Skip to main content
Log in

Biosynthesized Silver Nanoparticles for Colorimetric Detection of Fe3+ Ions

Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, the biosynthesis and characterization of silver nanoparticles (AgNPs) from orchid tree (Bauhinia variegata) leaf extract were firstly carried out, and then, the usability of AgNPs as a colorimetric sensor for detection of Fe3+ ions in aqueous solutions was evaluated. The characterization studies showed that the synthesized particles were determined to be AgNPs in nanoscale and face-centered cubic structure. Besides, the total phenolic content of B. variegata extract was determined to be 1.826 ± 2.1 mg gallic acid equivalents/g dry leaf. Also, the biosynthesized AgNPs showed a strong surface plasmon resonance (λSPR) around 430 nm and λSPR intensity decreased with the increasing in Fe3+ concentration in aqueous solution. Based on the linear relationship between the change of λSPR intensity and Fe3+ ion concentration, AgNPs can be used for the sensitive and selective detection of Fe3+ ions in aqueous solutions with a linear range of 6-100 μM and a detection limit of 2.08 × 10−6 M.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Carolin, C.F.; Kumar, P.S.; Saravanan, A.; Joshiba, G.J.; Naushad, M.: Efficient techniques for the removal of toxic heavy metals from aquatic environment: a review. J. Environ. Chem. Eng. 5(3), 2782–2799 (2017)

    Google Scholar 

  2. Tüzen, M.: Determination of heavy metals in fish samples of the middle Black Sea (Turkey) by graphite furnace atomic absorption spectrometry. Food Chem. 80(1), 119–123 (2003)

    Google Scholar 

  3. Aydin, F.A.; Soylak, M.: Separation, preconcentration and inductively coupled plasma-mass spectrometric (ICP-MS) determination of thorium (IV), titanium (IV), iron (III), lead (II) and chromium (III) on 2-nitroso-1-naphthol impregnated MCI GEL CHP20P resin. J. Hazard. Mater. 173(1–3), 669–674 (2010)

    Google Scholar 

  4. Donohue, S.J.; Aho, D.W.; Plank, C.O.: Determination of P, K, Ca, Mg, Mn, Fe, Al, B, Cu, and Zn in plant tissue by inductively coupled plasma (ICP) emission spectroscopy. Plant Anal. Ref. Proced. South. Reg. US 7, 34–37 (1992)

    Google Scholar 

  5. Şenyuva, H.Z.; Sarica, D.Y.; Özden, T.: Simultaneous determination of Fe(II) and Fe(III) in pharmaceutical samples by post-column derivatization/HPLC. Turk. J. Chem. 26(3), 425–430 (2002)

    Google Scholar 

  6. Gholivand, M.B.; Geravandi, B.; Parvin, M.H.: Anodic stripping voltammetric determination of iron (II) at a carbon paste electrode modified with dithiodianiline (DTDA) and gold nanoparticles (GNP). Electroanal. 23(6), 1345–1351 (2011)

    Google Scholar 

  7. Segura, R.; Toral, M.I.; Arancibia, V.: Determination of iron in water samples by adsorptive stripping voltammetry with a bismuth film electrode in the presence of 1-(2-piridylazo)-2-naphthol. Talanta 75(4), 973–977 (2008)

    Google Scholar 

  8. Yaqoob, M.; Waseem, A.; Nabi, A.: Determination of total iron in fresh waters using flow injection with potassium permanganate chemiluminescence detection. J. Anal. Chem. 61(9), 917–921 (2006)

    Google Scholar 

  9. Guzar, S.H.; Jin, Q.H.: Simple, selective, and sensitive spectrophotometric method for determination of trace amounts of nickel (II), copper (II), cobalt (II), and iron (III) with a novel reagent 2-pyridine carboxaldehyde isonicotinyl hydrazone. Chem. Res. Chin. Univ. 24(2), 143–147 (2008)

    Google Scholar 

  10. Annadhasan, M.; Kasthuri, J.; Rajendiran, N.: A facile sunlight-induced synthesis of phenylalanine-conjugated cholic acid-stabilized silver and gold nanoparticles for colorimetric detection of toxic Hg2 + , Cr6 + and Pb2 + ions. Chem. Sel. 4(21), 6557–6567 (2019)

    Google Scholar 

  11. Giokas, D.L.; Paleologos, E.K.; Karayannis, M.I.: Speciation of Fe(II) and Fe(III) by the modified ferrozine method, FIA–spectrophotometry, and flame AAS after cloud-point extraction. Anal. Bioanal. Chem. 373(4–5), 237–243 (2002)

    Google Scholar 

  12. Blain, S.; Treguer, P.: Iron (II) and iron (III) determination in sea water at the nanomolar level with selective on-line preconcentration and spectrophotometric determination. Anal. Chim. 308(1–3), 425–432 (1995)

    Google Scholar 

  13. Liang, Z.Q.; Wang, C.X.; Yang, J.X.; Gao, H.W.; Tian, Y.P.; Tao, X.T.; Jiang, M.H.: A highly selective colorimetric chemosensor for detecting the respective amounts of iron (II) and iron (III) ions in water. New J. Chem. 31(6), 906–910 (2007)

    Google Scholar 

  14. Kass, M.; Ivaska, A.: Spectrophotometric determination of iron (III) and total iron by sequential injection analysis technique. Talanta 58(6), 1131–1137 (2002)

    Google Scholar 

  15. Mulaudzi, L.V.; van Staden, J.F.; Stefan, R.I.: On-line determination of iron (II) and iron (III) using a spectrophotometric sequential injection system. Anal. Chim. 467(1–2), 35–49 (2002)

    Google Scholar 

  16. Ohno, S.; Teshima, N.; Sakai, T.; Grudpan, K.; Polasek, M.: Sequential injection lab-on-valve simultaneous spectrophotometric determination of trace amounts of copper and iron. Talanta 68(3), 527–534 (2006)

    Google Scholar 

  17. Abdollahi, H.: Simultaneous spectrophotometric determination of chromium (VI) and iron (III) with chromogenic mixed reagents by H-point standard addition method and partial least squares regression. Anal. Chim. 442(2), 327–336 (2001)

    Google Scholar 

  18. Gao, X.; Lu, Y.; He, S.; Li, X.; Chen, W.: Colorimetric detection of iron ions (III) based on the highly sensitive plasmonic response of the N-acetyl-l-cysteine-stabilized silver nanoparticles. Anal. Chim. Acta 879, 118–125 (2015)

    Google Scholar 

  19. Qu, K.; Wang, J.; Ren, J.; Qu, X.: Carbon dots prepared by hydrothermal treatment of dopamine as an effective fluorescent sensing platform for the label-free detection of iron (III) ions and dopamine. Chem. Eur. J. 19(22), 7243–7249 (2013)

    Google Scholar 

  20. Tripathy, S.K.; Woo, J.Y.; Han, C.S.: Colorimetric detection of Fe(III) ions using label-free gold nanoparticles and acidic thiourea mixture. Sens. Actuators B Chem. 181, 114–118 (2013)

    Google Scholar 

  21. Salimi, F.; Kiani, M.; Karami, C.; Taher, M.A.: Colorimetric sensor of detection of Cr(III) and Fe(II) ions in aqueous solutions using gold nanoparticles modified with methylene blue. Optik 158, 813–825 (2018)

    Google Scholar 

  22. Wu, S.P.; Chen, Y.P.; Sung, Y.M.: Colorimetric detection of Fe3+ ions using pyrophosphate functionalized gold nanoparticles. Analyst 136(9), 1887–1891 (2011)

    Google Scholar 

  23. Bothra, S.; Solanki, J.N.; Sahoo, S.K.: Functionalized silver nanoparticles as chemosensor for pH, Hg2+ and Fe3+ in aqueous medium. Sens. Actuators B-Chem. 188, 937–943 (2013)

    Google Scholar 

  24. Zhan, J.; Wen, L.; Miao, F.; Tian, D.; Zhu, X.; Li, H.: Synthesis of a pyridyl-appended calix [4] arene and its application to the modification of silver nanoparticles as an Fe3+ colorimetric sensor. New J. Chem. 36(3), 656–661 (2012)

    Google Scholar 

  25. Buduru, P.: Oxamic acid and p-aminobenzoic acid functionalized gold nanoparticles as a probe for colorimetric detection of Fe3+ ion. Sens. Actuators B Chem. 237, 935–943 (2016)

    Google Scholar 

  26. Sabour, B.; Kheirifam, M.: Electrochemical synthesis of magnetite nanoparticles and their doping with Cu2+ cations and surface coating with polyethylenimine. Anal. Bioanal. Electrochem. 11(1), 99–107 (2019)

    Google Scholar 

  27. Lapp, A.S.; Duan, Z.; Marcella, N.; Luo, L.; Genc, A.; Ringnalda, J.; Crooks, R.M.: Experimental and theoretical structural investigation of AuPt nanoparticles synthesized using a direct electrochemical method. J. Am. Chem. Soc. 140(20), 6249–6259 (2018)

    Google Scholar 

  28. Lone, I.H.; Ahmed, J.; Ahmad, T.: Reverse micellar synthesis, characterization, magnetic and ferroelectric properties of YFeO3 nanoparticles. Mater. Today Proc. 5(7), 15303–15310 (2018)

    Google Scholar 

  29. Tianimoghadam, S.; Salabat, A.: A microemulsion method for preparation of thiol-functionalized gold nanoparticles. Particuology 37, 33–36 (2018)

    Google Scholar 

  30. Safaei, M.; Beitollahi, H.; Shishehbore, M.R.: Synthesis and characterization of NiFe2O4 nanoparticles using the hydrothermal method as magnetic catalysts for electrochemical detection of norepinephrine in the presence of folic acid. J. Chin. Chem. Soc. (2019). https://doi.org/10.1002/jccs.201900073

    Article  Google Scholar 

  31. Zhang, X.; Sun, H.; Tan, S.; Gao, J.; Fu, Y.; Liu, Z.: Hydrothermal synthesis of Ag nanoparticles on the nanocellulose and their antibacterial study. Inorg. Chem. Commun. 100, 44–50 (2019)

    Google Scholar 

  32. Yusof, N.S.M.; Ashokkumar, M.: Sonochemical synthesis of gold nanoparticles by using high intensity focused ultrasound. Chem. Phys. Chem. 16(4), 775–781 (2015)

    Google Scholar 

  33. Vinoth, V.; Wu, J.J.; Asiri, A.M.; Anandan, S.: Sonochemical synthesis of silver nanoparticles anchored reduced graphene oxide nanosheets for selective and sensitive detection of glutathione. Ultrason. Sonochem. 39, 363–373 (2017)

    Google Scholar 

  34. Ghorbani, H.R.; Mehr, F.P.; Pazoki, H.; Rahmani, B.M.: Synthesis of ZnO nanoparticles by precipitation method. Orient. J. Chem. 31(2), 1219–1221 (2015)

    Google Scholar 

  35. Lassoued, A.; Dkhil, B.; Gadri, A.; Ammar, S.: Control of the shape and size of iron oxide (α-Fe2O3) nanoparticles synthesized through the chemical precipitation method. Res. Phys. 7, 3007–3015 (2017)

    Google Scholar 

  36. Guzmán, M.G.; Dille, J.; Godet, S.: Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity. Int. J. Chem. Biomol. Eng. 2(3), 104–111 (2009)

    Google Scholar 

  37. Sugimoto, T.; Zhou, X.; Muramatsu, A.: Synthesis of uniform anatase TiO2 nanoparticles by gel–sol method: 4. Shape Control. J. Colloid Interf. Sci. 259(1), 53–61 (2003)

    Google Scholar 

  38. Veerasamy, R.; Xin, T.Z.; Gunasagaran, S.; Xiang, T.F.W.; Yang, E.F.C.; Jeyakumar, N.; Dhanaraj, S.A.: Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. J. Saudi Chem. Soc. 15(2), 113–120 (2011)

    Google Scholar 

  39. Kalaiselvi, D.; Mohankumar, A.; Shanmugam, G.; Nivitha, S.; Sundararaj, P.: Green synthesis of silver nanoparticles using latex extract of Euphorbia tirucalli: a novel approach for the management of root knot nematode, Meloidogyne incognita. Crop Prot. 117, 108–114 (2019)

    Google Scholar 

  40. Sithara, R.; Selvakumar, P.; Arun, C.; Anandan, S.; Sivashanmugam, P.: Economical synthesis of silver nanoparticles using leaf extract of Acalypha hispida and its application in the detection of Mn(II) ions. J. Adv. Res. 8(6), 561–568 (2017)

    Google Scholar 

  41. Puente, C.; Gómez, I.; Kharisov, B.; López, I.: Selective colorimetric sensing of Zn(II) ions using green-synthesized silver nanoparticles: ficus benjamina extract as reducing and stabilizing agent. Mater. Res. Bull. 112, 1–8 (2019)

    Google Scholar 

  42. Slinkard, K.; Singleton, V.L.: Total phenol analysis: automation and comparison with manual methods. Am. J. Enol. Vitic. 28(1), 49–55 (1977)

    Google Scholar 

  43. Gade, A.; Gaikwad, S.; Duran, N.; Rai, M.: Green synthesis of silver nanoparticles by Phoma glomerata. Micron 59, 52–59 (2014)

    Google Scholar 

  44. Mulfinger, L.; Solomon, S.D.; Bahadory, M.; Jeyarajasingam, A.V.; Rutkowsky, S.A.; Boritz, C.: Synthesis and study of silver nanoparticles. J. Chem. Educ. 84(2), 322 (2007)

    Google Scholar 

  45. Veisi, H.; Azizi, S.; Mohammadi, P.: Green synthesis of the silver nanoparticles mediated by Thymbra spicata extract and its application as a heterogeneous and recyclable nanocatalyst for catalytic reduction of a variety of dyes in water. J. Clean. Prod. 170, 1536–1543 (2018)

    Google Scholar 

  46. Siddiqui, M.N.; Redhwi, H.H.; Achilias, D.S.; Kosmidou, E.; Vakalopoulou, E.; Ioannidou, M.D.: Green synthesis of silver nanoparticles and study of their antimicrobial properties. J. Polym. Environ. 26(2), 423–433 (2018)

    Google Scholar 

  47. Kathiraven, T.; Sundaramanickam, A.; Shanmugam, N.; Balasubramanian, T.: Green synthesis of silver nanoparticles using marine algae Caulerpa racemosa and their antibacterial activity against some human pathogens. Appl. Nanosci. 5(4), 499–504 (2015)

    Google Scholar 

  48. Muthukumaran, U.; Govindarajan, M.; Rajeswary, M.; Hoti, S.L.: Synthesis and characterization of silver nanoparticles using Gmelina asiatica leaf extract against filariasis, dengue, and malaria vector mosquitoes. Parasitol. Res. 114(5), 1817–1827 (2015)

    Google Scholar 

  49. Mishra, P.M.; Sahoo, S.K.; Naik, G.K.; Parida, K.: Biomimetic synthesis, characterization and mechanism of formation of stable silver nanoparticles using Averrhoa carambola L. leaf extract. Mater. Lett. 160, 566–571 (2015)

    Google Scholar 

  50. Sathyavathi, R.; Krishna, M.B.; Rao, S.V.; Saritha, R.; Rao, D.N.: Biosynthesis of silver nanoparticles using Coriandrum sativum leaf extract and their application in nonlinear optics. Adv. Sci. Lett. 3(2), 138–143 (2010)

    Google Scholar 

  51. Bothra, S.; Solanki, J.N.; Sahoo, S.K.: Functionalized silver nanoparticles as chemosensor for pH, Hg2+ and Fe3+ in aqueous medium. Sens. Actuators B Chem. 188, 937–943 (2013)

    Google Scholar 

  52. Firdaus, M.L.; Fitriani, I.; Wyantuti, S.; Hartati, Y.W.; Khaydarov, R.; McAlister, J.A.; Gamo, T.: Colorimetric detection of mercury (II) ion in aqueous solution using silver nanoparticles. Anal. Sci. 33(7), 831–837 (2017)

    Google Scholar 

  53. Firdaus, M.; Andriana, S.; Alwi, W.; Swistoro, E.; Ruyani, A.; Sundaryono, A.: Green synthesis of silver nanoparticles using Carica Papaya fruit extract under sunlight irradiation and their colorimetric detection of mercury ions. J. Phys. Conf. Ser. 817(1), 1–6 (2017)

    Google Scholar 

  54. Zou, R.; Guo, X.; Yang, J.; Li, D.; Peng, F.; Zhang, L.; Yu, H.: Selective etching of gold nanorods by ferric chloride at room temperature. Cryst. Eng. Commun. 11(12), 2797–2803 (2009)

    Google Scholar 

  55. Liu, J.M.; Jiao, L.; Cui, M.L.; Lin, L.P.; Wang, X.X.; Zheng, Z.Y.; Jiang, S.L.: A highly sensitive non-aggregation colorimetric sensor for the determination of I − based on its catalytic effect on Fe3+ etching gold nanorods. Sens. Actuators B Chem. 188, 644–650 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deniz Uzunoğlu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uzunoğlu, D., Ergüt, M., Kodaman, C.G. et al. Biosynthesized Silver Nanoparticles for Colorimetric Detection of Fe3+ Ions. Arab J Sci Eng (2020). https://doi.org/10.1007/s13369-020-04760-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-020-04760-8

Keywords

Navigation