISSUE - AI based health-related Computing for COVID-19 (AIHRC)
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Hospital readmission shortly after discharge threatens the quality of patient care and leads to increased medical care costs. In the United States, hospitals with high readmission rates are subject to federal financial penalties. This concern calls for incentives for healthcare facilities to reduce their readmission rates by predicting patients who are at high risk of readmission. Conventional practices involve the use of rule-based assessment scores and traditional statistical methods, such as logistic regression, in developing risk prediction models. The recent advancements in machine learning driven by improved computing power and sophisticated algorithms have the potential to produce highly accurate predictions. However, the value of such models could be overrated. Meanwhile, the use of other flexible models that leverage simple algorithms offer great transparency in terms of feature interpretation, which is beneficial in clinical settings. This work presents an overview of the current trends in risk prediction models developed in the field of readmission. The various techniques adopted by researchers in recent years are described, and the topic of whether complex models outperform simple ones in readmission risk stratification is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pastorino, R., et al.: Benefits and challenges of Big Data in healthcare: an overview of the European initiatives. Eur. J. Public health 29(Supplement_3), 23–27 (2019)

    Google Scholar 

  2. Reinsel, D.; Gantz, J.; Rydning, J.: Data age 2025: the evolution of data to life-critical. Don’t Focus on Big Data (2017) pp. 2–24

  3. Maali, Y.; Perez-Concha, O.; Coiera, E.; Roffe, D.; Day, R.O.; Gallego, B.: Predicting 7-day, 30-day and 60-day all-cause unplanned readmission: a case study of a Sydney hospital. BMC Med. Inf. Decis. Mak. 18(1), 1 (2018)

    Google Scholar 

  4. Lahewala, S., et al.: Heart failure: same-hospital vs. different-hospital readmission outcomes. Int. J. Cardiol. 278, 186–191 (2019)

    Google Scholar 

  5. Hoffman, G.J.; Yakusheva, O.: Association between financial incentives in medicare’s hospital readmissions reduction program and hospital readmission performance. JAMA Netw. Open 3(4), e202044–e202044 (2020)

    Google Scholar 

  6. Pedersen, M.K.; Meyer, G.; Uhrenfeldt, L.: Risk factors for acute care hospital readmission in older persons in Western countries: a systematic review. JBI Evid. Synth. 15(2), 454 (2017)

    Google Scholar 

  7. Glans, M.; Kragh Ekstam, A.; Jakobsson, U.; Bondesson, Å.; Midlöv, P.: "Risk factors for hospital readmission in older adults within 30 days of discharge: a comparative retrospective study. BMC Geriatr. 20(1), 467 (2020)

    Google Scholar 

  8. Goel, A.N.; Raghavan, G.; St John, M.A.; Long, J.L.: Risk factors, causes, and costs of hospital readmission after head and neck cancer surgery reconstruction. JAMA Facial Plast. Surg. 21(2), 137–145 (2019)

    Google Scholar 

  9. Shalchi, Z.; Saso, S.; Li, H.K.; Rowlandson, E.; Tennant, R.C.: Factors influencing hospital readmission rates after acute medical treatment. Clin. Med. 9(5), 426–430 (2009)

    Google Scholar 

  10. Felix, H.C.; Seaberg, B.; Bursac, Z.; Thostenson, J.; Stewart, M.K.: Why do patients keep coming back? Results of a readmitted patient survey. Soc. Work Health Care 54(1), 1–15 (2015)

    Google Scholar 

  11. Forster, A.J., et al.: Adverse events among medical patients after discharge from hospital. CMAJ 170(3), 345–349 (2004)

    Google Scholar 

  12. Hesselink, G., et al.: Improving patient handovers from hospital to primary care: a systematic review. Ann. Intern. Med. 157(6), 417–428 (2012)

    Google Scholar 

  13. Schneeweiss, S.; Seeger, J.D.; Maclure, M.; Wang, P.S.; Avorn, J.; Glynn, R.J.: Performance of comorbidity scores to control for confounding in epidemiologic studies using claims data. Am. J. Epidemiol. 154(9), 854–864 (2001)

    Google Scholar 

  14. Mahmoudi, E.; Kamdar, N.; Kim, N.; Gonzales, G.; Singh, K.; Waljee, A.K.: Use of electronic medical records in development and validation of risk prediction models of hospital readmission: systematic review. BMJ 369, m958 (2020)

    Google Scholar 

  15. Markazi-Moghaddam, N.; Fathi, M.; Ramezankhani, A.: Risk prediction models for intensive care unit readmission: a systematic review of methodology and applicability. Aust. Crit. Care 33(4), 367–374 (2020)

    Google Scholar 

  16. Artetxe, A.; Beristain, A.; Graña, M.: Predictive models for hospital readmission risk: a systematic review of methods. Comput. Methods Program. Biomed. 164, 49–64 (2018)

    Google Scholar 

  17. Manca, D.P.: Do electronic medical records improve quality of care? Yes. Can. Family Phys. Med. de Famille Can. 61(10), 846–851 (2015)

    Google Scholar 

  18. Kansagara, D., et al.: Risk prediction models for hospital readmission: a systematic review. JAMA 306(15), 1688–1698 (2011)

    Google Scholar 

  19. Weinreich, M., et al.: Predicting the risk of readmission in pneumonia: a systematic review of model performance. Ann. Am. Thoracic Soc. 13(9), 1607–1614 (2016)

    Google Scholar 

  20. Smith, L.N., et al.: Acute myocardial infarction readmission risk prediction models: a systematic review of model performance. Circ. Cardiovasc. Qual. Outcomes 11(1), e003885–e003885 (2018)

    Google Scholar 

  21. Mahajan, S.M.; Heidenreich, P.; Abbott, B.; Newton, A.; Ward, D.: Predictive models for identifying risk of readmission after index hospitalization for heart failure: a systematic review. Eur. J. Cardiovas. Nursing 17(8), 675–689 (2018)

    Google Scholar 

  22. van Walraven, C., et al.: Derivation and validation of an index to predict early death or unplanned readmission after discharge from hospital to the community. CMAJ Can. Med. Assoc J. 182(6), 551–557 (2010)

    Google Scholar 

  23. Hoerl, A.E.; Kennard, R.W.: Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970)

    MATH  Google Scholar 

  24. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  25. Zou, H.; Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. 67(2), 301–320 (2005)

    MathSciNet  MATH  Google Scholar 

  26. Spooner, A., et al.: A comparison of machine learning methods for survival analysis of high-dimensional clinical data for dementia prediction. Sci. Rep. 10(1), 20410 (2020)

    Google Scholar 

  27. Anis, S., et al.: An overview of deep learning approaches in chest radiograph. IEEE Access 8, 182347–182354 (2020)

    Google Scholar 

  28. Krizhevsky, A.; Sutskever, I.; Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)

    Google Scholar 

  29. Yala, A., et al.: Using machine learning to parse breast pathology reports. Breast Cancer Res. Treatment 161(2), 203–211 (2017)

    Google Scholar 

  30. Benjamens, S.; Dhunnoo, P.; Meskó, B.: The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database. Digital Med. 3(1), 118 (2020)

    Google Scholar 

  31. Weng, W.-H.: Machine learning for clinical predictive analytics. In: Celi, L.A.; Majumder, M.S.; Ordóñez, P.; Osorio, J.S.; Paik, K.E.; Somai, M. (Eds.) Leveraging data science for global health, pp. 199–217. Springer, Cham (2020)

    Google Scholar 

  32. Cortes, C.; Vapnik, V.: Support-vector networks. Machine Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  33. Warner, H.R.; Toronto, A.F.; Veasey, L.G.; Stephenson, R.: A mathematical approach to medical diagnosis: application to congenital heart disease. JAMA 177(3), 177–183 (1961)

    Google Scholar 

  34. Hand, D.J.; Yu, K.: Idiot’s bayes: not so stupid after all? Int. Stat. Rev. Revue Internationale de Statistique 69(3), 385–398 (2001)

    MATH  Google Scholar 

  35. Al-Aidaroos, K.M.; Bakar, A.A.; Othman, Z.: "Naïve bayes variants in classification learning. Int. Conf. Inf. Retrieval Knowledge Manag 2010, 276–281 (2010)

    Google Scholar 

  36. Zelič, I.; Kononenko, I.; Lavrač, N.; Vuga, V.: Induction of decision trees and bayesian classification applied to diagnosis of sport injuries. J. Med. Syst. 21(6), 429–444 (1997)

    Google Scholar 

  37. Quinlan, J.R.: Induction of decision trees. Machine Learn. 1(1), 81–106 (1986)

    Google Scholar 

  38. Sutton, C.D.: 11: Classification and regression trees, bagging, and boosting. In: Rao, C.R.; Wegman, E.J.; Solka, J.L. (Eds.) Handbook of statistics, pp. 303–329. Elsevier (2005)

    Google Scholar 

  39. Vezhnevets, A.; Barinova, O.: Avoiding boosting overfitting by removing confusing samples. In Machine learning: ECML 2007, Berlin, Heidelberg, (2007) pp. 430–441

  40. Li, Q.; Cai, W.; Wang, X.; Zhou, Y.; Feng, D. D.; Chen, M.: Medical image classification with convolutional neural network. In 2014 13th international conference on control automation robotics & vision (ICARCV) (2014) pp. 844–848

  41. Chen, D., et al.: Deep learning and alternative learning strategies for retrospective real-world clinical data. npj Digital Med. 2(1), 43 (2019)

    Google Scholar 

  42. Wilson, A.; Roelofs, R.; Stern, M.; Srebro, N.; Recht, B. J. A.: The marginal value of adaptive gradient methods in machine learning. (2017)

  43. Elman, J.L.: Finding structure in time. Cognitive Sci. 14(2), 179–211 (1990)

    Google Scholar 

  44. Hochreiter, S.; Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Google Scholar 

  45. Cho, K. et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. (2014) arXiv e-prints. http://arxiv.org/abs/1406.1078

  46. Esteban, C.; Staeck, O.; Yang, Y.; Tresp V.: Predicting clinical events by combining static and dynamic information using recurrent neural networks. (2016) arXiv e-prints. http://arxiv.org/abs/1602.02685.

  47. Du, C.; Huang, L.: Text classification research with attention-based recurrent neural networks. Int. J. Comput. Commun. Control (2018). https://doi.org/10.15837/ijccc.2018.1.3142

    Article  Google Scholar 

  48. Ma, F.; Gao, J.; Suo, Q.; You, Q.; Zhou, J.; Zhang, A.: Risk prediction on electronic health records with prior medical knowledge. Kdd ’18, (2018), pp. 1910–1919

  49. Razavian, N.; Marcus, J.; Sontag, D.: Multi-task prediction of disease onsets from longitudinal lab tests. arXiv e-prints, (2016) http://arxiv.org/abs/1608.00647

  50. Che, Z.; Cheng, Y.; Sun, Z.; Liu, Y.: Exploiting convolutional neural network for risk prediction with medical feature embedding. (2017) arXiv e-prints. http://arxiv.org/abs/1701.07474

  51. Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings of the 2014 conference on empirical methods in natural language processing, (2014)

  52. Xiao, C.; Choi, E.; Sun, J.: Opportunities and challenges in developing deep learning models using electronic health records data: a systematic review. J. Am. Med. Inf. Assoc. JAMIA 25(10), 1419–1428 (2018)

    Google Scholar 

  53. Wang, F.; Casalino, L.P.; Khullar, D.: Deep learning in medicine: promise, progress, and challenges. JAMA Intern. Med. 179(3), 293–294 (2019)

    Google Scholar 

  54. Beeksma, M.; Verberne, S.; van den Bosch, A.; Das, E.; Hendrickx, I.; Groenewoud, S.: Predicting life expectancy with a long short-term memory recurrent neural network using electronic medical records. BMC Med. Inf. Decis. Mak. 19(1), 36 (2019)

    Google Scholar 

  55. Aida, K., et al.: Usefulness of the simplified frailty scale in predicting risk of readmission or mortality in elderly patients hospitalized with cardiovascular disease. Int. Heart J. 61(3), 571–578 (2020)

    Google Scholar 

  56. Allam, A.; Nagy, M.; Thoma, G.; Krauthammer, M.: Neural networks versus Logistic regression for 30 days all-cause readmission prediction. Sci. Rep. 9(1), 9277 (2019)

    Google Scholar 

  57. Ashfaq, A.; Sant’Anna, A.; Lingman, M.; Nowaczyk, S.: Readmission prediction using deep learning on electronic health records. J. Biomed. Inf. 97, 103256 (2019)

    Google Scholar 

  58. Awan, S.E.; Bennamoun, M.; Sohel, F.; Sanfilippo, F.M.; Chow, B.J.; Dwivedi, G.: Feature selection and transformation by machine learning reduce variable numbers and improve prediction for heart failure readmission or death. PLoS One 14(6), e0218760 (2019)

    Google Scholar 

  59. Awan, S.E.; Bennamoun, M.; Sohel, F.; Sanfilippo, F.M.; Dwivedi, G.: Machine learning-based prediction of heart failure readmission or death: implications of choosing the right model and the right metrics. ESC Heart Fail 6(2), 428–435 (2019)

    Google Scholar 

  60. Brown, J.R.; Alonso, A.; Mazimba, S.; Warman, E.N.; Bilchick, K.C.: Improved 30 day heart failure rehospitalization prediction through the addition of device-measured parameters. ESC Heart Fail 7(6), 3762–3771 (2020)

    Google Scholar 

  61. Dodson, J.A., et al.: Thirty-day readmission risk model for older adults hospitalized with acute myocardial infarction. Circ. Cardiovasc. Qual Outcomes 12(5), e005320 (2019)

    Google Scholar 

  62. Gupta, S., et al.: Evaluation of machine learning algorithms for predicting readmission after acute myocardial infarction using routinely collected clinical data. Can. J. Cardiol. 36(6), 878–885 (2020)

    Google Scholar 

  63. Hu, Z.; Du, D.: A new analytical framework for missing data imputation and classification with uncertainty: Missing data imputation and heart failure readmission prediction. PLOS ONE 15(9), e0237724 (2020)

    Google Scholar 

  64. Hung, L.-C.; Sung, S.-F.; Hu, Y.-H.: A machine learning approach to predicting readmission or mortality in patients hospitalized for stroke or transient ischemic attack. Appl. Sci. 10(18), 6337 (2020)

    Google Scholar 

  65. Kono, Y., et al.: Predictive impact of early mobilization on rehospitalization for elderly Japanese heart failure patients. Heart Vessels 35(4), 531–536 (2020)

    Google Scholar 

  66. Lim, N.-K., et al.: Risk prediction for 30-day heart failure-specific readmission or death after discharge: data from the Korean acute heart failure (KorAHF) registry. J. Cardiol. 73(2), 108–113 (2019)

    Google Scholar 

  67. Liu, X.; Chen, Y.; Bae, J.; Li, H.; Johnston, J.; Sanger, T.: Predicting heart failure readmission from clinical notes using deep learning. (2019) arXiv e-prints, p. http://arxiv.org/abs/1912.10306

  68. Mahajan, S.M.; Ghani, R.: Using ensemble machine learning methods for predicting risk of readmission for heart failure. Stud. Health Technol. Inf. 264, 243–247 (2019)

    Google Scholar 

  69. Mahajan, S.M.; Ghani, R.: Combining structured and unstructured data for predicting risk of readmission for heart failure patients. Stud. Health Technol. Inf. 264, 238–242 (2019)

    Google Scholar 

  70. Sohrabi, B.; Vanani, I.R.; Gooyavar, A.; Naderi, N.: Predicting the readmission of heart failure patients through data analytics. J. Inf. Knowledge Manag. 18(01), 1950012 (2019)

    Google Scholar 

  71. Tan, B.-Y.; Gu, J.-Y.; Wei, H.-Y.; Chen, L.; Yan, S.-L.; Deng, N.: Electronic medical record-based model to predict the risk of 90-day readmission for patients with heart failure. BMC Med. Inf. Decis. Mak. 19(1), 193 (2019)

    Google Scholar 

  72. Yao, S.-M., et al.: Predicting non-elective hospital readmission or death using a composite assessment of cognitive and physical frailty in elderly inpatients with cardiovascular disease. BMC Geriatr. 20(1), 218 (2020)

    Google Scholar 

  73. Ramírez, J.C.; Herrera, D.: Prediction of diabetic patient readmission using machine learning. IEEE Colombian Conf. Appl. Comput. Intell 2019, 1–4 (2019)

    Google Scholar 

  74. Sharma, A.; Agrawal, P.; Madaan, V.; Goyal, S.:Prediction on diabetes patient’s hospital readmission rates. Presented at the proceedings of the third international conference on advanced informatics for computing research, Shimla, India. (2019) Available: https://doi.org/10.1145/3339311.3339349

  75. Cheng, W.; Zhu, W.: Predicting 30-day hospital readmission for diabetics based on spark. In 2019 3rd International Conference on Imaging, Signal Processing and Communication (ICISPC), pp. 125–129 (2019)

  76. Pham, H.N., et al.: Predicting hospital readmission patterns of diabetic patients using ensemble model and cluster analysis. Int. Conf. Syst. Sci. Eng. 2019, 273–278 (2019)

    Google Scholar 

  77. Goudjerkan, T.; Jayabalan, M.: Predicting 30-day hospital readmission for diabetes patients using multilayer perceptron. Int. J. Adv. Comput. Sci. Appl. (2019). https://doi.org/10.14569/IJACSA.2019.0100236

    Article  Google Scholar 

  78. Alajmani, S.; Elazhary, H.: Hospital readmission prediction using machine learning techniques. Int. J. Adv. Comput. Sci. Appl. (2019). https://doi.org/10.14569/IJACSA.2019.0100425

    Article  Google Scholar 

  79. Alajmani, S.; Jambi, K.: Assessing advanced machine learning techniques for predicting hospital readmission. Int. J. Adv. Comput. Sci. Appl. (2020). https://doi.org/10.14569/IJACSA.2020.0110249

    Article  Google Scholar 

  80. Salem, H., et al.: Borderline personality features in inpatients with bipolar disorder: impact on course and machine learning model use to predict rapid readmission. J. Psychiatr Pract. 25(4), 279–289 (2019)

    Google Scholar 

  81. Cearns, M., et al.: Predicting rehospitalization within 2 years of initial patient admission for a major depressive episode: a multimodal machine learning approach. Transl. Psychiatry 9(1), 285 (2019)

    Google Scholar 

  82. Hariman, K.; Cheng, K.M.; Lam, J.; Leung, S.K.; Lui, S.S.Y.: Clinical risk model to predict 28-day unplanned readmission via the accident and emergency department after discharge from acute psychiatric units for patients with psychotic spectrum disorders. BJPsych open 6(1), e13–e13 (2020)

    Google Scholar 

  83. Morel, D.; Yu, K.C.; Liu-Ferrara, A.; Caceres-Suriel, A.J.; Kurtz, S.G.; Tabak, Y.P.: Predicting hospital readmission in patients with mental or substance use disorders: a machine learning approach. Int. J. Med. Inf. 139, 104136 (2020)

    Google Scholar 

  84. Goltz, D.E.; Ryan, S.P.; Howell, C.B.; Attarian, D.; Bolognesi, M.P.; Seyler, T.M.: A weighted index of elixhauser comorbidities for predicting 90-day readmission after total joint arthroplasty. J. Arthroplasty 34(5), 857–864 (2019)

    Google Scholar 

  85. Lee, H.K., et al.: An analytical framework for TJR readmission prediction and cost-effective intervention. IEEE J. Biomed. Health Inf. 23(4), 1760–1772 (2019)

    Google Scholar 

  86. Min, X.; Yu, B.; Wang, F.: Predictive modeling of the hospital readmission risk from patients’ claims data using machine learning: a case study on COPD. Sci. Rep. 9(1), 2362 (2019)

    Google Scholar 

  87. Chen, Z.; Lai, C.; Ren, J.: Hospital readmission prediction based on long-term and short-term information fusion. Appl. Soft Comput. 96, 106690 (2020)

    Google Scholar 

  88. Deo, S.V., et al.: Risk calculator to predict 30-day readmission after coronary artery bypass: a strategic decision support tool. Heart Lung Circ. 28(12), 1896–1903 (2019)

    Google Scholar 

  89. Lv, T., et al.: Application value of rapid predictive model for readmission risk in patients after CABG. Heart Surg. Forum 23(5), E668-e672 (2020)

    Google Scholar 

  90. Mounayar, A.-L., et al.: Development of a risk prediction model of potentially avoidable readmission for patients hospitalised with community-acquired pneumonia: study protocol and population. BMJ Open 10(11), e040573 (2020)

    Google Scholar 

  91. Zebin, T.; Chaussalet, T.J.: Design and implementation of a deep recurrent model for prediction of readmission in urgent care using electronic health records. IEEE Conf. Comput. Intell. Bioinf. Comput. Biol. 2019, 1–5 (2019)

    Google Scholar 

  92. Eckert, C., et al.: Development and prospective validation of a machine learning-based risk of readmission model in a large military hospital. Appl. Clin. Inf. 10(2), 316–325 (2019)

    Google Scholar 

  93. Pauly, V.; Mendizabal, H.; Gentile, S.; Auquier, P.; Boyer, L.: Predictive risk score for unplanned 30-day rehospitalizations in the French universal health care system based on a medico-administrative database. PLOS ONE 14(3), e0210714 (2019)

    Google Scholar 

  94. Kabue, S., et al.: The impact of pharmacy-specific predictors on the performance of 30-day readmission risk prediction models. Med. Care 57(4), 295–299 (2019)

    Google Scholar 

  95. Xue, Y.; Klabjan, D.; Luo, Y.: Predicting ICU readmission using grouped physiological and medication trends. Artif. Intell. Med. 95, 27–37 (2019)

    Google Scholar 

  96. Chandra, A., et al.: Risk of 30-day hospital readmission among patients discharged to skilled nursing facilities: development and validation of a risk-prediction model. J. Am. Med. Dir Assoc. 20(4), 444-450.e2 (2019)

    Google Scholar 

  97. Deschepper, M.; Eeckloo, K.; Vogelaers, D.; Waegeman, W.: A hospital wide predictive model for unplanned readmission using hierarchical ICD data. Comput. Methods Progr. Biomed. 173, 177–183 (2019)

    Google Scholar 

  98. Brüngger, B.; Blozik, E.: Hospital readmission risk prediction based on claims data available at admission: a pilot study in Switzerland. BMJ Open 9(6), e028409 (2019)

    Google Scholar 

  99. Flaks-Manov, N.; Topaz, M.; Hoshen, M.; Balicer, R.D.; Shadmi, E.: Identifying patients at highest-risk: the best timing to apply a readmission predictive model. BMC Med. Inf. Decis. Mak. 19(1), 118 (2019)

    Google Scholar 

  100. Lin, Y.-W.; Zhou, Y.; Faghri, F.; Shaw, M.J.; Campbell, R.H.: Analysis and prediction of unplanned intensive care unit readmission using recurrent neural networks with long short-term memory. PLOS ONE 14(7), e0218942 (2019)

    Google Scholar 

  101. Lone, N.I., et al.: Predicting risk of unplanned hospital readmission in survivors of critical illness: a population-level cohort study. Thorax 74(11), 1046–1054 (2019)

    Google Scholar 

  102. Barbieri, S., et al.: Benchmarking deep learning architectures for predicting readmission to the ICU and describing patients-at-risk. Sci. Rep. 10(1), 1111 (2020)

    Google Scholar 

  103. Yu, K.; Xie, X.: Predicting hospital readmission: a joint ensemble-learning model. IEEE J. Biomed. Health Inf. 24(2), 447–456 (2020)

    Google Scholar 

  104. Mišić, V.V.; Gabel, E.; Hofer, I.; Rajaram, K.; Mahajan, A.: Machine learning prediction of postoperative emergency department hospital readmission. Anesthesiology 132(5), 968–980 (2020)

    Google Scholar 

  105. Zhang, Y., et al.: Assessing the impact of social determinants of health on predictive models for potentially avoidable 30-day readmission or death. PLoS One 15(6), e0235064 (2020)

    Google Scholar 

  106. Hammer, M., et al.: A tool to predict readmission to the intensive care unit in surgical critical care patients-the RISC score. J. Intens. Care Med. (2020). https://doi.org/10.1177/0885066620949164

    Article  Google Scholar 

  107. Shah, N., et al.: Clinical analytics prediction engine (CAPE): development, electronic health record integration and prospective validation of hospital mortality, 180-day mortality and 30-day readmission risk prediction models. PLOS ONE 15(8), e0238065 (2020)

    Google Scholar 

  108. Saleh, S.N.; Makam, A.N.; Halm, E.A.; Nguyen, O.K.: Can we predict early 7-day readmissions using a standard 30-day hospital readmission risk prediction model? BMC Med. Inf. Decis. Mak. 20(1), 227 (2020)

    Google Scholar 

  109. Li, Q.; Yao, X.; Échevin, D.: How good is machine learning in predicting all-cause 30-day hospital readmission? Evidence from administrative data. Value Health 23(10), 1307–1315 (2020)

    Google Scholar 

  110. Whittaker, A.; Anson, M.; Harky, A.: Neurological Manifestations of COVID-19: A systematic review and current update. Acta Neurol. Scand. 142(1), 14–22 (2020)

    Google Scholar 

  111. Liu, P.P.; Blet, A.; Smyth, D.; Li, H.: The science underlying COVID-19: implications for the cardiovascular system. Circulation 142(1), 68–78 (2020)

    Google Scholar 

  112. Lavery, A.M., et al.: Characteristics of hospitalized COVID-19 patients discharged and experiencing same-hospital readmission: United States, march-august 2020. MMWR Morb. Mortal. Wkly. Rep. 69(45), 1695–1699 (2020)

    Google Scholar 

  113. Donnelly, J.P.; Wang, X.Q.; Iwashyna, T.J.; Prescott, H.C.: Readmission and death after initial hospital discharge among patients With COVID-19 in a large multihospital system. JAMA 325(3), 304–306 (2021)

    Google Scholar 

  114. Al-Shamsi, H.O., et al.: A practical approach to the management of cancer patients during the novel coronavirus disease 2019 (COVID-19) pandemic: an international collaborative group. Oncologist 25(6), e936–e945 (2020)

    MathSciNet  Google Scholar 

  115. Jeon, W.-H.; Seon, J.Y.; Park, S.-Y.; Oh, I.-H.: Analysis of risk factors on readmission cases of COVID-19 in the Republic of Korea: using nationwide health claims data. Int. J. Environ. Res. Public Health 17(16), 5844 (2020)

    Google Scholar 

  116. UyaroĞLu, O.A., et al.: Thirty-day readmission rate of COVID-19 patients discharged from a tertiary care university hospital in Turkey: an observational, single-center study. Int. J. Qual. Health Care (2020). https://doi.org/10.1093/intqhc/mzaa144

    Article  Google Scholar 

  117. Parra, L.M., et al.: Hospital readmissions of discharged patients with COVID-19. Int. J. Gen. Med. 13, 1359–1366 (2020)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khin Wee Lai.

Ethics declarations

Conflict of interest

There is no conflict of interest reported by any authors.

Additional information

This work was supported by the 2020 EBC-C (Extra-Budgetary Contributions from China) Project on Promoting the Use of ICT for Achievement of Sustainable Development Goals, and University Malaya under grant IF015-2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teo, K., Yong, C.W., Chuah, J.H. et al. Current Trends in Readmission Prediction: An Overview of Approaches. Arab J Sci Eng 48, 11117–11134 (2023). https://doi.org/10.1007/s13369-021-06040-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06040-5

Keywords