Skip to main content
Log in

Synthesis of Biogenic Chitosan Biopolymer-Functionalized Zinc-Doped Bi2O3 Nanoneedles and Its Bio-applications: In Vitro Antibacterial and Anticancer activity

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A new biogenic chitosan biopolymer-functionalized zinc-doped bismuth oxide nanoneedle was successfully synthesized by an ultrasound-assisted chemical precipitation method that annealed at 250°C. In this process, an appropriate amount of chitosan, Bi (NO3)2, sodium hydroxide and varying molar ratios of Zn (NO3)2 were used as the source materials. The obtained materials were subjected to annealing at 250°C and then characterized with X-ray diffraction, Fourier transform infrared spectroscopy, high-resolution scanning electron microscope, transmittance electron microscope, and UV–Vis–NIR spectroscopy (UV–Vis–NIR). The electrochemical properties of the materials were investigated by electrochemical impedance spectroscopy, and cyclic voltammetry in the pH range is 4 with (0.1) M buffer solution. Finally, the potential toxicity and antibacterial activity of the materials were investigated against Staphylococcus aureus, Escherichia coli and cancer cell lines HepG2 and C3A. The result indicates that CS/Zn0.75Bi2O3 nanoneedle shows zones of inhibition against S. aureus as 32 mm and E. coli as 35 mm. In the anticancer analysis, CS/Zn0.75Bi2O3 nanoneedles showed a maximum cell inhibition of 65.45% at 100 μg/mL−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ratova, M.; Redfern, J.; Verran, J.; Kelly, P.J.: Highly efficient photocatalytic bismuth oxide coatings and their antimicrobial properties under visible light irradiation. Appl. Catal. B Environ. 239(1), 223–232 (2018)

    Article  Google Scholar 

  2. Song, Y.; Jiang, H.; Bi, H.; Zhong, G.; Chen, J.; Wu, Y.; Wei, W.: Multifunctional bismuth oxychloride/mesoporous silica composites for photocatalysis, antibacterial test, and simultaneous stripping analysis of heavy metals. ACS Omega 3(1), 973–981 (2018)

    Article  Google Scholar 

  3. Iyyapushpam, S.; Nishanthi, S.T.; Pathinettam Padiyan, D.: Synthesis of room temperature bismuth oxide and its photocatalytic activity. Mater. Lett. 86(1), 25–27 (2012)

    Article  Google Scholar 

  4. Wang, H.W.; Hu, Z.A.; Chang, Y.Q.; Chen, Y.L.; Lei, Z.Q.; Zhang, Z.Y.; Yang, Y.Y.: Facile solvothermal synthesis of a graphene nanosheet–bismuth oxide composite and its electrochemical characteristics. Electrochim. Acta 55(28), 8974–8980 (2010)

    Article  Google Scholar 

  5. Periasamy, A.P.; Yang, S.; Chen, S.M.: Preparation and characterization of bismuth oxide nanoparticles-multiwalledcarbon nanotube composite for the development of horseradish peroxidase based H2O2 biosensor. Talanta 87(15), 15–23 (2011)

    Article  Google Scholar 

  6. Diaz-Guerra, C.; Almodovar, P.; Camacho-Lopez, M.; Camacho-Lopez, S.; Piqueras, J.: Formation of β-Bi2O3 and δ-Bi2O3 during laser irradiation of Bi films studied in situ by spatially resolved Raman spectroscopy. J. Alloys Compd. 723(5), 520–526 (2017)

    Article  Google Scholar 

  7. Yavo, N.; Smith, A.D.; Yeheskel, O.; Cohen, S.R.; Korobko, R.; Wachtel, E.; Slater, P.R.; Lubomirsky, I.: Large nonclassical electrostriction in (Y, Nb)-stabilized δ-Bi2O3. Adv. Funct. Mater. 26(7), 1138–1142 (2016)

    Article  Google Scholar 

  8. Lim, H.; Rawal, S.B.: Integrated Bi2O3 nanostructure modified with Au nanoparticles for enhanced photocatalytic activity under visible light irradiation. Prog. Nat. Sci. Mater. Int. 27(3), 289–296 (2017)

    Article  Google Scholar 

  9. Elumalai, K.; Velmurugan, S.; Ravi, S.; Kathiravan, V.; Adaikala Raj, G.: Bio-approach: Plant mediated synthesis of ZnO nanoparticles and their catalytic reduction of methylene blue. Adv. Powder Technol. 26(6), 1639–1651 (2015)

    Article  Google Scholar 

  10. Shi, L.E.; Li, Z.H.; Zheng, W.; Zhao, Y.F.; Jin, Y.F.; Tang, Z.X.: Synthesis, antibacterial activity, antibacterial mechanism and food applications of ZnO nanoparticles: a review. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess 31(2), 173–186 (2014)

    Article  Google Scholar 

  11. Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Mohamad Kaus, N.H.; Chuo Ann, L.; Mohd Bakhori, S.K.; Hasan, H.; Mohamad, D.: Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano Micro Lett. 7(3), 219–242 (2015)

    Article  Google Scholar 

  12. Lakshmi Prasanna, V.; Vijayaraghavan, R.: Insight into the mechanism of antibacterial activity of ZnO: surface defects mediated reactive oxygen species even in the dark. Langmuir 31(33), 9155–9162 (2015)

    Article  Google Scholar 

  13. Cornei, N.; Tancret, N.; Abraham, F.; Mentré, O.: New ε-Bi2O3 meta stable polymorph. Inorg. Chem. 45(13), 4886–4888 (2006)

    Article  Google Scholar 

  14. Demirel, R.; Suvac, E.; Şahin, İ.; Dag, S.; Kilic, V.: Antimicrobial activity of designed undoped and doped MicNo–ZnO particles. J. Drug Deliv. Sci. Technol. 47(1), 309–321 (2018)

    Article  Google Scholar 

  15. Kaviyarasu, K.; Maria Magdalane, C.; Jayakumar, D.; Samson, Y.; Bashir, A.K.H.; Maaza, M.; Letsholathebe, D.; Mahmoud, A.H.; Kennedy, J.: High performance of pyrochlore like Sm2Ti2O7 heterojunction photocatalyst for efficient degradation of rhodamine-B dye with waste water under visible light irradiation. J. King Saud Univ. Sci. 32(2), 1516–1522 (2020)

    Article  Google Scholar 

  16. Kaviyarasu, K.; Mola, G.T.; Oseni, S.O.; Kanimozhi, K.; Maria Magdalane, C.; Kennedy, J.; Maaza, M.: ZnO doped single wall carbon nanotube as an active medium for gas sensor and solar absorber. J. Mater. Sci. Mater. Electron. 30, 147–158 (2019)

    Article  Google Scholar 

  17. Prakash, T.; Williams, G.V.M.; Kennedy, J.; Rubanov, S.: High spin-dependent tunneling magneto resistance in magnetite powders made by arc discharge. J. Appl. Phys. 120, 123905 (2016)

    Article  Google Scholar 

  18. Raja, A.; Rajasekaran, P.; Selvakumar, K.; Arunpandian, M.; Kaviyarasu, K.; Asath Bahadur, S.; Swaminathan, M.: Visible active reduced graphene oxide-BiVO4-ZnO ternary photocatalyst for efficient removal of ciprofloxacin. Sep. Purif. Technol. 233, 115996 (2020)

    Article  Google Scholar 

  19. Rathnakumar, S.M.; Noluthando, K.; Kulandaiswamy, A.J.; Rayappan, J.B.B.; Kasinathan, K.; Kennedy, J.; Maaza, M.: Stalling behaviour of chloride ions: a non-enzymatic electrochemical detection of α-Endosulfan using CuO interface. Sens. Actuators B 293, 100–106 (2019)

    Article  Google Scholar 

  20. Maria Magdalane, C.; Kaviyarasu, K.; Maria Assuntha Priyadharsini, G.; Bashir, A.K.H.; Mayedwa, N.; Matinise, N.; Isaeve, A.B.; Abdullah Al-Dhabif, N.; Arasuf, M.V.; Arokiyaraj, S.; Kennedy, J.; Maaza, M.: Improved photocatalytic decomposition of aqueous Rhodamine-B by solar light illuminated hierarchical yttria nanosphere decorated ceria nanorods. J. Mater. Res. Technol. 8(3), 2898–2909 (2019)

    Article  Google Scholar 

  21. Kaviyarasu, K.; Maria Magdalane, C.; Kanimozhi, K.; Kennedy, J.; Siddhardha, B.; Subba Reddy, E.; Rotte, N.K.; Sharma, C.S.; Thema, F.T.; Letsholathebe, D.; Tessema Mola, G.; Maaza, M.: Elucidation of photocatalysis, photoluminescence and antibacterial studies of ZnO thin films by spin coating method. J. Photochem. Photobiol. B 173, 466–475 (2017)

    Article  Google Scholar 

  22. Zhang, L.; Sun, F.; Zuo, Y.; Fan, C.; Xu, S.; Yang, S.; Gu, F.: Immobilisation of CdS nanoparticles on chitosan microspheres via a photochemical method with enhanced photocatalytic activity in the decolourisation of methyl orange. Appl. Catal. B 156-157(1), 293–300 (2014)

    Article  Google Scholar 

  23. Farzana, M.H.; Meenakshi, S.: Removal of acid blue 158 from aqueous media by adsorption onto cross-linked chitosan beads. J. Chitin Chitosan Sci. 1(1), 50–58 (2013)

    Article  Google Scholar 

  24. Elanchezhiyan, S.S.; Sivasurian, N.; Meenakshi, S.: Recovery of oil from oil-in-water emulsion using biopolymers by adsorptive method. Int. J. Biol. Macromol. 70(1), 399–407 (2014)

    Article  Google Scholar 

  25. Sowmya, A.; Meenakshi, S.: Zr (IV) loaded cross-linked chitosan beads with enhanced surface area for the removal of nitrate and phosphate. Int. J. Biol. Macromol. 69(1), 336–343 (2014)

    Article  Google Scholar 

  26. Jiang, M.; Liu, X.; Wang, H.: Conductive and transparent Bi-doped ZnO thin films prepared by rf magnetron sputtering. Surf. Coat. Technol. 203(24), 3750–3753 (2009)

    Article  Google Scholar 

  27. Chandraboss, V.L.; Natanapatham, L.; Karthikeyan, B.; Kamalakkannan, J.; Prabha, S.; Senthilvelan, S.: Effect of Bismuth doping on the ZnO nanocomposite material and study of its photocatalytic activity under UV-light. Mater. Res. Bull. 40(10), 3707–3712 (2013)

    Article  Google Scholar 

  28. Sun, A.; Chen, H.; Song, C.; Jiang, F.; Wang, X.; Fu, Y.: Magnetic Bi25FeO40-graphene catalyst and its high visible-light photocatalytic performance. RSC Adv. 3(13), 4332–4340 (2013)

    Article  Google Scholar 

  29. Jabeen Fatima, M.J.; Navaneeth, A.; Sindhu, S.: Improved carrier mobility and bandgap tuning of zinc doped bismuth oxide. RSC Adv. 5(4), 2504–2510 (2015)

    Article  Google Scholar 

  30. Zhong, S.; Zou, S.; Peng, X.; Ma, J.; Zhang, F.: Effects of calcination temperature on preparation and properties of europium-doped bismuth oxide as visible light catalyst. J. Sol–Gel. Sci. Technol. 74(1), 220–226 (2015)

    Article  Google Scholar 

  31. Mastan, R.; Khorsand, Zak A.; Pilevar Shahri, R.: Bi-doped ZnO yellow nanopigments: synthesis, characterization, and antibacterial application for painting humid places. Ceram. Int. 46(7), 8582–8587 (2020)

    Article  Google Scholar 

  32. Molloy, M.P.; Herbert, B.R.; Slade, M.B.; Rabilloud, T.; Nouwens, A.S.; Williams, K.L.; Gooley, A.A.: Proteomic analysis of the Escherichia coli outer membrane. Eur. J. Biochem. 267(10), 2871–2881 (2000)

    Article  Google Scholar 

  33. Yin, Y.; Dang, Q.; Liu, C.; Yan, J.; Cha, D.; Yu, Z.; Cao, Y.; Wang, Y.; Fan, B.: Itaconic acid grafted carboxymethyl chitosan and its nanoparticles: preparation, characterization and evaluation. Int. J. Biol. Macromol. 102(1), 10–18 (2017)

    Article  Google Scholar 

  34. Zavareh, S.; Behrouzi, Z.; Avanes, A.: Cu(II) binded chitosan/Fe3O4 nanocomomposite as a new biosorbentfor efficient and selective removal of phosphate. Int. J. Biol. Macromol. 101(1), 40–50 (2017)

    Article  Google Scholar 

  35. Kannusamy, P.; Sivalingam, T.: Chitosan-ZnO/polyaniline hybrid composites: polymerization of aniline with chitosan-ZnO for better thermal and electrical property. Polym. Degrad. Stab. 98(5), 2988–2996 (2013)

    Article  Google Scholar 

  36. Tajally, M.; Mirzaee, O.; Eshaghi, A.: The effects of Ti concentration on the structure, optical, and electrical properties of Al and Ti co-doped ZnO thin films. Optik 127(11), 4645–4649 (2016)

    Article  Google Scholar 

  37. Osman, Z.; Arof, A.K.: FTIR studies of chitosan acetate based polymer electrolytes. Electrochim. Acta 48(8), 993–999 (2003)

    Article  Google Scholar 

  38. Pawlak, A.; Mucha, M.: Thermogravimetric and FTIR studies of chitosan blends. Thermochim. Acta 396(1–2), 153–166 (2003)

    Article  Google Scholar 

  39. Rao, K.S.V.K.; Reddy, P.R.; Lee, Y.I.; Kim, C.: Synthesis and characterization of chitosan–PEG–Ag nanocomposites for antimicrobial application. Carbohydr. Polym. 87(1), 920–925 (2012)

    Article  Google Scholar 

  40. Abdelwahab, N.A.; Helaly, F.M.: Simulated visible light photocatalytic degradation of Congo red by TiO2 coated magnetic polyacrylamide grafted carboxy methylated chitosan. J. Ind. Eng. Chem. 50(1), 162–171 (2017)

    Article  Google Scholar 

  41. Dudhani, A.R.; Kosaraju, S.L.: Bioadhesive chitosan nanoparticles: preparation and characterization. Carbohydr. Polym. 81(2), 243–251 (2010)

    Article  Google Scholar 

  42. Deshpande, P.; Dapkekar, A.; Oak, M.D.; Paknikar, K.M.; Rajwade, J.M.: Zinc complexed chitosan/TPP nanoparticles: a promising micronutrient nanocarrier suited for foliar application. Carbohydr. Polym. 165(1), 394–401 (2017)

    Article  Google Scholar 

  43. Dar, G.N.; Umar, A.; Zaidi, S.A.; Ibrahim, A.A.; Abaker, M.; Baskoutas, S.; Al- Assiri, M.S.: Ce-doped ZnO nanorods for the detection of hazardous chemical. Sens. Actuators B 173(1), 72–78 (2012)

    Article  Google Scholar 

  44. Naji Aljawf, R.; Rahman, F.; Kumar, S.: Defects/vacancies engineering and ferromagnetic behavior in pure ZnO and ZnO doped with Co nanoparticles. Mater. Res. Bull. 83(1), 108–115 (2016)

    Article  Google Scholar 

  45. Ai, Z.; Huang, Y.; Lee, S.; Zhang, L.: Monoclinic-Bi2O3 photocatalyst for efficient removal of gaseous NO and HCHO under visible light irradiation. J. Alloys Compd. 509(5), 2044–2049 (2011)

    Article  Google Scholar 

  46. Lv, T.; Pan, L.; Liu, X.; Lu, T.; Zhu, G.; Sun, Z.; Sun, C.Q.: One-step synthesis of CdS–TiO2–chemically reduced graphene oxide composites via microwave-assisted reaction for visible-light photocatalytic degradation of methyl orange. Catal. Sci. Technol. 2(1), 754–758 (2012)

    Article  Google Scholar 

  47. Zeng, P.; Zhang, Q.; Peng, T.; Zhang, X.: One-pot synthesis of reduced graphene oxide–cadmium sulfide nanocomposite and its photocatalytic hydrogen production. PCCP 13(48), 21496–21502 (2011)

    Article  Google Scholar 

  48. Hormigos, R.M.; Gismera, M.J.; TeresaSevilla, M.: Straight forward ultrasound-assisted synthesis of bismuth oxide particles with enhanced performance for electrochemical sensors development. Mater. Lett. 158(1), 359–362 (2015)

    Article  Google Scholar 

  49. Aytimur, A.; Sinan Temel, S.K.; Uslu, B.: Boron undoped and doped europium-bismuth oxide nanocomposites via the polymeric precursor technique. J. Miner. Met. Mater. Soc. 66(1), 1479–1484 (2014)

    Article  Google Scholar 

  50. Pawar, R.C.; Lee, C.S.: Single-step sensitization of reduced graphene oxide sheets and CdSnanoparticles on ZnO nanorods as visible-light photocatalysts. Appl. Catal. B Environ. 144(1), 57–65 (2014)

    Article  Google Scholar 

  51. Karthik, R.; Thambidurai, S.: Synthesis of cobalt doped ZnO/reduced graphene oxide nanorods as active material for heavy metal ions sensor and antibacterial activity. J. Alloys Compd. 715(1), 254–265 (2017)

    Article  Google Scholar 

  52. Higuchi, T.; Liu, Y.S.; Yao, P.; Glans, P.A.; Guo, J.H.; Chang, C.L.; Wu, Z.Y.; Sakamoto, W.; Itoh, N.; Shimura, T.; Yogo, T.; Hattori, T.: Electronic structure of multiferroic BiFeO3 by resonant soft x-ray emission spectroscopy. Phys. Rev. B Condens. Matter. Mater. Phys. 78(8), 085106 (2008)

    Article  Google Scholar 

  53. Li, Z.; Shen, Y.; Guan, Y.; Hu, Y.; Lin, Y.; Nan, C.W.: Bandgap engineering and enhanced interface coupling of graphene–BiFeO3 nanocomposites as efficient photocatalysts under visible light. J. Mater. Chem. A 2(6), 1967–1973 (2014)

    Article  Google Scholar 

  54. Ciszewski, M.; Mianowski, A.; Szatkowski, P.; Nawrat, G.; Adamek, J.: Reduced graphene oxide–bismuth oxide composite as electrode material for supercapacitors. Ionics 21(2), 557–563 (2015)

    Article  Google Scholar 

  55. Chandraboss, V.L.; Natanapatham, L.; Karthikeyan, B.; Kamalakkannan, J.; Prabha, S.; Senthilvelan, S.: Effect of Bismuth doping on the ZnO nanocomposite material and study of its photocatalytic activity under UV-light. Mater. Res. Bull. 48(10), 3707–3712 (2013)

    Article  Google Scholar 

  56. Han, W.; Ren, L.; Gong, L.; Qi, X.; Liu, Y.; Yang, L.; Wei, X.; Zhong, J.: Self-assembled three-dimensional graphene-based aerogel with embedded multifarious functional nanoparticles and its excellent photoelectrochemical activities. ACS Sustain. Chem. Eng. 2(4), 741–748 (2014)

    Article  Google Scholar 

  57. Kasi, G.; Seo, J.: Influence of Mg doping on the structural, morphological, optical, thermal, and visible-light responsive antibacterial properties of ZnO nanoparticles synthesized via co-precipitation. Mater. Sci. Eng. C 98(1), 717–725 (2019)

    Article  Google Scholar 

  58. Fang, S.W.; Li, C.F.; Shih, D.Y.C.: Antifungal activity of chitosan and its preservative effect on low-sugar candied kumquat. J. Food Prot. 57(2), 136–140 (1994)

    Article  Google Scholar 

  59. Goy, R.C.; de Britto, D.; Assis, O.B.G.: A review of the antimicrobial activity of chitosan. Polímer 19(3), 241–247 (2009)

    Article  Google Scholar 

  60. Wang, X.H.; Du, Y.M.; Liu, H.: Preparation, characterization and antimicrobial activity of chitosan-Zn complex. Carbohydr. Polym. 56(1), 21–26 (2004)

    Article  Google Scholar 

  61. Inoue, Y.; Kanzaki, Y.: The mechanism of antibacterial activity of silver-loaded zeolite. J. Inorg. Biochem. 67(1–4), 377 (1997)

    Article  Google Scholar 

  62. Bacchi, A.; Carcelli, M.; Pelagatti, P.; Pelizzi, C.; Pelizzi, G.; Zani, F.: Antimicrobialand mutagenic activity of some carbono- and thiocarbonohydrazone ligandsand their copper (II), iron (II) and zinc (II) complexes. J. Inorg. Biochem. 75(2), 123–133 (1999)

    Article  Google Scholar 

  63. Yang, Z.H.; Xie, C.S.; Xia, X.P.; Cai, S.Z.: Zn2+ release behavior and surface characteristics of Zn/LDPE nanocomposites and ZnO/LDPE nanocomposites in simulateduterine solution. J. Mater. Sci. Mater. Med. 19(11), 3319–3326 (2008)

    Article  Google Scholar 

  64. Azevedo, E.P.; Saldanha, T.D.P.; Navarro, M.V.M.; Medeiros, A.C.; Ginani, M.F.; Raffin, F.N.: Mechanical properties and release studies of chitosan films impregnatedwith silver sulfadiazine. J. Appl. Polym. Sci. 102(4), 3462–3470 (2006)

    Article  Google Scholar 

  65. Qin, Y.M.; Zhu, C.J.; Chen, J.; Chen, Y.Z.; Zhang, C.: The absorption and release of silver and zinc ions by chitosan fibers. J. Appl. Polym. Sci. 101(1), 766–771 (2006)

    Article  Google Scholar 

  66. Feng, Q.L.; Wu, J.; Chen, G.Q.; Cui, F.Z.; Kim, T.N.; Kim, J.O.: A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 52(4), 662–668 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

I acknowledge my sincere gratitude to Dr. R. Swaminathan, Principal, Vidhyaa Giri College of Arts and Science-Puduvayal-Sivagangai for an encourage the research work. This study was supported by the National Research Foundation of Korea, which is funded by the Korean Government [NRF-2018-R1A6A1A-03024314].

Author information

Authors and Affiliations

Authors

Contributions

Ramaiah Karthik, first author, was involved in conceptualization, methodology, investigation, writing—original draft and formal analysis. Kannuchamy Pandiselvi performed validation, resources, writing—reviewing and editing. Karuppusamy Mariyappan contributed to methodology, formal analysis, validation, resources, writing–reviewing and editing. Jayachandran sivakamavalli, corresponding author, performed validation, visualization and supervision.

Corresponding author

Correspondence to J. Sivakamavalli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karthik, R., Pandiselvi, K., Mariyappan, K. et al. Synthesis of Biogenic Chitosan Biopolymer-Functionalized Zinc-Doped Bi2O3 Nanoneedles and Its Bio-applications: In Vitro Antibacterial and Anticancer activity. Arab J Sci Eng 46, 5605–5618 (2021). https://doi.org/10.1007/s13369-020-05099-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05099-w

Keywords

Navigation