Skip to main content
Log in

Ameliorating Effect of Boric Acid Against Vanadium Toxicity in Wheat (Triticum aestivum L.)

  • Research Article - Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Heavy metal pollution, which is one of the most important environmental problems, has a significant effect on plant productivity. Vanadium (V) is considered one of the most important elements of the twenty-first century due to its high consumption in industries. Morphological and physiological measurements have been performed in V studies, but there are deficiencies in molecular studies. The purpose of the present work was to elucidate the effects of V on enzymes activity, DNA damage levels and genomic template stability (GTS%) in Triticum aestivum L., as well as to investigate whether boric acid (BA) has preventive effects on these changes. Antioxidant enzyme activities were determined by SOD (superoxide dismutase), POD (peroxidase) and MDA (malondialdehyde) level. The inter-simple sequence repeats polymerase chain reaction (ISSR-PCR) assay was used to determine the genotoxic effects of V on DNA. According to the obtained results, while V stress increased MDA level and POD enzyme activity, SOD enzyme activity decreased. When V and BA were applied together, MDA level decreased and SOD and POD enzyme activities increased. All doses of V (4.4, 6.6, 8.8 mM) resulted in DNA damage and decreased GTS%. On the other hand, different concentrations of BA (4 and 8 mM) combined with V decreased the toxic effects of V. The results suggested that V could also have negative effects on wheat plants by increasing DNA damage and lipid peroxidation, and BA has an antagonistic effect against V toxicity. BA may be an alternative to reduce genetic damage in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BA:

Boric acid

CTAB:

Cetyltrimethylammonium bromide

GTS:

Genomic template stability

ISSR:

Inter-simple sequence repeat

MDA:

Malondialdehyde

POD:

Peroxidase

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

V:

Vanadium

References

  1. Shyam, R.; Aery, N.C.: Effect of cerium on growth, dry matter production, biochemical constituents and enzymatic activities of cowpea plants. J. Soil Sci. Plant Nutr. 12(1), 1–14 (2012)

    Article  Google Scholar 

  2. Anke, M.: Vanadium: an element both essential and toxic to plants, animals and humans? Anales de la Real Academia Nacional de Farmacia 70, 961–999 (2004)

    Google Scholar 

  3. Amorim, F.A.; Welz, B.; Costa, A.C.; Lepri, F.G.; Vale, M.G.R.; Ferreira, S.L.: Determination of vanadium in petroleum and petroleum products using atomic spectrometric techniques. Talanta 72(2), 349–359 (2007)

    Article  Google Scholar 

  4. Kar, B.B.; Datta, P.; Misra, V.N.: Spent catalyst: secondary source for molybdenum recovery. Hydrometallurgy 72(1–2), 87–92 (2004)

    Article  Google Scholar 

  5. Bhatt, K.H.; Anwar, S.; Nawaz, K.; Hussain, K.; Siddiqi, E.H.; Sharif, R.U.; Talat, A.; Khalid, A.: Effect of heavy metal lead (PB) stress of different concentration on wheat (Triticum aestivum L.). Middle East J. Sci. Res. 14(2), 148–154 (2013). https://doi.org/10.5829/idosi.mejsr.2013.14.2.19560

    Article  Google Scholar 

  6. Lamhamdi, M.; El Galiou, O.; Bakrim, A.; Novoa-Munoz, J.C.; Arias-Estevez, M.; Aarab, A.; Lafont, R.: Effect of lead stress on mineral content and growth of wheat (Triticum aestivum) and spinach (Spinacia oleracea) seedlings. Saudi J. Biol. Sci. 20(1), 29–36 (2013)

    Article  Google Scholar 

  7. Mahajan, S.; Tuteja, N.: Cold, salinity and drought stresses: an overview. Arch. Biochem. Biophys. 444(2), 139–158 (2005)

    Article  Google Scholar 

  8. Imtiaz, M.; Rizwan, M.S.; Xiong, S.; Li, H.; Ashraf, M.; Shahzad, S.M.; Shahzad, M.; Rizwan, M.: Vanadium, recent advancements and research prospects. Environ. Int. 80, 79–88 (2015)

    Article  Google Scholar 

  9. Gill, S.S.; Tuteja, N.: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48(12), 909–930 (2010)

    Article  Google Scholar 

  10. Tang, J.; Chen, Y.; Chen, X.; Yao, Y.; Ying, H.; Xiong, J.; Bai, J.: Production of cytidine 5′-diphosphorylcholine with high utilization of ATP by whole cells of Saccharomyces cerevisiae. Bioresour. Technol. 101(22), 8807–8813 (2010)

    Article  Google Scholar 

  11. IARC (International Agency for Research on Cancer): Cobalt in Hard Metals and Cobalt Sulfate, Gallium Arsenide, Indium Phosphide and Vanadium Pentoxide. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, vol. 86, pp. 1–294 (2006)

  12. Mailhes, J.B.; Hilliard, C.; Fuseler, J.W.; London, S.N.: Vanadate, an inhibitor of tyrosine phosphatases, induced premature anaphase in oocytes and aneuploidy and polyploidy in mouse bone marrow cells. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 538(1), 101–107 (2003)

    Article  Google Scholar 

  13. Ramirez, P.; Eastmond, D.A.; Laclette, J.P.; Ostrosky-Wegman, P.: Disruption of microtubule assembly and spindle formation as a mechanism for the induction of aneuploid cells by sodium arsenite and vanadium pentoxide. Mutat. Res. Rev. Mutat. Res. 386(3), 291–298 (1997)

    Article  Google Scholar 

  14. Evangelou, A.M.: Vanadium in cancer treatment. Crit. Rev. Oncol. Hematol. 42(3), 249–265 (2002)

    Article  Google Scholar 

  15. Rodríguez-Mercado, J.J.; Mateos-Nava, R.A.; Altamirano-Lozano, M.A.: DNA damage induction in human cells exposed to vanadium oxides in vitro. Toxicol. In Vitro 25(8), 1996–2002 (2011)

    Article  Google Scholar 

  16. Shireen, F.; Nawaz, M.A.; Chen, C.; Zhang, Q.; Zheng, Z.; Sohail, H.; Sun, J.Y.; Cao, H.S.; Huang, Y.; Bie, Z.: Boron: functions and approaches to enhance its availability in plants for sustainable agriculture. Int. J. Mol. Sci. 19(7), 1856 (2018)

    Article  Google Scholar 

  17. Camacho-Cristóbal, J.J.; Martín-Rejano, E.M.; Herrera-Rodríguez, M.B.; Navarro-Gochicoa, M.T.; Rexach, J.; González-Fontes, A.: Boron deficiency inhibits root cell elongation via an ethylene/auxin/ROS-dependent pathway in Arabidopsis seedlings. J. Exp. Bot. 66, 3831–3840 (2015)

    Article  Google Scholar 

  18. Hänsch, R.; Mendel, R.R.: Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr. Opin. Plant Biol. 12, 259–266 (2009)

    Article  Google Scholar 

  19. Turkez, H.; Geyikoglu, F.; Tatar, A.; Keles, M.S.; Kaplan, İ.: The effects of some boron compounds against heavy metal toxicity in human blood. Exp. Toxicol. Pathol. 64(1–2), 93–101 (2012)

    Article  Google Scholar 

  20. Erturk, F.A.; Agar, G.; Arslan, E.; Nardemir, G.; Sahin, Z.: Determination of genomic instability and DNA methylation effects of Cr on maize (Zea mays L.) using RAPD and CRED-RA analysis. Acta Physiol. Plant. 36(6), 1529–1537 (2014)

    Article  Google Scholar 

  21. Nawaz, M.A.; Jiao, Y.; Chen, C.; Shireen, F.; Zheng, Z.; Imtiaz, M.; Huang, Y.: Melatonin pretreatment improves vanadium stress tolerance of watermelon seedlings by reducing vanadium concentration in the leaves and regulating melatonin biosynthesis and antioxidant-related gene expression. J. Plant Physiol. 220, 115–127 (2018)

    Article  Google Scholar 

  22. Çatav, Ş.S.; Genç, T.O.; Oktay, M.K.; Küçükakyüz, K.: Effect of boron toxicity on oxidative stress and genotoxicity in wheat (Triticum aestivum L.). Bull. Environ. Contam. Toxicol. 100(4), 502–508 (2018)

    Article  Google Scholar 

  23. Yildirim, N.; Agar, G.; Taspinar, M.S.; Turan, M.; Aydin, M.; Arslan, E.: Protective role of humic acids against dicamba-induced genotoxicity and DNA methylation in Phaseolus vulgaris L. Acta Agric. Scand. Sect. B Soil Plant Sci. 64, 141–148 (2014)

    Google Scholar 

  24. Imtiaz, M.; Tu, S.; Xie, Z.; Han, D.; Ashraf, M.; Rizwan, M.S.: Growth, V uptake, and antioxidant enzymes responses of chickpea (Cicer arietinum L.) genotypes under vanadium stress. Plant Soil 390(1–2), 17–27 (2015)

    Article  Google Scholar 

  25. Goc, A.: Biological activity of vanadium compounds. Cent. Eur. J. Biol. 1(3), 314–332 (2006)

    Google Scholar 

  26. Gokul, A.; Cyster, L.F.; Keyster, M.: Efficient superoxide scavenging and metal immobilization in roots determines the level of tolerance to Vanadium stress in two contrasting Brassica napus genotypes. S. Afr. J. Bot. 119, 17–27 (2018)

    Article  Google Scholar 

  27. Liu, F.; Grundke-Iqbal, I.; Iqbal, K.; Gong, C.X.: Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation. Eur. J. Neurosci. 22(8), 1942–1950 (2005)

    Article  Google Scholar 

  28. Pessoa, J.C.; Etcheverry, S.; Gambino, D.: Vanadium compounds in medicine. Coord. Chem. Rev. 301, 24–48 (2015)

    Article  Google Scholar 

  29. Usende, I.L.; Alimba, C.G.; Emikpe, B.O.; Bakare, A.A.; Olopade, J.O.: Intraperitoneal sodium metavanadate exposure induced severe clinicopathological alterations, hepato-renal toxicity and cytogenotoxicity in African giant rats (Cricetomys gambianus, Waterhouse, 1840). Environ. Sci. Pollut. Res. 25(26), 26383–26393 (2018)

    Article  Google Scholar 

  30. Samira, M.; Mounira, T.; Kamel, K.; Yacoubi, M.T.; Ben Rhouma, K.; Sakly, M.; Tebourbi, O.: Hepatotoxicity of vanadyl sulfate in nondiabetic and streptozotocin-induced diabetic rats. Can. J. Physiol. Pharmacol. 96(11), 1076–1083 (2018)

    Article  Google Scholar 

  31. Poschenrieder, C.; Gunsé, B.; Corrales, I.; Barceló, J.: A glance into aluminum toxicity and resistance in plants. Sci. Total Environ. 400(1–3), 356–368 (2008)

    Article  Google Scholar 

  32. Yu, M.; Shen, R.; Liu, J.; Chen, R.; Xu, M.; Yong, Y.: The role of root border cells in aluminum resistance of pea (Pisum sativum) grown in mist culture. J. Plant Nutr. Soil Sci. 172, 528–534 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozlem Bakir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakir, O., Agar, G. Ameliorating Effect of Boric Acid Against Vanadium Toxicity in Wheat (Triticum aestivum L.). Arab J Sci Eng 45, 113–120 (2020). https://doi.org/10.1007/s13369-019-04109-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04109-w

Keywords

Navigation